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The defining equations for group orbits ofa maximal subgroup ofGlp1q in certain highest 
weight representations of the Lie super algebra glplq are discussed. 

I. INTRODUCTION 

The direct sum a) : = I A k ( C n) of fundamental represen
tations of gl(n,C) is a module over the Clifford algebra gen
erated by 1 and fermionic creation and annihilation opera
tors 1/I;,f/It, ie{I, ... ,n}.1t is easy to show that the veAk(cn) 
that satisfy the Plucker equation 

n 

L 1/I;v® 1/Irv = 0 (1.1 ) 
;=1 

form precisely the Gl( n,C) orbit of the highest weight vector 
in Ak(C n

) (cf. Peterson and Kac l ). 

In a similar manner one can use a super Clifford module 
to construct representations M k,m of the Lie super algebra 
glplq' In this paper we show that the analog of Eq. (1.1) 
(introduced by Kac and van de Leur2 in connection with the 
super K.P. equation) describes a group orbit of the maximal 
subgroup of the supergroup GLp1q that acts on the represen
tations Mk,m' (Since these representations are not integrable 
not the whole group Glp1q acts.) The extension of these re
sults to infinite-dimensional Lie super algebras and the con
nection with super Grassmannians and super K.P. equation 
will be treated elsewhere. 

It SUPER CLIFFORD ALGEBRAS AND MODULES OVER 
glp/q 

Letp,q be non-negative integers. For pairs (k,m) of in
tegers with O<,h:;p, O<,m<,q we define indexing sets 

Sk,m: = {ieZJ1<,i<,k}U{jeZlp+ I~<,p+m}. (2.1) 

Let SClp1q be the super Clifford algebra generated by 1 and 
1/I;,1/Ij, iJeSp,q' satisfying the defining relations 

1/1;1/1; + ( - 1 )ij1/l;1/I; = Dij, 

1/1; 1/Ij + ( - 1) ij1/lj 1/1; = 0, 

f/lt1/lj + ( - I) ij1/lj1/lr = 0, 

(2.2) 

where the parity of a generator is given by 
p(1/I;) =p(1/Ir> =0 if I<,i<p and p(1/I;) =p(f/It) = T if 
p+ l<,i<p+q. 

Now consider the irreducible SClp1q moduleMk,m with a 
nonzero even element Ik,m) such that 

1/I;lk,m) = 0, for ieSk,m, 

1/Ij/k,m) = 0, for jffSk,m' 

A basis for Mk,m is given by the following elements: 

H - .1.*1 ••••• I.*h.I.*lp+ I •• •• I.*Jp+ m.l/k+ 1 ••• 
1- 'f'1 'f'k 'f'p+1 'f'p+m 'f'k+1 

X .1/p.l/p+ m + 1 ••• • I/p+ q Ik m) 'f'p'f'p+m+1 'f'p+q' , 

(2.3 ) 

(2.4) 

where I = ~r ~ ?~Dje7J' + q, Dj is the unit vector in 'U + q with 
1 in the jth place and zeroes elsewhere, and ~ = 0,1 for j<,p 
and nonnegative ifj>p. 

On SClp1q we have an action of the Lie super algebra 
glplq given by 

Eij = ( - 1)j1/l;1/Ij, iJeSp,q' (2.5) 

Define elements of the dual of the space of diagonal matrices 
ofglp1q by 

(2.6) 

The~ the weights of 1/1;.1/1; are E; and - Ej , respectively, and 
the weight of the vacuum Ik,m) is ~iESk,m ( - 1)IE;. The ba
sis (2.4) consists of weight vectors. We define an ordering on 
the weights by 

E1>E2 >'''>Ek>Ep+ 1 >"'>Ep+m>Ek+ 1 >'''Ep 

>Ep+m+ I>'" >Ep+ q ' (2,7) 

We will call a root vector Eij is positive if the corresponding 
weight E;-Ej is positive, i.e., if E; > Ej . The vacuum I k,m) is a 
highest weight vector for this choice of positive root vectors. 

Introduce on Mk,m a grading by defining deglk,m) = 0 
and deg(1/I;) = 1 = - deg(f/It),VieSp,q' Then Mk,m de
composes: 

(2.8) 

whereMk~l.. has as basis oftheHJ of (2.4) ofdegrees (i.e" 
there occur s more 1/I;'s than f/It's in HI)' The M k~l.. are 
irreducible under the action of glplq' The highest weight vec
tors are 

(2.9) 

III. SUPER PLUCKER EQUATIONS 

Let A be an arbitrary (but fixed) Grassman algebra. 
Define Mk,m (A): = A ® M k.m and put glplq (A) 
= (A ® glplq )0' Introduce the operator 

(3.1) 

On the glplq (A) modules M k,m (A) we consider the super 
Plucker equation: 
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S(v®v) =0, (3.2) 

for pure vEM i~~ (A) such that the body ofv is nonzero (pure 
means that v is purely even or odd). (To avoid confusion let 
us point out that the Eq. (3.2) does not describe the embed
ding of a super Grassmannian in super projective space [as 
the purely even Plucker Eq. (1.1) does for Grassmannians]. 
In fact super Grassmannians are not (in general) projective, 
see, e.g., Manin3

.) 

The supergroup associated to glplq (A) is Glp1q (A), the 
group of even invertible matrices over A of size plq. This 
group does not act in M k~~ (A), but the subgroup G does, 
where G is the group of even invertible transformations of 
M k~~ (A) generated by 

(i) exp(xEij), xEAij, p(i) = p(j) = 6, i#j, 

(ii) exp(OEij)' BEAT, p(i) = T,p(j) = 0, 

or p(i) = 6, p(j) = T, i#j, 

(iii) exp(xEij)' xEAij, p(i) = p(j) = T, 
E j >Ej • 

Note that the generators of the Lie superalgebra appearing in 
(i) and (ii) are nilpotent on Mk,m (A). Although in (iii) the 
generator is not nilpotent it is locally nilpotent (as we are 
working in a highest weight module) and hence the operator 
in (iii) is well defined [in contrast with exp(xEij) with 
Ej < Ej and x not nilpotent] . 

Lemma 3.1: If VEMk,m (A) is a solution of the super 
Plucker equation then also g' v is, for any gEG. 

A solution of (3.2) can be expanded into homogeneous 
elements with respect to the weight space decomposition: 

(3.3 ) 

In the sequel we will denote by EM the weight of HM. 
Lemma 3.2: The homogeneous solutions of the super 

Plucker equation are the HI with ij = 0 if j > p. 
Proof of Lemma 3.2: For a homogeneous solution HI all 

terms in (3.2) must be individually zero: 

tfjHI®tf;HI=O. (3.4) 

The action of the generators of SClp1q on the homogeneous 
basis elements HI is given by 

and 

j~k,m 

jESk,m 
'A-CO ,j<'p, 

}'PJk,m 

jESk,m 

(3.5) 

(3.6) 

We see from this that forj<'p Eq. (3.4) always holds and for 
j > p only if ij = O. • 

The lemma shows that the homogeneous solutions of 
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the super Plucker equations only occur in the spaces 
M k~~ (A), where - k<.s<.p - k. These solutions can be 
identified with the weight vectors [with respect to the action 
glp(C)] ej , /\ .. ·e

jk
+. of Ak+s(CP), (where {eJf=) is the 

standard basis of C p and I k,m) is identified with 
e) /\ e2 /\ ••• /\ ek ). From this it follows that all homogeneous 
solutions of (3.2) in Mi~~ (A) are mapped into each other 
by the action of elements of G. For O<.s<.p - k the highest 
weight vector Ik,m,s) is a solution and hence of these values 
of s all homogeneous solutions in M i~~ (A) lie on the G orbit 
through Ik,m,s). 

Now we turn to nonhomogeneous solutions (with re
spect to the weight decomposition) v of (3.2). Because we 
demanded v to have non vanishing body there is a component 
H M" of lowest weight in the decomposition (3.3) such that 
vM " is invertible. We may just as well assume that vM " is l. 

Lemma 3.3: H M" is a solution of the super Plucker equa
tion. 

Proofof Lemma 3.3: Consider in (3.2) the component 
of weight 2E M,,' In general it will look like 

s( HM" ®HM" + 'K+E~=2EM .. vKHK ®VMHM) = 0, (3,7) 

In the summation terms appear with either E K < EM" or 
EM < EM,,' This means that either v K or v M is nilpotent and 
has degree greater than zero in the gradation of A where the 
generators have degree one. Then in the gradation of the 
tensor square of Mk,m (A) induced by this gradation of A the 
only term of degree zero in (3.7) is S(HI ® HI ) = O. • 

}" 1 .. 

From Lemma 3.3 it follows that all pure solutions of 
(3.2) (with nonvanishing body) must be even. Moreover 
these purely even solutions occur only in M k~~ (A) for 
- k<.s<.p - k. 

Lemma 3.4: Let v and Mo be as above. Then there exists 
an element g of G such that 

g'v=HM" + LVKHK' 

with all VK nilpotent. 
Proof of Lemma 3.4: Let HJ #H M" be the component of 

lowest weight in the decomposition (3.3) such that VJ is 
invertible. (If such a J does not exist, we can take g to be the 
identity and the lemma is proven for this v.) Consider the 
component of the super Plucker equation of weight 
E = EM" + EJ. It reads 

S(HM" ®vJHJ + vJHJ®HM" 

(3.8) 

As before the terms in the summation have all degree greater 
than zero (in the A gradation). So taking the zero degree 
component of (3.8) we find after dividing by VJ 

S(HM" ®HJ + HJ ®HM.,) = O. (3.9) 

Sublemma: For every HI' HJEM k~~' with I #J thereis 
an index lin Sp,q such that tflHI #0, t/It' HJ #0. 

Proof of Sublemma: Introduce N I, N r as the numbers 
of tfj 's, t/J'!'s in HI: 
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NJ = L It> NT = L I,. (3.10) 
I<iSk.m tESk.m 

Then since H J , H J belong to Mk~~ we have 
s = NJ - NT = NJ - N 1· Now ifthere is a tf!S k,m such that 
I, <J" then by (3.5) and (3.6) wehaverP,HJ #0, ¢1HJ #0, 
(for J, > 1 and if t<p, I, = 0, J, = 1). So in this case the 
sublemma is proved. Suppose therefore that I, >J" t($S k,m . 

This implies NJ >NJ and also NT>N1. Ifthere is an rESk,m 

such thatIr >Jr then again we have rPtHJ #0, rP~HJ #Oand 
we are done. So we may additionally suppose that for all 
rESk,m' Ir<Jr. This implies NT<N1- But then we have 
NJ = NJ, and NT = N1. Combining Ir<Jr with NT = N1 
we find Ir = Jr, rES k,m' similarly we also have I, = J" 
t($Sk,m and hence 1= J in contradiction with our assump
tion. • 

We continue the proof of Lemma 3.4. According to the 
sublemma there is in (3.9) a nonzero term 
( - 1)i rPiHM" ® rPfHJ.Looking at the weights in (3.9) we 
see th~t this term can only be cancelled by a term 
( - l)j rPjHJ ® t/ij H M" (this counterterm is unique). There
fore 

(3.11 ) 

This means that EijHM" = aHJ> a = ± 1. Since €M" <€J 
the root vector Eij is positive. Define now the following ele
ment of G: g(l} = exp( - avJEij). Then v'go·v has HM" as 
lowest component with invertible coefficient, does not con
tain H J , and other components with invertible coefficient (if 
any) will have higher weight than H J • Repeating this we 
eliminate all components with invertible coefficients. The 
process terminates since we are in a highest weight mod
~ . 

Lemma 3.5: Let v = HM" + 'i.vKHK be a solution of the 
super Pliicker equation with all VK nilpotent. Then there is a 
gin Gsuch thatg·v = H M". 

Proof: Let H L #H M" be some weight vector occurring in 
v. Consider the component of (3.2) of weight € = € L + € M" : 

S(HM" ®vLHL + vLHL ®HM" 

+ E=t-+EM vKHK ®VMHM) = O. ( 3.12) 
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By the sublemma there is an index 1 such that 
« _1)lrPl ®f/!T)(HM" ®vLHd#O. This term must be 
compensated by some term « - 1) k rPk ® 1/1') 
X (vLHI ®HM,,) or « -l)krPk ®1/1')(vKHK ®vMHM). 
As in the proof of Lemma 3.4 this means that there is in v a 
component Hp with €p = €M" + €I - €k and 
E1kHM" =aHp,a= ± 1. Definegl) = exp( -avpElk).1t 
belongs to G since Vp is nilpotent. Then v' = gl)·V does not 
contain a component along H p. By repeating this we elimi
nate from v components with nilpotent coefficients. It may 
seem that we will introduce in this way many new compo
nents (of possibly lower degree). This is true, but we must 
then remember that all Vk are nilpotent. So ifthere are say x 
different v K 's, then only products of up to x V K 's are poten
tially nonzero and our process stops after a finite number of 
steps. • 

We can summarize the conclusion of this paper in the 
following'theorem. 

Theorem: A pure element v of M k~~ (A) with non van
ishing body solves the super Pliicker equation 

S(v®v) =0 

if and only if v is even, lies on the G orbit through the homo
geneous solutions and - k<s<p - k. If s is larger or equal 
than zero v lies on the G orbit through the vacuum Ik,m,s). 
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Some features of Manin's construction of quantum groups are developed and extended to 
supergroups. 

I. INTRODUCTION 

In recent years a great deal of activity has been directed 
toward the exploration of quantum groups and algebras. 1.2 

These structures may be thought of as matrix groups in 
which the elements are themselves noncommutative, obey
ing sets of bilinear product relations, and as a deformation of 
ordinary Lie algebras, respectively. They arise in quantum 
inverse scattering theory and as representations of transfer 
matrices in statistical mechanics. In these cases the sufficient 
condition for associativity of the algebra turns out to be the 
Yang-Baxte.-J relation, the analog of the Jacobi identity for 
quantum groups. In this paper we shall concentrate upon 
certain algebraic aspects of the theory and develop ideas aris
ing principally from the viewpoint of Manin,4 who considers 
a quantum group as effecting linear transformations upon a 
space whose elements, or coordinates, are noncommutative. 
The conditions for such a mapping to be an endomorphism 
constitute the quantum group relations. In fact, since this 
idea underlies the classical transformation groups, it is a very 
natural, though at first sight unfamiliar, approach to the 
deformation of classical groups. 

We recount the idea of Manin for the simplest example 
ofGLq (2) and develop properties of this quantum group. A 
natural extension leads to the definition of the dual group 
GLq (2) whose elements are Grassmannian, and GLq (111) 
which is connected with the quantum extension of the super
algebra SU (11), just as G Lq (2) is connected with the 
quantum extension of SU (2). Quantum superalgebras and 
groups have been studied before. 5 These groups are then dis
played in a more familiar way as bilinear relations specified 
by an R matrix satisfying the Yang-Baxter equation 

R I2R I3R23 = R23R I3R 12 

as a guarantee of associativity, and the generalization to 
GLq (N), GLq (N 1M) is made. The minimal set of relations 
imposed by the R -matrix relations is shown to be equivalent 
to those imposed by Manin's construction, and in fact Man
in's construction can be used to infer the structure of the R 
matrix for the classical groups. 

II. MANIN'S CONSTRUCTION 

Manin introduces what he calls the quantum plane 
Rq [2,0], whose elements are pairs x = (x,y), whose compo-

nents x,y are assumed to satisfy the algebraic relation 

(2.1 ) 

where q is a complex number. The components neither com
mute nor anticommute unless q = ± 1, respectively. A 
Grassmannian quantum plane Rq [0,2] dual to the (x,y) 
plane is also introduced, with elements 5 = (5,1/) which are 
required to satisfy 

52 = 0, 1/2 = 0, 51/ + q1/5 = 0. (2.2) 

Now consider a matrix 

M = (; !) EGLq (2), 

which effects simultaneously linear transformations of the 
quantum plane and its dual, 

x' = MxERq [2,0], 

5' = M5ERq [0,2]. (2.3) 

The images x', 5' are supposed to lie in the appropriate 
planes, i.e., their components satisfy (2.1) and (2.2). (The 
elements of Mare supposed to commute with x,y,5,1/') This 
condition imposes restrictions upon M, giving the GLq (2) 
relations 

ab = q-1ba, cd = q-1dc, 

ac = q-Ica, be = cb, 

bd = q-1db, ad - da = (q-I - q)bc. 

(2.4) 

Using these relations, it is easy to show that Detq M 
= ad - q-1bc commutes with all the elements a,b,c,d and 
thus may be considered as a number, the "quantum determi
nant." The choice Det q M = 1 restricts the quantum 
"group" to SLq (2) by analogy with the classical restriction 
to the special linear group. Because Detq M commutes with 
the elements of M there exists an inverse 

( d -a
qb

) , M- 1 = (Det M)-I 
q - q-Ic 

(2.5) 

which is both a left and right inverse for M. Note that M - I is 
a member of GLq-, (2) rather than GLq (2), and thus 
GLq (2) is not, strictly speaking, a group. Furthermore, it is 
clear that if 
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(a b) (a' b') M= e d and M'= e' d' eGLq (2), 

and (a,b,e,d) pairwise commute with (a',b ',e',d') thenMM' 
and M'M are both GLq (2) matrices. Also 

Detq (MM') = Detq (M'M) = (Detq M) (Detq M'), 
(2.6) 

reinforcing the identification with a determinant. 
The algebra (2.4) is associative under multiplication 

and the relations may be reexpressed in a tensor product 
form 

RijklMkmMln = MjIMikRklmn' (2.7) 

where Rijkl is a matrix, whose explicit form is given by 

(k,l) 

(i,j{T q<-q r j} (2.8) 

where the rows are all pairs (i,j) , iJ = 1,2 in natural order, 
and similarly the columns are pairs (k,/). Expression (2.8) 
is a member of a general class of R matrices, each labeled by 
an additional parameter x, and each associated with one of 
the classical affine Lie algebras.2 An explicit form of the R 
matrices for the classical series is given by Jimbo. For A n it is 

R(x) = (q-I-xq)IEaa ®Eaa + (1-x) I Eaa ®Epp 
a#p 

In this expression, the indices i,j, k, I have been suppressed 
for the sake of clarity. The i,jth element ofthe matrix Eap is 
given by 

For AI' and x = 0, the matrix (2.8) is recovered. The R
matrix (2.9) satisfies the well-known Yang-Baxter relation 

RI2(X)R13(xy)R23(Y) = R 23 (y)R 13 (xy)R 12 (x), 
(2.10) 

which for x,y = 0 is a sufficient condition for the associati
vity of the quantum matrices. 

As Manin's construction ensures associativity, it might 
thus be employed as a method for the construction of Yang
Baxter R matrices satisfying (2.10) by reexpressing the 
quantum group relations in the form (2.7) and identifying 
R. However, even then (2.10) is not guaranteed, as we shall 
see later. 

There is also a second curious property applicable to 
2X2 quantum groups. It asserts that if MeGLq (2) then 
~ eGL ,,( 2). It is elegant but appears neither to generalize 

q 

nor to fit into a proper algebraic scheme. [The product is not 
to be confused with comultiplication I which preserves 
(2.4 ).] It is proved in the Appendix.6 
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III. QUANTUM SUPERGROUPS 

Returning to the quantum plane (x,y) and its dual 
A 

(S,1!> , suppose we postulate a linear transformation M 
which maps the plane into its dual and vice versa, i.e., 

A A 

S'=Mx, x'=MS, (3.1 ) 

and again impose the quantum pla3!.e conditions upon 
(S ',1'0 and (x' ,y'). Ifthe elements of M are designated by 

then the constraints are ten in number: 

a/3 + q/3a = 0, ar + qra = 0, 

/38 + q8/3 = 0, r8 + q8r = 0, 
a8+8a=0, 

/3r+ r/3 + (q - q-I)8a = 0, 

a 2 = /3 2 = r = 82 = O. 

(3.2) 

These relations may be considered as a deformation of a 
Grassmann algebra on four elements (a, /3, r, 8). As with 
the quantum matrix, they may be expressed in terms of an R 
matrix in the form (2.7), 

RMM= -MMR, (3.3 ) 

where 

(

q+q_1 

A 0 
R= o 

o 

o 
q_q-I 

2 

o 
~ ). 
q+q-I 

(3.4) 

Note that in the classical limit (i.e.J...q ..... t)R becomes twice 
the identity matrix. This matrix R is (2.9) evaluated at 
x = - 1. Notice also that although the algeh):a 13.2) is an 
associative algebra of the matrix elements of M, R does not 
satisfy the Yang-Baxter equation (2.10), thus demonstrat
ing that the Yang-Baxter relation is not a necessary condi
tion for ass~ciativity. 

Since M is entirely Grassmannian, an inverse proper 
cannot exist. However, the analog ofleft and right adjugate 
matrices can be constructed, giving 

(3.5) 

(
a P'I( - q-

1
8 /3) (1 0) 

r 8J -r qa = (r/3+q8a) 0 1 . (3.6) 

The combination/3r + q8a may be thought of as a left quan
tum determinant and !1L and r/3 + q8a as a right quantum 
determinant!1R • The expressions t::.L,!1R satisfy the relation 

!1L(-q-
1
8 /3 )=(q8 /3 -I )t::.R' (3.7) 

-r qa -r -q a 
which is a consequence of (3.5) and (3.6) and associativity. 

In a similar manner one can construct the quantum ana
logofGL(111), which wecallGLq (111), the group oflinear 
transformations acting upon a quantum superplane with one 
bosonic and one fermionic coordinate. (We use the conven-
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tion of roman script for bosonic quantities, greek for fer
mionic.) Consider a quantum superplane and its dual; 

satisfying 

xs - q-Isx = 0, 

S2=0, 
1/2=0, 

and 
1/y-qY1/=O. 

Define a GLq (111) matrix, 

JI=(; ~, 
and require 

(3.8) 

and impose (3.8) once again on the transformed variables. 
We assume thatfl and r anticommute with sand 1/. Then we 
obtain eight relations 

a{3 = q-l{3a, ar = q-I ra, 

dfl = q-l{3d, dr = q-Ird, 

{32 = 0, f = 0, flr + r{3 = 0, (3.9) 

ad - da + q- l{3r + qr{3 = O. 

In this case the left and right inverses may be defined and are 
equal; 

JI-I- I I q 
(
fl-Id - fl-I -11 

L - _ fl
2
- Iq-I

r 
fl

2
- la 

_ (dfl l- I - q{3fl2- I) _ _ I 
- -JiR , 

- qrfll- I afl2- I 

where fll = ad - q{3r and fl2 = da - qrfl. The theorems in 
Sec. II also apply to GLq (111). In particular, if 
JI eGLq ( 111) then JI" eGL

qn 
(111). Similar results may be 

deduced for the dual matrix 

~=(; !), 
which transforms the superplane into its dual. 

IV. GENERALIZATIONS TO GLq(N) AND GLq(NIM) 

It is obviously desirable to extend the analysis to the 
quantum analogs of linear transformations in higher dimen
sional spaces. Consider first GLq (N). Instead ofthe quan
tum two-plane, take a vector 

and impose the relations 
XjXj - q-IXjXj = 0 for i <j. (4.1 ) 

Adjoin a dual quantum space 

t~C:r'[O'Nl' 
with the relations 
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(4.2) 

The relations (4.1) and (4.2) can be written in the form 

XTGklX = 0, S TFklS = 0, 

where Gkl is a matrix whose entries are all zero except for the 
kl th and the lk th, i.e., 

Similarly, 

(Fkk ) rs = DrkDsk · 

Now 

(Gij)rs(Fk/)rs = Tr(GijF[/) =0 

(4.3) 

(4.4) 

(4.5) 

by construction. This enables us to write the quantum matrix 
condition very succinctly. Suppose the matrix of linear 
transformations is given by M, i.e., 

x'=Mx, s'=Ms. (4.6) 

Then, x™ TGijMx = 0 implies that M TGijM is a linear 
combinations of G 's, i.e., 

MTGijM= I AijklGkl' (4.7) 
k.1 

and similarly, S TM TFijMS = 0 implies 

MTFijM=) BijklFkl' (4.8) 
t1 

Due to orthogonality (4.5) we have sets of relations 

The number of relations of the first kind is simply the num
ber of independent G's, ! N(N - 1) multiplied by the num
berofindependentF'sdN(N + 1) giving !(N4 

- N2), and 
similarly for the second kind, resulting in ~N 2 (N 2 

- 1) rela
tions, the full set for GLq (N). Notice thatthe relations (4.9) 
imply also that MT is a quantum matrix, as it satisfies the 
same bilinear algebra. In fact, we can dispense with the dual 
(Grassmannian) plane in setting up the quantum group 
conditions; we can take simply 

x' = MxeRq [N,O], 

x" =MTxeRq[N,O]. 
( 4.10) 

In the classical case q = 1, and G ij spans the space of 
antisymmetric matrices, while the Fij spans the symmetric 
ones. We can refer to the quantum case of Gij as q-antisym
metric, and F as q-symmetric matrices. 

It is now relatively easy to construct an R matrix, and to 
exhibit these relations in the form ofEq. (2.7). 

Define the N 2 X N 2 matrix 

R(f./"V) =f./, I (Gij)TGij + v I (FkdTFkl , (4.11) 
jJ k,l 
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where p, and v are arbitrary parameters. Then, on account of 
the orthogonality relations (4.5) together with the addi
tional orthonormality conditions 

Tr( G fGkl ) = b;kbjl' 

Tr(FfFkl) = b;kbjl' 

Eq. (4.11). written with explicit indices as 

Rst.uv(p,.v) =p, L (Gij)ts(Gij)uv 
;J 

+ v L (Fij)ts(Fij)uv 
ij 

( 4.12) 

(4.13) 

(4.14 ) 

is just the eigenvalue expansion of an N 2 XN 2 matrix with 
two degenerate eigenvalues with degeneracies ~N(N - 1) 
and !N(N + 1). The sets of quantities (Gij)sto (Fij)st are 
eigenvectors in the sense that 

(Gij) tsRst.uv = p,( Gij) uv' 

(Fij)tsRst.uv = v(Fij)uv' 

Imposing the conditions 

Rurpq(P,.v)MpuMqv = MrqMupRpquv(p"v) (4.15) 

produces a set of equations whose content is just (4.9). as 
may be readily derived by taking the trace of (4.15) with 
(Gij) TFkl and (Fij) TGkl . The orthogonality properties 
(4.5). (4.12), and (4.13) ensure that Gij and Fij are eigen
vectors of R. and since the eigenvalues differ, the equations 
(4.9) are a consequence of (4.15). Note. however. that the 
relations (4.15) are not all necessarily independent. while 
(4.9) are, by construction. No further conditions result from 
taking the trace of (4.15) with the combinations (Fij)TFkl 

and (Gij) TGkl.1t is easy to see that (4.11) gives R (x). (2.9) 
for p, = - q + xq-I. V = q-I - xq. 

The extension for the dual Grassmann matrix if is very 
much the same. Postulate a similar ansatz for the R matrix. 
but with different eigenvalues. p" v. Then impose 

A. AA AAA 

Rcrrpq(p"v)MpuMqv = -MrqMupRpquv(p"v). (4.16) 

The eigenvalues of Rare ± (q + q-I). i.e., x = + 1 in 
(2.9). This fact has the consequence that this time the ma
trix elements of this relation that do not vanish are those of 
the trace with Gij (Gkl ) T and Fij (Fkl ) T, while those with a 
mixed G and F are automatically satisfied. thus giving 
!N 2 (N 2 + 1) independent relations for the quantum Grass
mann group 

A TAT 
Tr(M GijMG kl) =0, (4.17) 

A TAT 
Tr(M FijMF kl) =0. (4.18) 

These provide the generalization of (3.2) to arbitrary N. 
This generalization gives the class of R matrices asso

ciated with the Lie groups of the A n series. 2 We might also 
enquire about the corresponding extension to other series. 
e.g., the Cn series. What we must do to obtain the Cn • i.e., the 
Sp(2n) series. is to adjoin to the quantum plane conditions 
(4.6) an additional symplectic requirement, 

(4.19) 

where E is an N XN matrix (N = 2n), with nonvanishing 
elements only for i + j = N + 1, i.e .• on the antidiagonal, 
where they are 
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qN, ...• q(NI2) + I,q(NI2) - I, ...• q, 1. 

We can write the quantum "group" condition in a form anal
ogous to (4.9) after redefining matrices 

Gij = Gij - [2 Tr(ETGij)INqN]E. (4.20) 

(4.21 ) , 
so that they are orthogonal to E in the sense of (4.17) and 
( 4.18). Then the quantum conditions can be written as 

Tr(MTGijMF~/) =Tr(MTFijMG~/) =0, 

The number of such relations is 

!N(N - 1) (N 2 + N + 2) - 2. 

(4.22) 

(4.23) 

For N = 2 this gives 6. as before. and for N = 4 it gives 130, a 
number which agrees with computer calculations in RE
DUCE, using the Sp(2) R matrix of Jimbo to define quan
tum group conditions via (2.7). 

In an analogous fashion the dual group relations can be 
found by replacing (4.22) by 

A T TA 
=Tr(M E ME) =0. (4.24) 

the number of relations being 

(4.25) 

As is to be expected, this is complementary to the previous 
calculation; the sum of (4.23) and (4.25) is N 4

• 

v. FURTHER GENERALIZATIONS 

The assumptions made for the quantum hyperplane 
conditions (4.1) and (4.2) need not be the only viable struc
tures. In fact. there is a natural generalization of the Clifford 
sequence. Start with a quantum plane (x,y) and its dual 
(5,71). Then construct the quantum matrix M and its dual 
if. Now view the elements of M as constituting the coordi-

A 

nates a, b. c. d in a quantum hyperplane, with M furnishing 
the dual coordinates. and take the relations (2.4) and (3.2) 
as those to be preserved by linear transformations M', if, 
acting upon the quantum hyperplanes. This leads to condi-

A 

tions on the 16 elements of M' and those of M', which in turn 
can be thought of as the requirements for a 16 dimensional 
hyperplane. subject to a linear transformation M" etc. This 
sequence will generate a quantum Clifford sequence. 

This approach to quantum groups raises the obvious 
question of the representation of the elements of the quan
tum plane. and of the quantum matrix itself, by finite-dimen
sional matrices whose elements themselves commute. That 
such representations do exist with q an nth root of unity is 
demonstrated by setting x = g and y = h, where g.h are n X n 
matrices given by 
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g= 

h= 

0 0 
0 (U 0 
0 0 (U2 

. " 
0 0 0 

0 I 0 
0 0 

o 0 
100 

. . . 

~ = h n = I, (Un = 1. 

0 

0 
0 

(Un - I 

It is easy to verify that gh = (U - I hg, the quantum plane con
dition. 

It is difficult to find representations of M with 
Detq (M) #0 and q# ± 1. A specific example for AI is 

M- (i (Uh ) 
- (Uh 4 g4(l + h 5) , 

where n = 6 and q = (U2. 
It is also possible to create infinite-dimensional repre

sentations, though degenerate, i.e., with a vanishing 
Detq (M). One such representation is 

(

eia(p, + p,) 

M= 
eia(p, +x,) 

where PI,P2 and XI,X2 satisfy the commutation rules appro
priate to canonically conjugate variables and q = e - ia' • We 
have not found any such example which is not degenerate. 

For An quantum groups a representation of the quan
tum hyperplane (4.1) is given by 

XI =x®x®x®'" ®X, 

X2 =y®x2 ®x2 ® ••. ®x2, 

X3 = x®y®x2 ® •• 'r, 

Xn+1 =x®x®"·®x®y. 
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APPENDIX 

To provide a proof that if MeGLq (2) then 
~eGLqn(2), we may proceed as follows. The quantum 
group relations (2.4) can be rewritten suggestively as 

(AI) 

where 
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and Tq is an operation similar to transportation, defined by 

M Tq_ -IMT _ (Jq 0 ) 
- O'q O'q' O'q - 0 l/Jq' 

Actually, (AI) provided the motivation for a number of the 
results in this article, and looks suspiciously like a "quan
tum" version of Sp (2). To prove the assertion concerning 
quantum GLq (2) matrices, it is clearly enough to show that 

(A2) 

The following elegant inductive argument is due to C. 
Tunstall. Let 

= (gn (a,d,bc,q) bin (d,a,bC,q-I») 
Mn d I ' cf" (a, ,bc,q) gn (d,a,bc,q- ) 

where go = 1,/0 = 0, and 

In (a,d,bc,q) = ql- Yn (d,a,bc,q-I), 

(dq - a)/n (a,d,bc,q) - qngn (d,a,bc,q-I) 

+ gn (a,d,bc,q) = O. 

Then the induction steps are easily checked and 

(A3) 

Mn+1 =MMn· (A4) 

We now use this to observe that Mn can be identified with 
~ . Introducing the abbreviations 

gn = gn (a,d,bc,q) , 

In = f" (a,d,bc,q) , 

and using the above definitions, we find 

(Mn) Tq" = (O'q,,)-I(Mn)T(O'q") = (:~/n 
and 

(M Tq)n = (a clq)n = (gn 
qb d qbf" 

yielding the desired result. 
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Using Jakobsen theorems, unitarizability in Hermitian symmetric spaces is discussed. The set 
of all missing highest weights is explicitly calculated and the construction of their 
corresponding highest weights vectors is studied. 

I. INTRODUCTION 

One of the new methods for the construction of repre
sentations for semisimple Lie algebras is based on enveloping 
algebras. 

Irreducible representations of simple Lie Algebras arise 
if we take the quotient space of Verma modules with respect 
to some invariant subspaces generated by highest weight 
vectors. I When a scalar product is induced in these Verma 
modules infinitesimally unitary representations can be de
fined.2 

In this paper we discuss the unitarizability on noncom
pact real forms following the Jakobsen method.3

-
s He uses 

the Bernshtein, Gel'fand, and Gel'fand theorem and the sca
lar product induced by a sesquilinear form introduced by 
Harish-Chandra in Refs. 6 and 7. We use his method to 
obtain a complete and explicit classification of the highest 
weights that we must exclude in order to unitarize when the 
reduction level is strictly higher than one. In the examples 
and when the expressions are not extremely long, we illus
trate the procedure by writing the corresponding highest 
weight vectors that generate the invariant subspaces in 
which the sesquilinear form vanishes. 

There exists other methods in the literatureS-II follow
ing different paths but arriving at the same final results. 

Indecomposable representations have found applica
tion in physics for a long time. 12 Therefore, certain types of 
indecomposable representations are associated with the 
Poincare algebra, the algebra of the Euclidean group, and 
others.13 For application of the algebras treated here see 
Refs. 14 and 15. 

In this work we consider Hermitian symmetric spaces 
for which the reduction level may be higher than one: 
su (p,q) , sp (n,R), so* (2n), e6 , and e7 • In Sec. II we give some 
concepts that will be needed. In Sec. III we describe the 
Jakobsen method by means of a step series and we state how 
to construct the highest weight vectors. In Sec. IV we intro
duce the concept of height and we give a notation that allow 
us to easily localize the noncompact roots in Jakobsen dia
grams. In addition, we use the Jakobsen diagrams to obtain, 
in a very simple way, the split rank that is useful for the 
calculation of the A.s parameter. Finally in Sec. V we first 
study general cases giving the sets of all highest weights that 
will be missing and then apply the method to some examples. 

a) This work contains a part of the Doctoral Thesis written by one of us 
(J.G.E.). 

II. PRELIMINARIES 

Let g be a semisimple Lie algebra over f!lt and let t be its 
complexification. Let R(X,y) = tr(adX ad Y); X,yet be 
the Killing form. A real form go of t is called compact if 
R(X,x) < 0 for each XEgo and an automorphism fJ oft exists 
such that 

fJgoCgo' fJgCg, 

and 

g = k + p, go = k + ip, 

where i = ,f=T, kis the set ofallXEgsuch that fJX = X, and 
p is the set of all YEg such that fJY = - Y. 

Let k t and pt be the subspaces of t spanned by k,p, 
respectively, over C. It holds 

Let h be a Cartan subalgebra of g and h t the complexifi
cation of h. Then h t is a Cartan subalgebra oft and, for the 
cases considered here (Hermitian symmetric spaces of non~ 
compacttype),holds 

[ht,kt]Ck t, [ht,pt] cpt. 

Forgivent, h t, leta be the root system oft and a + the 
system of positive roots. We say that a is compact if Ea E k t 
and noncompact if Ea E pt. The set of compact and noncom
pact roots oft with respect to h t are denoted by ac and an, 
respectively. The set of compact simple roots is denoted by 
~c,f3is the only noncompact simple root, and rris the high
est root (which is a noncompact positive root). 

Let kl = [k,k] and assume that k has a nonempty cen
ter TJ of dimension one. Then k = k I ED TJ and 
h = (hnkl ) ED TJ. On the other hand, h t = (hnkl)t ED TJt is 
an orthogonal direct sum with respect to the Killing form: 
forifHJ.tE(hnkl)t and HoETJt 

(HJ.t,Ho) = ([EJ.t,E_J.t],Ho) = (EJ.t,[E_J.t,Ho» =0. 

For rl,r2Ea we use the notation 

(rl,r2) = 2(rl,r2)/(r2,r2) = rl (Hy,), 

where (.,.) is the bilinear form on (h t)* induced by the 
Killing form on gt. 

Let u (gt) be the universal enveloping algebra of gt, 
AE(h t)*, and R = !~aE~+a. The Verma moduleMA of the 
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highest weight A is defined to be M A = u (t )/1 A' where I A 
is the left ideal generated by the elements (H - A(H», 
HEh c, and the set of generators X r with YEil +. To fix a basis 
on (h C) * we choose the set of compact simple roots l:c for 
the space «hnkl)C)* and one element EE( rl)* for which 

(E,Il) = 0, VIlEl:c and (E,Yr) = 1, 

then each AE (h t ) * may be written as A = Ao + AE, where 
Ao satisfies (A,lli) = (Ao,lli) VlliEl:c. If we choose a nor
malization for Ao of the type (Ao,Yr) = 0, from the last de
composition of A we conclude that (A,yr> = A. The rela
tions (A,lli) = (Ao,lli) and (Ao,Yr) = 0 fix Ao uniquely. In 
the following we consider Ao to be kl dominant and integral, 
that is, (Ao,lli) = ni, where ni are non-negative integers. 

Now, ifMA isa Verma module, LA an invariant submo
dule,andLA =MA/LA a quotient module and ifpA =MA, 
LA' LA is irreducible then we say that P A is infinitesimally 
unitary if there exists a scalar product ( , ) on the carrier 
space V of PA such that 

(U,pA (X)w) = - (PA (X)u,w), 

for all XEg and U,WE V. The above condition is called g invar
iance. 

In a Verma module this scalar product is induced by a 
sesquilinear form. For definition and construction of this 
form see Ref. 2. 

In the following we are going to reformulate the Jakob
sen method to calculate the modules MA that are unitariza
ble by using a diagramatic representation of iln+ • 

III. JAKOBSEN METHOD 

The modules MA are determinated by Ao and A where 
Ao is k I dominant and integral and AE~. 

There exists a way to represent the set iln+ by means of 
bidimensional diagrams in the following way: one begins 
with I' and draws an arrow originating atp for each compact 
simple rootll i such that I' + lliEiln+' 

Lemma 4.1 of Ref. 3 shows that i<2. We suppose for 
simplicity that i = 2. Then one draws two arrows: one origi
nating atp + III and parallel to 112 and another originating at 
I' + 112 and parallel to Ill' both arrows point toward 
I' + III + 112 which is also a root. The next step would be to 
add compact simple roots to the noncompact roots previous
ly obtained by keeping those that are noncom pact roots. 
Continuing along these lines the diagram may be completed. 

For the description of the possible places for unitarity, 
Jakobsen uses the Bernshtein, Gel'fand, and Gel'fand 
theorem. This theorem describes the circumstances under 
which the irreducible quotient Ls of a highest weight mod
ule can occur in the Jordan-Holder series JH(MA ) of an
other. 

Definition: Let 5, AE(h t)*. A sequence of roots a l , ... , 

akEil + is said to satisfy condition (A) for the pair (5 + R, 
A + R) if 

(a) 5 + R = qak" 'qa, (A + R), whereqa, is the Weyl 
reflexion with respect to ai' 

782 

(b) Take 50== A, 5i + R = qa," ·qat (A + R), 
Then5i_1 - 5i = niai, niEff. 
Theorem: (Bernshtein, Gel'fand, and Gel'fand); Let 
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5,Ae(h C)* and let Ls,MA be two Verma modules. Then Ls 
eJH(MA ) ifand only if there exists a sequence al, ... ,akEil + 
satisfying condition (A) for the pair (5 + R,A + R). 

On the other hand, under some conditions the ai's may 
be considered as noncompact ones. 

Proposition: Let 5, AE(h C) * and assume that the se
quence al, ... ,ak satisfies condition (A) for the pair 
(5 + R,A + R). If5is kl dominant we may assume that a i 
Eiln+ ,i = 1, ... ,k. 

Let VAl) be an irreducible finite-dimensional u(k f) 
module with highest weight Ao. We first consider the u (k f ) 
module p- ® VAl)' The highest weights on p- ® VAl) are of 
the form Ao - a for certain aEil;; that we will describe in 
terms of the Jakobsen diagrams. 

We now describe the method: 
(i) Let aEiln+ and assume a -lljEiln+ for IljEl:c, 

) = 1, ... ,i and i<2. 
Then Ao - a is a highest weight for the u(k f) module 
p- ® VAl) if and only if for all) = 1, ... ,i, 

Ao(HJl-j) == (Ao, Ilj) ;;;.max{ 1, (a,llj)}. 

Recall that Ao is fixed by given integers (Ao,lli)' lliEl:c 
and (Ao,Yr) = O. 

(ii) For those aEil n+ of step (i) let A a E~ be determined 
by the equation 

(A+R,a) = (Ao+AaE+R)(Ha) = 1. 

Let ..1.0 denote the smallest among those Aa 's, and let ao de
note the corresponding element of il;; . We now define the 
following sets: 

C a: = {aEil n+ /a;;;.ao} and C;' = {aEiln+ /a<ao}. 

The way in which those sets appear in the diagram of iln+ 

suggest that we can call C a: and C;., the forward and back
ward cone, respectively, at a o. 

(iii) Let (i)q = nlal + ... + nrar,niEJV'. If a), ... ,ar 
Eiln+ satisfies condition (A) for the pair 
(A - (i)q + R,A + R), where A = Ao + Aq E and Ao - (i)q is 
the weight of a highest weight vector q in the u (k f ) module 
u(p-) ® VAl) andAq <..1.0, then 

aiEC a:, Vi= l"·r. 

(iv) The ai's appearing in (i)q must satisfy certain condi
tions that we now describe. 

Because inner products between positive noncom pact 
roots are non-negative and because Aq < ..1.0, it follows that 
fora i Eil n+ 

(Ao + AoE + R,ai ) > (Ao + AqE + R,ai ) > O. 

On the other hand, to check the k) dominance of Ao - (i)q 
Le., 

(Ao - (i)q,llj);;;'O, VlljEl:c, 

it is useful to have in mind that if a compact simple root Il is 
pointing toward a noncom pact positive root a in the dia
gram then (a,ll) > 0 and if Il arises outwards a and at the 
same time Il is not pointing toward a then (a,ll) < O. 

(v) MA with A = Ao + AoE is unitarizable. The value 
A = ..1.0 is called the last possible place for unitarity because 
for A> ..1.0 there is no unitarity. The description of the general 
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situation follows by forming tensor products of M A with the 
unitary module M;.sE corresponding to Ao = O. The restric
tion of M A ® M;.,E to the diagonal is the unitarizable module 

MA' with A' = Ao + (Ao + As )E. 

This means that if we want to unitarize we must take the 
quotient space with respect to the invariant subspace genera
ted by the highest weight vector corresponding to Ao + As, 
which is a second-order polynomial: this polynomial will be 
missing. 

ThemodulesMAu with A" = Ao + AE,Ao +As <A <Ao 
are not unitarizable. 

For Ao + Us we may have unitarity and there will be a 
third-order missing polynomial, while there is no unitarity 
for Ao + Us <A <Ao + As' 

Continuing along these lines we arrive at the first possi
ble place for nonunitarity that corresponds to A = Ao + uAs 
(we call u + 1 the reduction level) and all representations 
with A < Ao + UAs are unitary. 

The following diagram illustrates the possible places for 
unitarity (in the next section we will see that As <0). 

A=Ao+2A. , , , , , , , , 

I --

(last possible place for unitarity) 

• -- unitarizable 

--- non unitarizable 

(first possible place for nonunitarity). 

In order to construct the highest weight vector corre
sponding to the highest weight known, say A + R - mf3 
- ~imifLjJ we start by finding a set of simple roots 

a l ,a2, ... ,as such that 

then we make use of the method outlined in Ref. 1. As can be 
seen in the examples the exponents are not always positives, 
and even in some cases (see sp(n,~» they are not integers. 

The expressions obtained are only formally valid and 
use has to be made of Taylor series for this powers of the 
generators and then to apply the commutation relations 
[ Ea;,E ~] (mEJY') to each term in the series. For instance, 
in su (2,2) from 

[Ep,EZ',] =mEZ',-IEa , 

[where f3=(O,I,-I,O), fLI=(O,O,I,-I) and a l 

= (0,1,0, - 1)] it follows that [Ep/(EI', )] = f' (EI', )Ea, 
for any analytic function of the operator EI', . 
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IV. SOME DEFINITIONS AND NOTATIONS 

From the Jakobsen diagrams (see the examples in Sec. 
V) we observe that all positive noncompact roots can be 
expressed as 

a = f3 + fLi, + ... + fLi
k

' fLim E ~c, m = 1, ... ,k. 

Thus, given a in this way we define its "height" as k + 1 
(the rootsfLim may be repeated). 

On the other hand, given the decomposition 
A = Ao + AE we may relate the products (A,a) and (Ao,a), 
aE6.n+ , in the following way: 

(A,a) = (Ao,a) + A [(y"y,)/(a,a)]. 

In fact 

(A,a) = (Ao,a) + A (E,a), 

and, decomposing 

(see Jakobsen diagrams) then 

(E,a) = 2({.y,)/(a,a) = (y"y,)/(a,a), 

where we use the fact that (E,y,) = 1 and (E,fL) = 0 VfLE~c' 
Be means of a direct calculation we obtain the following 

useful expressions for the products (R,a) and (A,a) that 
will be needed in the next section: 

(a) su(p,q), so*(2n), e6 and e7 

(b) sp(n,~) 
if a is short 

if a is long 

(R,a) = height of a, 
(A,a) = (Ao,a) + A, 

(R,a) = height + 1, 
(A,a) = (Ao,a) + U, 
(R,a) = Hheight + l}, 
(A,a) = ! (Ao,a) + A. 

From the Jakobsen diagrams we see that all roots of the same 
height are in an horizontal line. 

In Fig. 1 such roots are inside a little circle and we may 
localize them by means of a subindex j that is equal to the 
height of the root and an ordenation superindex i that is 
equal to one, for the root placed at the right branch of the 
cone generated by ao, and it increases from unit to unit when 
we are going toward the left branch. In this way we will write 
a;. 

In order to calculate the parameter As in step (v) we 
make use of the following definition. 

FIG. 1. The ordenation superin
dex in a Jakobsen diagram. 
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Definition (Harish-Chandra): Let r I be the smallest ele
ment of lin+ and, inductively, let rk be the smallest element 
of lin+ that is orthogonal to rl, ... ,rk _ I' Let rl, ... ,rt be the 
maximal collection obtained. Then t is the split rank of g 
(Ref.4). 

With our notation rl =./3. We use the Jakobsen dia
grams to obtain the split rank. 

su(p,q) 
The collection rl, ... ,rt follows by drawing a line from/3 

as is indicated in Fig. 2. The roots founded are those which 
are on the line: 

Ifp<q: ep - ep+ I' ep_ I - ep+ 2'"'' el - e2p , 

Ifp;;;.q: ep - ep+ I' ep_ 1 - ep+ 2'"'' ep_ (q_ I) - ep+ q' 

So, if p<q the split rank is p and if P;;;.q the split rank is q, 
therefore 

Split rank su(p,q) = min{p,q}. 

sp(n,~) 

In the same way as in su(p,q) the collection obtained 
here is 

2en,2en _I , ... ,2el • 

Thus 

Split rank sp(n,a') = n. 

so*(2n) 
The collection is, in this case 

en _ I + en, .. ·,el + e2, if n is even, 

en _ 1 + en, ... ,el + e3, if n is odd. 

Then the split rank is n/2 if n is even and (n - 1 )/2 if n is 
odd: 

Split rank so*(2n) = [n/2], 

where [x] denotes the largest integer <x. 
so(2n -1,2), so(2n - 2,2) 
The split rank is, in both cases, equal to two. The collec-

tion is, in this case e l - e2, e l + e2' 
e6,e7 

The collection obtained is now 

e6:{!(el - e2 - e3 - e4 - es - e6 - e7 + es), 

!( - el + e2 + e3 + e4 - es - e6 - e7 + es)}, 

then the split rank of e6 is equal to two 

e7:{e6 - eS,e6 + es,es - e7 }, 

thus the split rank of e7 is equal to three. 

784 

FIG. 2. Diagram for the calcula
tion of the split rank. 
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Now let h - = 1::= I tHy and, for l~<t,tbeingthesplit 
rank, let cj be the number of compact positive roots IL such 
that IL I h - =! (rj - r; ), i <j. Then, if we consider the most 
singular nontrivial unitary module corresponding to Ao = 0, 
according to Theorem 5.10 in Ref. 4, Aq = -! cj • A 
straightforward calculation case by case shows that 

Aq =(j-1)As , l~<t, 

with As given in the following table: 

su(p,q) sp(n,~) so*(2n) 

-1 -2 -3 -4 

v. POSSIBLE PLACES FOR UNITARITY 

We consider here those cases for which the reduction 
level is strictly higher than one. 

su(p,q) 

Dynkin diagram 

..... --................... ----__. ..................... ----0 •• 

q+p-2 q+p-3 q f3 q-2 q -1 

Let M A be a representation for su (p,q) with 
A = (A I,A2, ... ,Ap+q ) with respect to the standard ortho
normal basis of a'n(n = p + q), satisfying the following 
conditions on its components: 

AI = A2 = ... = A; =1= A; + I' 

An =An _ 1 = ... =An_j+I=I=An_j' 

If we put A = Ao + EA these conditions are equivalent 
to the following ones: 

(Ao,lLq_l) = (Ao,lLq _2) = ... = (Ao,IL,+ I) = 0, 

(Ao,lLt) =1=0, 

(Ao,lLn-2) = (Ao,lLn-3) ='" = (Ao,lLs+l) =0, 

(Ao,lLs) =1=0, 
with t = q - j and s = n - i - 1. 

Applying steps (i) and (ii) we obtain 

ao = /3 + ILl + ... + IL, + ILq + ILq+ 1 + ... + ILs, 

with height t + s - q + 2. Then ,10 = q - t - s - 1. 
Then a first-order polynomial will be missing with high

est weight 

Ao+ (q- t-s-1)E-ao, 

where, in this case, E = (qln,qln, ... ,qln, - pin, ... , - pin) 
with p copies of qln and q of - pin. 

For Aq = ,10 + As = ,10 - 1 we obtain from steps (iii) 
and (iv) a second-order polynomial that will be missing with 
heighest weight 

Ao + (Ao - 2)E - aLAu - aLA.,' 

The next case is Aq = Ao - 2 where a third-order 
polynomial with highest weight Ao + (Ao - 2)E - a~ - a" 

- a~ _ Au - a~ _ Au will be missing. Continuing in the same 
way we arrive at Aq = Ao - u, 
u = min(q - t - 1,n - s - 2) where a pol~omial of order 
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u + 1 = min(i,j) will be missing. For A <Ao - u it is impos
sible to find a polynomial of order strictly higher than 
min(i,j) because the kl dominance is violated (see step iv). 

Thus the reduction level is min (i, j). On the other hand, 
A = (A,rr) or, equivalently, An = AI - A. Then, taking 
into account the possible values of A we obtain the following 
diagram: 

.t=lo-2 

Example: su(S,8) 
Assume that 

I 
I 
I 
I 
I 
I 
I 

, A.=A, ... --(i,j)-l, 

(Ao,ft?) = (AO,ft6) = 0, 

(Ao,fts) #0, 
(Ao,ftll) = (Ao,ftlO) = (AO,ft9> = 0, 

(Ao,fts) #0, 
(Ao,ft;) = no 1 <i<5 or i = 8. 

With those conditions we obtain 
a o = /3 + ftl + ft2 + ft3 + ft4 + fts + fts the height of which 
is 7, then 

1 = (A,ao) + (R,ao) = (A,ao) + 7 = Ao + 7 
Ao= - 6. 

or 

For Aq = Ao + As = - 7 and having in mind that now 
A' = Ao -7E: 

(A' + R,aD = - 7 + (R,aD = 1, 

(A' + R,a~) = 1, 

then a second-order polynomial will be missing with highest 
weight A' - a~ - a~ . 

For Aq = - 8, A" = Ao - 8E and we have 

(A" +R,a~) = (A" +R,a~) = (A" +R,a~) = 1, 

then a third-order polynomial will be missing with highest 
weight A" - a~ - a~ - a~. 

For Aq < - 8)only a set ofroots belonging to C a;' and 
without a coefficient equal to one in Fig. 3 could satisfy con
dition (A). But, for example, a:o could not belong to this set 
because of ft9 which point towards it and because there is no 
root between those from which arises ft9' the result would 
not be kl dominant. The same thing occurs with a~o,a:1 
because of ftlO and with a~o,a~1 ,rr because of ftll' There is 
unitarity for Aq < - 8. 

The highest weight vectors which we must eliminate 
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Height 

FIG. 3. Missing polynomials in the example for su(5,8). 

(missing polynomials) in order to obtain unitarity are, for
mally, the following: 

(i) Height 7: 

E - n~ E - "4 - n~ - IE - n., - "" - n~ - 2 E - "2 - n.l - n4 - n:r, - 3 
-f.J.:s -1'4 -IJ..\ -Ill 

xE -n,-n,-n,-n.-n,-4E -n'E E n.+ 1 
- fL, -fL. - (3 - fL. 

XE"' + n2 + n.1 + "4+ n5 + SEn:!. + n.,+ "4+ n~ +4En.l +"4 + n!lt + 3 
-I'. - Jl2 - JL.\ 

XEn. + n, + 2En, + I 
-Jl4 -1'5' 

with A = Ao - 6E - /3 - ftl - ft2 - ft3 - ft4 - fts - fts· 

(ii) Height 8: 

E - n!'o E -"4 - "!It - 1 E - n.l - "4 - "!It - 2 E - n2, - n.l - n4 - ns - 3 
-It!'> -1'4 -J.l.\ -J.l2 

X E -n,-n,-n,-n.-n,-4E -n'E 2 En.+2E 
- fL, -fL. - (3 - fL. -,.., 

X E"' +n2 + n.\ + "4 + n!lt + 6 E"2 + n_l + n4 + "!It + S E".l + "4 + n!'o + 4 
-Ill -1'2 - JL.\ 

X E n. + n, + 3 En, + 2 E 
-1'4 -I'!'o -Jlfo' 

with 

A = Ao - 7E - 2/3 - 2ftl - 2ft2 - 2ft3 - 2ft4 - 2fts 

- ft6 - 2fts - ft9' 

(iii) Height 9: 
E - n!'o E - n!li - n4 - 1 E - n.\ - n4 - n!lt - 2 E - "2 - n.\ - "4 - n!'o - 3 

- p!,> - Jl4 - Il.\ - J.l2 

XE -n,-n,-n.,-n.-n,-4E -n'E 3 E n.+ 3E 2 
-1'1 - PM - (3 - I'K - Jl<.) 

X E E"' + n 2 + n.l + "4 + n!'o + 7 E n 2 + n., + n4 + n:o; + 6 
-1-'10 -It. -1'2 

with 

A = Ao - 8E - 3/3 - 3ftl - 3J..t2 - 3ft3 - 3ft4 - 3fts 

- 2J.t6 - ft? - 3fts - 2ft9 - ft 10' 

In the three cases, in order to cancel the negative powers 
of the generators, appropriate commutation relations are to 
be applied, as stated before. 
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sp(n$) 

Dynkin diagram • . ............... { 

2 3 n-2 n-1 f3 

Let MA be a representation for sp(n,~) with 
A = (A1, ... ,A,.) we put A = Ao +AEwhere E = (1,1, ... ,1). 
We consider two cases. 

Case I. 
The weight A satisfy the following conditions on its 

components: 

AI = A2 = ... = Ai;;.Ai+ I + 2, 

or, equivalently 

(Ao,f.ll) = (Ao,1l2) = ... = (Ao,lli-l) = 0, 

(Ao,lli) = n;;.2. 

Applying the Jakobsen method we obtain 

a o=p+21l,._1 +2Iln-2 + ... +21l,.-(n-iP 

with height 2 (n - i) + 1. As a o is a long root, the condition 
(A + R,ao) = 1 implies 

~(Ao,ao) + Ao + n - i + 1 = 1, Ao = i - n, 

then a first-order polynomial with highest weight 
Ao + (i - n)E - ao will be missing when we unitarize. 

For A = Ao + As = i - n - ! we obtain a second-order 
polynomial which will be missing with highest weight 

Ao+ (i-n-!>E-2aL_i)+2· 

For A = Ao + Us the third-order missing polynomial 
has highest weight 

Ao + (i - n - 1)E - 2a~(n _ i) + 3 - a~(n - i)+ 3· 

Following along these lines we arrive at 
A = Ao + (i - 1)As = ! (i + 1) - n, where a ith-order poly
nomial will be missing. For A < ! (i + 1) - n it is impossible 
to obtain polynomials of order strictly higher than i because 
there would not be kl dominance, therefore the reduction 
level is i. On the other hand, from the condition A = (A,r,) 
it follows that AI = A. Thus, for the different values of A we 
obtain the following diagram which give us the possible val
ues of Al for unitarity: 
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Case II. 

A .1 
1=-n+'"2 

We consider in this case the following conditions: 

AI = A2 = ... = Ai> Ai - Ai+ I = 1, 

Ai + I = Ai + 2 = ... = Ai + j =1= Ai + j + I , 
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which are equivalent to the following ones: 

(Ao,lll) = (Ao,1l2) = ... = (Ao,lli_ 1) = 0, 

(Ao,lli) = 1, 

(Ao,lli+l) = (Ao,Ili+2) = ... = (Ao./-li+ j _ 1 ) =0, 

(Ao,lli+j) = n;;.1. 

In this case 

a o =p+2Vtn-l +lln-2 + ... +Iln-(n-i-j» 

+Iln-(n-i-j) + ... +lln-(,.-iP 

the height of which is 2(n - i) - j + 1. As aois a short root, 
the condition (A + R,ao) = 1 implies 

(Ao,ao) + U o + 2(n - i + 1) - j = 1, 

and, having in mind that we can also state 

a o = r, - 2(1l1 + ... + Ili-I) -Ili -Ili+ 1 

- ... -Ili+j-I' 

we have 

Ao = i - n + j/2. 

For A = Ao + As = i - n + (j - 1 )/2 we obtain a sec
ond-order polynomial that will be missing with highest 
weight 

Ao+(i-n+ (j-1)/2)E-a~(n_i+)_j 

-a~(n_i+))_j. 

Continuing as in case I we arrive at A = Ao + (i - 1 )A s 
= - n + ! (i + j + 1) where an ith-order polynomial will 

be missing. As for A < - n + !(i + j + 1) there is no k) 
dominance the reduction level is i. The diagram in this case is 
the following: 

Example: sp(10,~) 
Case I. 

· · • • · · l A,~M~O<i+l). 
Let the conditions on Ao be 

(Ao,lll) = (Ao,1l2) = (Ao,1l3) = (Ao,1l4) = 0, 

(Ao,lls) = ns;;.2, (Ao,lli) = ni> 6<i<9. 

In this case 

a o = P + 2119 + 21ls + 2117 + 2116 + 21ls 

with height 11. As a o is a long root, the condition 
(A + R,ao) = 1 implies 

!(Ao,ao) + Ao + 6 = 1, Ao = - 5. 
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For Aq = ,10 + As = - -If ' 

(A + R,a:2 ) = U q + 13 = 2 because a: 2 is short. 

Then, there is a second-order polynomial missing for 
Aq = - 11/2 with highest weight Ao - (11/2)E - 2a:2 • 

For Aq = ,10 + Us = - 6, 

(A + R,a:3) = U q + 14 = 2 because a:3 is short, 

(A + R,ai3) = Aq + 7 = 1 because ai3 is long, 

and we will have a third-order missing polynomial with 
highest weight Ao - 6E - 2a:3 - ai3' 

ForA q = -If, 
(A +R,a:4) = (A + R,ai4) = U q + 15 = 2, 

a fourth-order polynomial will be missing with highest 
weight Ao -If E - 2a:4 - 2ai4' 

ForAq = -7, 

(A+R,a: s ) = (A+R,ais) =Uq + 16=2, 

(A +R,a~s) =Aq + 8 = 1, 

and there will be a fifth-order polynomial missing with high
est weight 

Ao - 7E - 2a:s - 2ais - a~s· 

For Aq < - 7 the roots which we must consider are 
those belonging to C a~ without a coefficient in Fig. 4. 

By an argument along the lines of the example for 
su(5,8) we see that for those Aq there is no kJ dominance. 
Then the first possible place for nonunitarity is Aq = - 7. 

We state in the following the highest weight vectors for 
the two first heights. 

(i) Height 11: 
E -n5 +1E -n:o;-ntoE -n:o;- nt.- n7- 1E -n!'i-n,.-n7 -nK -2 

- Il!'i - Jl" - Jl'1 - I'M 

X E - n!li - nt. - n7 - n M - "'I - 3 E E "!Ii + 'It. + "1 + '1M + n.., + 5 
-jl., -p -Jl<, 

X E n!'i + nt. + "7 + '1M + 4E n:o; + 'It. + "7 + 3 E n:o; + nto + 2 E"!Ii + 1 
-PH -J.l7 -Ph -P.5' 

Height 

FIG. 4. Mising polynomials in the sp( 1O,R) example, case I. 

with A = Ao - 5E - /3 - 2J..Ls - 2J..L6 - 2J..L7 - 2J..Ls - 2J..L9· 
(ii) Height 12: 

E - n!,> + IE - n:o; - nhE -"!Ii - "h - "7 - 1 E - n!li - nf> - "7 - nM - 2 E - n!'i - n,. - "7 - '1M - n.., - 3 E 3/2 En!,> + nt. + n7 + '1M + 'I.., + 6 E n!li + nf> + "7 + '1M + 5 
-I', -1'0 -I', -1'. -Jl<, -p -Jl<, -I'K 

X E"!Ii + 'It. + "7 + 4E n!li + 'I" + 3 E n:o; + 2 E 2 E - "!Ii E - n!li - nto - IE - n!'i - nto - n, - 2E -"!Ii - nto - n7 - '1M - 3 E - n:o; - nto - "7 - nM - n'l - 4 
-JL7 -I'to -P.5 -/-l4 -Jl!'i -Ph -1'7 -I'M -J.'q 

X E 1/2 E n!> + n h + n7 + '1M + n<J + 5 E n!li + nt. + n7 + nil. + 4 E n!> + 'It. + "7 + 3 E n:o; + 'I,. + 2 E n!li + 1 
-{3 -~ -PM -It? -"'to -JL!'i' 

with 

A = Ao - -If E - 2/3 - 2J..L4 - 4J..Ls - 4J..L6 - 4J..L7 

- 4J..Ls -4J..L9· 

Case II. 
Now let there be the following conditions in Ao: 

(Ao,J..L.) = (AO,J..L2) = 0, (AO,J..L3) = (AO,J..L4) = 1, 

(Ao,J..Ls) = (Ao,J..L6) = 0, (AO,J..L7) = n> 1. 

In this case 

a o = /3 + 2J..L9 + 2J..Ls + 2J..L7 + 2J..L6 + 2J..Ls + 2J..L4 + J..L3 

with height 14 (Fig. 5). As ao is a short root: 
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1 = (A + R,ao) = (Ao,Yr - 2J..LJ - 2J..L2 - J..L3) 

+Uo +15, 

,10 = - Jf. 
For Aq = ,10 + A.s = - 7, 

(A+R,a: s ) =Uq + 15= 1, 

(A + R,ais) = Aq + 8 = 1, 

then a second-order polynomial with highest weight 
Ao - 7E - a:s - ai, will be missing. 

For Aq = ,10 + Us = -.1f, 
(A+R,a: 6 ) =Uq + 16= 1, 

(A+R,ai6) =Uq + 17=2, 
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Height 

FIG. 5. Missing polynomials in the sp( 1O,R) example, case II. 

then a third-order polynomial will be missing with highest 
weight Ao - (15/2)€ - al6 - 2ai6' 

For Aq < - 15/2 there exists unitarity. 
80*(20) 

n -1 

Dynkin diagram ... _ .... ;_ .... ;mu;~: 

Let now MA be a representation for so*(2n) with 
A = (AI, ... ,An). In this case given A = Ao + A€ we have 
€ = (!,! , ... ,~). We consider the following conditions on its 
components 

AI = A2 = ... = Ai > Ai+ I + 1, i=j= 1, 

or, equivalently 

(Ao,PI) = (AO,P2) = ... = (AO,Pi_l) = 0, 

(AO,Pi) = n> 1. 

From the Jakobsen method we have 

a o ={3 + (Pn-I + Jln-2) + (Jln-2 + Pn-3) 

+ ... + (f..ln-(n-i) +Pn-(n-i)-I), 

the height of which is 2(n - i) + 1. The condition 
(A + R,ao) = 1 implies in this case 
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(Ao,ao) +Ao + 2(n - i) + 1 = 1, Ao = 2(i - n). 

ForA =Ao +A. = 2U - n - 1) weobtainasecond-or
der polynomial which will be missing with highest weight 

Ao+2(i-n-l)€-a~(n_il+3 -a~(n_i)+3' 

Following along these lines we arrive at A = Ao 
+ {(i/2] - 1M. where a polynomial with order [i/2] is 

missing. For A < 2 (i - n - {[ i/2] - I}) there is impossible 
to obtain missing polynomials the order of which is strictly 
higher than [i/2] because in those places the weights are not 
kl dominants then the reduction level is [i/2]. From the 
condition A = (A,y,) we obtain AI = A 12. In this way we 
obtain the following diagram. 

A. =.ta-2 

A.=.ta-4 

Example: 80*(16) 

· · • · · · l A,.'-n-[Y~ + 1. 

We consider the following conditions on Ao: 

(Ao,p;) = 0, for l..;i..;5, 

(AO,P6) = n6> 1, (AO,Jl7) = n7 • 

Then 

ao = {3 + 2P6 + P7 + Ps, 

with height 5 (see Fig. 6). 

Height 

fJ 

FIG. 6. Missing polynomials in the So*(l6) example. 
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The condition (A + R,ao) = 1 implies 

(Ao,ao) + Ao + 5 = 1, Ao = - 4. 

For Aq = Ao + As = - 6 we have A' = Ao - 6E and 

(A' + R,aD = Aq + 6 = 0, 

then it is not a valid root. However for the roots the height of 
which is 7 we have 

(A' +R,ai) = (A' +R,a~) = 1, 

and there will be a second-order polynomial that will be 
missing with highest weight: 

Ao - 6E - ai - a~. 

For Aq = Ao + Us = - 8, the roots are those with 
height 9: 

(A + R,a~) = (A + R,a~) = (A + R,a~) = Aq + 9 = 1, 

and a third-order polynomial will be missing with highest 
weight 

Ao - 8E - a~ - a~ - a~. 

For Aq < - 8 there is no roots for which there exists kl 
dominance then the first possible place for nonunitarity is 
Aq = - 8. 

The highest weight vectors are in this case, formally, the 
following: 

(i) Height 5: 
E - n,-IE - no- n,-IE - no- n,-2E -no E -no-IE 

-JL7 -Ill> -J.L~ -1'7 -Itt. -/3 

X E no + 2 E no + I E no + n, + 3 E no + n, + 2 E n, + I 
-~ -~ -~ -~ -~, 

with A = Ao - 4E - {3 - f.Ls - 2f.L6 - f.L7· 
(ii) Height 7: 

E - I E - n, - IE - no - n, - IE - no - n, - 3 E - no E - no - 2 E 2 
-1-'4 -Ji., -,",to -J.l~ -p" -P,fo -/3 

XEn0 +4Eno + 2Eno + n, + SEno + n, + 3En, + I 
-~ -~ -~ -~ -~ 

E3 E E 
-1'4 -1-'.1 -Jl~' 

with A = Ao - 6E - 2{3 - f.L3 - 2f.L4 - 3f.Ls - 4f.L6 - 2f.L7· 
(iii) Height 9: 

E- I E- 2 E-n,-IE- no- n,-IE- no-n,-4E-no 
- It;>. - 1'4 - 1'7 - Ilto - f.J~ - 1'7 

with 

XE -no-3E3 Eno+6Eno+3Eno+n,+7Eno+n,+4 
-Ilo -/3 -Ilo -Il, -Il. -~ 

XE ': ~,IE 5_ 1l4E~ 1l.,E 2_ Il.E2_ Il,E _ Il. E - 1l4' 

A = Ao - 8E - 3{3 - f.L I - 2f.L2 - 3f.L3 - 4f.L4 - 5f.Ls 

- 6f.L6 - 3f.L7· 

Dynkin diagram ..... --e. 
p 3 

r 
~.--. 
456 

Here A = Ao + AE with E = (0,0,0,0,0, -" -, " ). 
For Ao#O the only case for which the reduction level is 
strictly higher than one (all the rest are excluded for kl 
dominance arguments) is the following: 
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FIG. 7. Missing polynomials in e •. 

(Ao,f.L;) = 0, 2<;<5, 

(Ao,f.L6) = n > 0. 

Applying Jakobsen method we obtain 

with height 5 (see Fig. 7). From the condition 
(A + R,ao) = 1 we obtain 

1 = (A,ao) + (R,ao) = (A,y,) + 5 = Ao + 5, 

Ao= -4. 

ForAq =Ao+As = -7, 

(A + R,aD = (A + R,aD = 1, 

then a second-order polynomial will be missing with highest 
weight: 

Ao-7E-a~ -a~. 

ThevalueAq = -7isthefirstpossibleplacefornonun
itarity. 

The highest weight vector corresponding to the highest 
weight 

Ao - 4E - {3 - f.L3 - f.L4 - f.Ls - f.L6 is, formally; 
E-n E- n- IE-n- 2E-n- 3E 

- ~ - Il. - Il. - Il.' - /3 

XEn+4En+3En+2En+ I. 
-1-'3 -1-'4 -J.l~ -p.to 

Dynkin diagram 
_._L_._ .. 

3 4 5 6 p 
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FIG. 8. Missing polynomials in e7• 

For this case E = (0,0,0,0,0,1, - ~ ,! ). As in e6 we must 
only consider one case: 

(AO,f..li) = 0, 1 <J<5, 
(AO,f..l6) = n > 0, 

with those conditions 

with height 9 (see Fig. 8), then 

1 = (A,ao) + (R,ao) = (A,ao) + 9 = ..1.0 + 9, 

..1.0 = - 8. 
For A. q = - 12; 

(A + R,a:3) = (A + R,aT3) = 1 

and we obtain, for A.q = - 12, a missing second-order poly
nomial with highest weight 

The highest weight vector in height 9 is, formally: 

xE-n-3E-n-3E-n-2E-n-IE-n E En+IEn+2En+3En+4En+4 
- f.i.'1. - 11-.\ - Jl4 - p~ - Itt> - {3 - Jlto - p.~ - J.L-4 - Jl.l - f.L2 

XE E2 E n+7 E 3 E3 E E n+6E 5 E2 E2 En+5E 4 E3 E E 
- jL6 - Jl~ - Jl4 -1-'.\ - 1'2 - Jlr. - Jl~ - Jl-t - Jl.l - 1'2 - "to - Jl~ - 1'4 - J.L\ - Jl1 ' 

with highest weight 

Ao - 8E - P - f..l2 - f..l3 - 2f..l4 - 2f..ls - 2f..l6· 
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The maximum entropy principle is used to obtain a new analytic extrapolation method just 
complementary to the Pade-type method which leads to rigorous upper and lower 
bounds on the extrapolated function on the cut complex plane. Among the large class of 
functions that could equally well represent an analytical function in the experimental region a 
choice is made of the unique function that maximizes the entropy functional associated 
to this set of functions. The result is the least biased function compatible with the actual 
experimental data. This extrapolation method is applied to kaon-nucleon experimental data 
in order to obtain the most reasonable values for the KNY coupling constants compatible 
with the available experimental data and analytical constraints. 

I. INTRODUCTION 

Analytic continuation is perhaps the most clear-cut 
example of an undetermined inverse problem. The direct 
problem, restriction of a holomorphic function f(z) to its 
values f( t) (tEr), along some one-dimensional continuum 
r, follows a very smooth law; however, the inverse prob
lem, which means "analytic continuation from r to the 
whole complex plane," is known to have a unique, but 
highly unstable, solution. 

The practical (physical) situation is even worse be
cause one never knows the function in a continuous set but 
in a discrete set of points and these known values are af
fected by errors coming from experimental measurements 
or from theoretical calculations. These facts make the task 
of analytic continuation, using experimental data, impossi
ble without further assumptions. Ciulli has shown that, 
without further constraints, even the smallest uncertainties 
in the initial data lead, after extrapolation, to results dif
fering by arbitrary amounts even in regions very close to 
the data region. 1 

Consequently there is a large class of functions that 
could equally well represent the analytic function in the 
experimental region, giving a good X2 fit, but which, when 
extrapolated, will give widely varying results. 

The problem is then to search for other properties of 
the functions besides analyticity which act as stabilizers of 
the analytic extrapolation limiting the admissible number 
of parametrizations fitting the data or choosing among all 
these candidates the one most reasonable in a certain sense. 

The nonuniqueness and instability of the analytic ex
trapolation of a function known with errors also forces the 
search for not only one, but various alternative solutions 
obtained with each method and also study the advantages 
and difficulties of each technique. 

The aim of this paper is to show how the use of a very 
general physical principle, the maximum entropy (ME) 
principle, provides the analytic extrapolation method just 
complementary to the Pade-type method presented in a 
previous paper.2 The latter provides rigorous upper and 

a) Permanent address: Departamento de Fisica Aplicada. EUITIZ. 50009 
Zaragoza. Spain 

lower bounds on the values of the extrapolated function 
and the ME method chooses among all the admissible 
functions (which satisfy these bounds) the one most rea
sonable in the sense that it is the least biased function 
compatible with the information we actually have. The 
choice is made by maximizing the entropy functional as
sociated to the set of functions compatible with the exper
imental data or theoretical calculations. 

In Sec. II we briefly review the type of functions we are 
going to deal with and the use of positivity as a stabilizer of 
the analytic extrapolation. In Sec. III we introduce the ME 
formalism and apply it to our analytic extrapolation prob
lem. 

Finally in Sec. IV we apply the method to an extrap
olation problem in particle physics, obtaining values for the 
KNY coupling constants compatible with the most recent 
determinations of these parameters by using different ana
lytic extrapolation or model-dependent methods. The ac
tual aim of this section is not so much to obtain another set 
of results on the controverted kaon-nucleon amplitudes as 
to show, in a concrete case, the complementary of the 
Stieltjes-Pade and maximum entropy methods in perform
ing analytical extrapolations. The applications of both 
methods to deep inelastic structure functions, 3 to recent 
pion form factor measurements,4 and to density-dependent 
quantities of many fermion systems5 are in progress. 

II. STIELTJES FUNCTIONS AND STABILIZATION OF 
THE ANALYTIC EXTRAPOLATION 

We want to study functions, like scattering amplitudes, 
form factors, structure functions, or discrepancy functions, 
that are analytic in the complex plane except real cuts and 
perhaps some poles:6 

1 fb 1m ~«(j)')d(j)' ~. Xj 
~«(j)=- I + £.. .--. 

1T a (j) - (j) j= 1 (j) - (j)j 
(2.1 ) 

These functions satisfy, in general, the Schwarz reality 
condition, are supposed to be asymptotically polynomially 
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bounded, and are known with errors, coming from exper
imental measurements or from theoretical calculations in a 
set of discrete points on the real axis. We also have the very 
important positivity condition (or hypothesis) on the un
known imaginary part of the function a(w) on the cut, 
which acts as a stabilizer of the analytic extrapolation. 

Our problem is to extrapolate the data to other regions 
where we do not know this function: pole positions in order 
to obtain their residues Xp positions of complex or real 
zeros of the function, and the values of the function on the 
cuts. 

By means of some transformations in the integration 
and evaluation variables and using absorption processes to 
avoid having the pole terms we turn the original data 

(2.2) 

into a new set of data on a Stieltjes function,2,7 where the 
index e stands for error, 

i l X(x(w»dx 
H(z(w»= 1+ ' o xz 

(2.3) 

1 p 1 - xe· 
X(x) =- 1m a(w'(x» II -1 + 1>0, 

~ x~ 
xe[O,1], (2.4 ) 

where ep related to the pole positions wp and zp related to 
the absorption experimental points, are known parameters 
satisfying 0 < ej < I, Zj> - 1. 

The new data are the first N + 1 moments of X(x), 
which are, in turn, the first N + 1 formal expansion coef
ficients of H(z): 

(2.5) 

where 

These coefficients, which constitute a totally mono
tonic (TM) sequence, must satisfy the following 
constraints8,9: 

{hn}eTM{::}akhn= 10 (-l)m(!)hn+ m>O, 

n,k=0,1,2, ... , (2.7) 

which act as stabilizers of the analytic extrapolation. The 
Pade approximants (PA) constructed with these coeffi
cients rigorously bound the function H(z), and therefore 
a (w ), in the cut complex plane. 8, 10, II 

The convergence properties of PA fail on the real cut, 
but we can use the orthogonality properties of Pade de
nominators and the positivity of their residues to obtain an 
approximation to the weight function X(x) in the form l2 

n 

X~n)(x)dx=d",~n)(x) = L .tin)S(x - e}n»dx, (2.8) 
i=1 

where N + 1 = 2n is the number of known moments and 
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n .tin) 
[n lin] ~ , e,\n)e[O,I], A,.n) >0, 

- = i7:1 1 + ze}n) J i 

(2.9) 

is the PA to H(z). 
The main advantage is that we get rigorous upper and 

lower bounds on the distribution ",(x). On the other hand, 
the main difficulty is that we have discontinuous approxi
mations to the distribution and a smoothing procedure is 
needed in order to have continuous approximations to the 
weight X(X).12,13 

As can be seen, a unique reconstruction of X(x), and 
therefore of a (w), on the cuts is impossible in view of the 
limited information we have-the first N + I moments of a 
positive function X(x), affected by errors. 

III. THE MAXIMUM ENTROPY METHOD 

The nonuniqueness of the solution of the previous re
duced moment problem forces the search for other alter
native methods in order to compare the different solutions. 
In view of the main difficulty with the Pade method, the 
discontinuity of the approximations on the cuts, we are 
going to try and get approximations that automatically 
have positivity and continuity. 

The ME method is based on a very general principle, 
which is one of the foundations of statistical mechanics and 
has recently had a large number of successful applications 
in other inverse problems including image reconstruction, 
d I · d . ti . h 14-16 ata ana ySlS, an In ormation t eory. 

For many years it has been recognized that entropy 
acts as a kind of measure in the space of probability dis
tributions, in such a way that those distributions of high 
entropy are in some sense favored over others. Nature pre
fers distributions of maximum entropy because distribu
tions of higher entropy are more likely than others. 

We can state briefly the principle in this wayl4: When 
we make inferences based on incomplete information we 
should draw them from that probability distribution hav
ing the maximum entropy permitted by the information we 
do have. 

The incomplete information we have now is the set of 
N + 1 moments of a function and the ME principle says 
that we have to choose between all the weight functions 
compatible with the constraints imposed by their first 
N + 1 moments the one that maximizes the entropy func
tional of the weight function: 

Sex) = - fol x(x)ln X(x)dx 

+ n~o An( hn - fol x(x)x
n 

dX). (3.1) 

The ME choice is the least biased choice we can make 
taking into account the information we actually have. We 
are going to see how this general physical principle leads to 
sequences of approximations that have many interesting 
and concrete mathematical properties. 
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To calculate the ME solution to our problem, we have 
to solve this Lagrange multiplier problem: Find the maxi
mum of S(X) permitted by the constraints. Functional 
variation with respect to the unknown X(x) gives the ex
pression for the ME solution 

xi-N>=exp ( n~o AnX
n
), (3.2) 

supplemented by the conditions 

hn= fol xnxi-N) (x)dx, n=O,I, ... ,N. (3.3 ) 

We can see how these approximations automatically 
incorporate positivity and continuity. In order to get max
imum entropy solutions we have to solve a nonlinear sys
tem of N + 1 equations with N + 1 unknown Lagrange 
mUltipliers. The system cannot be solved analytically ex
cept for N = 1. 

After normalization we have the following relation be
tween Ao and the remaining Lagrange multipliers: 

Z=exp( -Ao)= (I exp ( I AnXn). Jo n=1 
(3.4) 

Therefore we have to solve this system of N equations: 

(xn) =hm n= 1,2, ... ,N, 

where 

(xk) =~ fol dx xk exp ( - n~1 AnX
n
). 

Now we introduce a potential function 

N 

U(AIoA2, ... ,An)=ln Z + L Anhm 
n=1 

(3.5) 

(3.6) 

(3.7) 

whose stationary points are also the solutions of maximum 
entropy 

au 
aA =O:::} (Xn) =hm n=O,I, ... ,N. 

n 
(3.8) 

There are some properties concerning the solutions of 
ME and the potential U(AI, A2, ... ,An).16 

First it can be proved that the potential U is every
where convex. This means that if a stationary point is 
found it must be a unique absolute minimum. Conversely 
convexity alone does not guarantee the existence of the 
minimum. The existence of a ME solution depends on the 
sequence of known moments, as we can easily see in the 
analytic case N = 1: 

(I l-exp(-AI) 
Z= Jo dx exp( - AIX) = Al ' (3.9) 

U(AI) =In((1- exp( - AI»/AI + AI)h l . (3.10) 

Thus U(AI) is a convex function but possesses a minimum 
at some finite Al only if hi < 1 = ho. 

The conditions the sequence of moments {hn}n;>o must 
satisfy to guarantee the existence of a ME solution are 
given by the following theorem. 17 

793 J. Math. Phys., Vol. 31, No.4, April 1990 

Theorem 1: A necessary and sufficient condition for the 
potential U(AIoA2, ... ,An) to have a unique minimum at 
some finite values of A'S, for any N, is that the moment 
sequence {hn}n;>o should be a totally monotonic sequence: 

(3.11 ) 

This theorem guarantees the existence of a ME solu
tion XkN ) (x), for any N. The solution is non-negative, ab
solutely continuous, and satisfies the reduced moment 
problem. 

Given a finite set of moments {ho, hlo ... ,hN} of an un
known weight function X(x), moment theory provides rig
orous lower and upper bounds for a functional of X(x), 
like H(z), for instance, by using the approximation 
X~n)(x), for X(x) [the PA of H(z)]. Besides the ME for
malism selects from this acceptable set of approximations 
the least biased one for the unmeasured characteristics of 
the experimental data [the one associated with 
XkN>(x), HE(z)]. 

The following inequalities are then verified: 

O..;;[O/I],,;;···..;;[n -lIn]..;;H(z)-HE(z) 

I I xi-N>(x)dx 
= 1 ..;;[n-lIn-l]..;;···..;;[O/O], 

o +xz 

for z..;;O, N=2n - 1, 

O..;;[O/O]..;;[O/I]";;···..;;[n -lin - l]..;;[n -lin] 

..;;H(z)-HE(z), for - 1 <z<O, N=2n -I, 
(3.12) 

.-----~-----,r-----.-----r----,6.0 

X (xl=~pH+2x-3x2+4x3) jjio=1.4371 

X (x)=~lx) XIx) = X~J 
po 5.0 

FIG. 1. Maximum entropy weights for an exponential of a polynomial. 
The fourth approximation is exactly the weight function. ME approxi
mations are exact for these kind offunctions. Figures in the plot show the 
Bernstein averages of corresponding order. 
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00 OJ Q2 03 0.4 0.5 

FIG. 2. Comparison between ME approximations to a polynomic model 
function obtained with N + I = 2, 3, 4,5 moments, XkN), and Bernstein 
averages at points xN.K obtained with 2, 3, ... ,9 moments. Figures in the 
plot show the Bernstein averages of corresponding order. 

where [11m] is the PA for H(z) constructed with the first 
I + m + 1 moments. There are also other inequalities ob
tained from the modified PA [n - 1/n]C and [nln]C con
structed by using the nonzero radius of convergence 
(R=l) of the series expansion of H(z), which are just 
complementary to the previous relations.2 

For complex z one has inclusion regions for H(z) and 
its ME approximation HE(z). Average convergence for 
ME approximations has also been shown. 17 

Theorem 2: A ME sequence xi-N) . converges in the fol
lowing sense: 

where F(x) is some continuous function. In particular we 
have, as with PA, convergence for Stieltjes functions, i.e., 
F(x, z) = 1/0 + xz), real z, z> - 1. 

As P A are exact approximations to rational functions, 
i.e., when the weight function is a finite sum of delta func
tions, the ME method is also exact when we have the mo
ments of an exponential of polynomials. Figure 1 shows the 
first three approximations to an exponential polynomial of 
degree 3. In fact, the fourth approximation is just the exact 
weight. If we insist and try higher polynomials the new A's 
are always zero. 

The advantage the ME distribution tP},N)(x) has 
among all the admissible distributions having the same first 
N + 1 moments is that it is maximally noncommital about 
the unknown moments of the true distribution and in this 
sense is the best choice we can take. 

This fact has been checked by comparing the ME 
method to another, more classical, method to invert mo
ments: the Bernstein polynomial method used in Ref. 3. 

In this method one constructs averages for X(x) in the 
form 

X (XftlK)= r B(N,K) (x)X(x)dx, , Jo 
K=O,I, ... ,N, N= 1,2, ... , (3.14) 

where B(N,K) is the normalized Bernstein polynomial 
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K(1 )N-K (N,K) _ X -x 
B (x)- J¥O-X)N-K dx' (3.15) 

which acts as weight over the mean points 

(1 (NK) K + 1 
XN,K= Jo B ' (x)x dx= N + 2 E[O,I], 

K=O,I, ... ,N, N=I,2, .... (3.16) 

Using (3.15) in (3.16) the averages can be easily cal
culated as 

_ (N + I)! N-K ( - 1)L 

X(XN,K)= K! L~O L!(N_K_L)!hK+L> 

K=O,I, ... ,N, N= 1,2, ... , (3.17) 

where hK +L are the known moments of X(x). 
The main advantage of this method is that one has a 

very fast and easy estimation of the function X(x) at a set 
of points XN,K' The Bernstein weights are suitable weights 
because they become more and more peaked around x N,K 
as N increases. 

Figure 2 shows a comparison between the ME method 
and the Bernstein method showing how the first four ME 
approximations to a polynomic model function are better 
than the Bernstein averages obtained by using many more 
moments. 

The stability of the ME extrapolation, outside the cut, 
i.e., for averages as in (3.13), is guaranteed owing to the 
constraints the moments of X(x) must fulfill in order to be 
a TM sequence (2.7). Stability is guaranteed by positivity. 

In practice the results of ME extrapolations outside the 
cut are bounded by the PA extrapolations [see (3.12)]. We 
have shown by using model functions 11 the stability of the 
latter, not only when the experimental errors tend to zero 
but when realistic errors associated to the physical pro
cesses are taken into account. We have tested this fact in 
Sec. IV. 

IV. APPLICATION TO KN AMPLITUDES 

In a set of recent papers we have analyzed the K± p and 
K± n forward elastic amplitUdes by using the available ex
perimental data, analytical properties of these complex 
functions, and the analytical extrapolation method briefly 
described in Sec. II. 

TABLE I. Results of a three parameter fit for K± p an~ K± n amplitudes. 
Here CI is the position of the pole and ZI the experimental point used to 
absorb the pole term. 

K±p K±n 

CI 0.650 0.807 
ZI 0.245 9.640 

ho 1.44*0.21 0.205*0.018 
hI 0.39*0.22 0.047*0.010 
h2 0.134*0.09 0.017*0.005 

rl 0.36 0.82 
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TABLE II. Upper and lower sequences of the moments allowed by positivity. 

110 h, h2 h3 

K"'p 0.144 0.39 0.134 
0.051 5 
0.0487 

K"'n 0.205 0.047 
0.00764 

0.017 0.00592 

We have applied the ME method to the same experi
mental data in order to compare both methods and also to 
obtain the ME extrapolations for the kaon-nucleon
hyperon coupling constants which must be, according to 
the ME principle, the unique values of the coupling con
stants that take into account only the available experimen
tal data and the analytical properties of the amplitudes. 
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FIG. 3. Comparison between Stie1tjes (t/4N)'X~n) and ME 
(I/I};NJ, X};NJ) extrapolations for the K'" p unknown weight, obtained with 
2, 4, 6, and 8 moments. The ME distributions keep inside the bounds 
imposed by the Chebyshev inequalities. N = 2n - 1. 
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h4 hs ho h, 

0.0225 0.011 0 0.0076 0.0057 
0.0195 0.0083 0.0039 0.0020 

0.00394 0.00228 0.00145 0.00100 
0.00321 0.00174 0.000 98 0.000 62 

It is clear that dispersion relations for the K± p and 
K± n amplitude18 allow one to obtain transformed func
tions like (2.1) . In this case, m is the laboratory kaon 
energy, the Xj are related to the coupling constants, a(m) 
is the kaon-nucleon discrepancy function, and the integral 
is related to the nonphysical cut (experimentally inacces
sible) dominated by the positive contribution of the 11'405 

resonance. 19 The Gronwall transformation allows the de
termination of the first moments of the related Stieltjes 
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FIG. 4. Comparison between Stieltjes and ME extrapolations for the 
K'" n unknown weight. 
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FIG. 5. Comparison between Stieltjes (S), Chebyshev (T), maximum 
entropy (E), and a model-dependent extrapolation (ERK) for the 
K± p distribution (left) and weight (right). N = 2n - 1. 

function (2.3) from total KN cross sections and the mea
sured real parts of the amplitudes. More physical details 
can be found in Refs. 11 and 20. 

We have used this finite set of moments to calculate the 
associated ME weights and distributions lxkNl (x), 
tPkNl{x)] and afterwards the ME coupling constants. 

We have done the following ME analyses of data: 

(AI) K±p amplitudes: F: (w) = D: (w) + iA: (w) 

Experimental data: 
(i) total cross sections K± p -+ K± P (see Ref. 21); 
(ii) the 218 measurements of D: (w) (see Ref. 22). 

Hypotheses: 
(i) positivity and unimodality of Ap{w) on the unphys

ical cutl8,19; 

(iii) only one reduced pole to simulate the closeness of 
A and l:. 

Most interesting parameter: 
G2=GkNA + 0.9 Gkm. 

(A2) K±n amplitudes: F;{w) = D;{w) + iA;{w) 

X (x) (Gev/cr2 
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FIG. 6. Comparison between Stieltjes (S), Chebyshev (T), maximum 
entropy (E), and a model-dependent extrapolation (EKR) for the 
K± n distribution (left) and weight (right). 
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FIG. 7. Bernstein averages obtained by using the same information we 
have used in Fig. 5 and 6 for the K- p and K- n case. Figures in the plot 
show the Bernstein averages of corresponding order. The continuous line 
is the (model-dependent) effective range K-matrix result. 

Experimental data: 
(i) total cross sections K± n -+ K± n (see Ref. 21); 
(ii) the five measurements of D;{w) (see Ref. 23); 
(iii) the 115 measurements of the charge-exchange 

reaction24 

Hypotheses: 
(i) positivity of An{w) on the unphysical cut; 
(ii) a parametrization for the relatively well known 

values of Dp- (w). 

Most interesting parameter: Gkm. 
Table I shows a result for the moments of the unknown 

weights Xn{x) and XP{x), corresponding to K±p and 
K± n amplitudes, respectively, by using the above data and 
hypotheses. The points used in the pole absorption, Zl' 

were varied systematically in the energy region obtaining 
similar results. It is worth remarking that statistical errors 
quoted in this table can be reduced by using positivity. In 
other words, (2.7) does not allow the full error bars in the 
calculated moments. 

Using the central values for the moments, we have also 
calculated the bounds for the successive moments permit
ted by the minimum and maximum allowed values of h3 
obtaining upper and lower moment sequences compatible 
with positivity (Table II) . 

We have tested the stability of the ME method by 
taking different sets of moments inside the error bars al
lowed by positivity. We have also checked that results are 
practically independent of whether eight or ten moments 
are used. 

Figures 3 and 4 show comparisons between the 
Stieltjes-Pade and ME approximations to the weights X{x) 
[( 2.4 )] related to A - (w) on the cut. The Stieltjes histo
grams for the distribution function tPs{x) constructed by 
means of the poles and residues of the PA [Ejn) andJ}n) in 
(2.9)] can be seen. The interlacing properties of the zeros 
of the denominators, which are orthogonal polynomials 
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with respect to the weight, are apparent. We can also see 
how the ME distributions tPE(X) keep inside the bounds 
imposed by the Chebyshev inequalities. 13 On the right
hand side, we have the corresponding weight functions 
Xs(x) obtained from the slopes of the segments joining the 
midpoints of the discontinuities of tPs(x) and also the ME 
solutions. 

Figures 5 and 6 show comparisons between a Stieltjes
Chebyshev approximation obtained by using quasiorthog
onal polynomials,12,13 our ME weight, and a model
dependent result (ERK matrix analysis)19 for the same 
weight. Despite using very different methods and parame
trizations, the results are quite similar. 

We have used these two weights in (2.3) to reconstruct 
the ME approximation to the K± N discrepancy functions 
(2.1 ), and therefore the ME values for the related coupling 
constants. The final result is 

G2= 15.80± 1.1, Gkm:=2.35± 1.4. (4.2) 

The accuracy in these calculations has been estimated 
by using the errors in the moments as well as the con
straints imposed by positivity. As expected the values for 
the coupling constants lie inside the allowed corridor cal
culated in Refs. 11 and 20. 

Figure 7 shows the Bernstein averages obtained with 
2,3, ... ,8, moments for the K- p and K- n unknown 
weights. Although these averages are in agreement with 
the ME approximation in the K - n case, the difficulty of 
the Bernstein method to simulate the maximum of the 
K - p case is clear. On the other hand, the ME approxima
tions obtained by using only four moments (see Figs. 3 and 
4) are already very good despite the little information we 
used. 

This application illustrates our double general conclu
sion in performing analytical extrapolations. 

(i) We need various alternative methods owing to the 
instability and nonuniqueness of the solution. 

(ii) We should use these methods not as competitors 
but as complementary methods, in order to check the dif
ferent solutions. 

This is the case of Stieltjes-Pade and ME methods. 
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A simple Lagrangian for integrable models that can describe the entire hierachy of equations 
associated with the system is proposed. In addition, the Lax equation, the recursion relation 
between the conserved quantities, as well as the vanishing of the Nijenhuis torsion tensor can 
also be derived from the system of equations following from this Lagrangian. 

The study of integrable systems has led to many interest
ing concepts (for reviews see Refs. 1 and 2). Among them, 
let us note that every integrable system has associated with it 
a Lax pair and a Lax equation. 3 Given a Lax equation, one 
can construct the conserved quantities of the theory quite 
easily. The involution of the conserved quantities, which is 
necessary to prove integrability, follows if they satisfy some 
recursion relation. In an integrable system, each of the con
served quantities can be thought of as a Hamiltonian and all 
such Hamiltonians would have commuting flows. In simple 
language, this means that with every integrable equation is 
associated a hierarchy of equations that are all integrable. 

Integrable systems have been studied from various 
points ofview. 1

•
2 Recently, the integrability of such systems 

was analyzed from a study of their phase-space geometry.4,5 
Let us note that a very special feature of integrable systems is 
the existence of more than one Poisson bracket structure in 
these theories.6 Consequently, the phase space of such sys
tems corresponds to a special class of symplectic manifolds. 
Assuming that a dual Poisson bracket structure exists for 
such theories, the geometrical meaning of various concepts 
such as the Lax equation was derived in Refs. 4 and 5 and it 
was also shown that a sufficient condition for integrability 
corresponds to the vanishing of the appropriate Nijenhuis 
torsion tensor on this manifold. 7 In this article, we propose a 
simple Lagrangian that would generate the hierachy of equa
tions of an integrable system. The Lax equation and, there
fore, the conserved quantities, as well as the recursion rela
tion between them can also be derived quite easily, leading to 
the fact that such quantities are in involution. This can also 
be shown to be equivalent to the vanishing of the Nijenhuis 
torsion tensor. In what follows, we will use the notation of 
Ref. 4 and describe the Lagrangian and the resulting conse
quences for a finite-dimensional system. We would conclude 
with the Korteweg-de Vries (KdV) equation as an example. 

Let us consider an integrable system whose phase space 
is parametrized by the generalized coordinates y p , 

!1 = 1,2, ... ,2N. Let the two distinct Poisson bracket struc
tures bejPV (y) and FPV (y). The symplectic structures of 
the manifold are defined by the inverses of these antisymme
tric tensors, namely, 

(1) 

From these antisymmetric tensors, one can construct a natu
ral (1,1) tensor on the manifold as 

(2) 

a) Permanent address: Department of Physics and Astronomy. University 
of Rochester. Rochester, NY 14627. 

Let us next consider the following Lagrangian: 

L = Op (y),Y'" - (B(A,y) - AA(A,y» 

+ SP(Sp v av A - ap B), (3) 

where ap = a laY'" and Op (y) defines the symplectic struc
ture Fpv (y) as 

Fpv(y) =ap Bv(Y) -av 0p(y). (4) 

Furthermore, sP is a Lagrange multiplier and the functions 
A and B depend on the coordinates Y'", as well as on an 
arbitrary parameter A. The Euler-Lagrange equations are 
now easily derived. The Lagrange multiplier merely enforces 
the constraint 

(5) 

Using Eq. (5), as well as its consistency, the dynamical 
equation now takes the form 

Fpv (y),V = ap B(A,y) - A ap A (A,y) 

=spV(y)avA(A,y) -AapA(A,y). (6) 

Equivalently, we can write 

,Y'"=jPV(y)avA(A,y) -AFPV(y) avA(A,y). (7) 

Let us next make the power series expansion 
n 

A(A,y) = LA n-jAj(y) , (8) 
j~O 

where the positive integer n satisfies n<N. Substituting ex
pansion (8) into Eq. (7), we note that since yV as well as the 
Poisson bracket structures are independent of the arbitrary 
parameter A, consistency ofEq. (7) would lead to 

!,"V(y)av Aj = FPV(y)av Aj+ l' j = 0,1, ... , (n - 1). 
(9) 

The A-independent dynamical equation would then take the 
form 

( 10) 

Consequently, An can be thought of as the true Hamiltonian 
of the system. Equation (10) also brings out the interplay of 
the two Poisson bracket structures of the system, namely, 
whereas the naive symplectic structure obtained from the 
Lagrangian would correspond to Fpv (y), the final Poisson 
bracket structure in Eq. (10) isjPV (y). Let us note here that 
the recursion relation in Eq. (9) implies that all the coeffi
cients in the power series expansion would be in involution 
(for details see Ref. 4): Also, since they would be in involu
tion with An, they would also be conserved. Thus, in fact, we 
can identify the Aj's with the different Hamiltonians of the 
system and Eq. (10) would then describe the hierarchy of 
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equations of the system for different values of n. 
Let us next derive the Lax equation for the system. Note 

that the recursion relation in Eq. (9) can also be written as 

al' Aj+ I - SI' Y(y)ay Aj = O. (11) 

Relation (11) must hold for all times since otherwise Eq. 
(7) would become inconsistent. The time independence 
gives 

dS Y 

ay (al' Aj+ I ),v - -1'- ay Aj - S/ ay (aA Aj),V = 0 . 
dt 

Using the commutativity of the derivatives, the above equa
tion can also be written as 

A [dAj ] A 'y -SI' aA dt +SI' aAY ayAj=O. (12) 

Let us define 

UI' Y(y) = al''v (13) 

and note that since the A/s are conserved, Eq. (12) can, in 
fact, be written [using Eq. (11)] as 

(14) 

Equation (14) must hold for all the Aj 's and, consequently, 
we must have 

dS v 
_I'_=S AU v_ U AS v 

dt I' A I' A , 

which in a matrix notation can be written as 

dS = [S,U] . 
dt 

(15) 

Equation (15) is, in fact, the Lax equation3
; it follows 

from this that the quantities (see Ref. 4) 

Kn = (lIn)Tr sn, n = ± 1, ± 2, ... , 

Ko = logldet S I 

(16) 

would be conserved under the evolution of the dynamical 
system. The Hamiltonians, A/s, can then be identified with 
the appropriate linearly independent conserved quantities. 

Let us next show that the vanishing of the Nijenhuis 
torsion tensor also follows from the equations of the system. 
Let us note that the recursion relation (11) implies that 

aA aa Aj+ I = aA Sal' al' Aj + Sal' aAal'Aj . (17) 

Consequently, 

Sa A aA af3 Aj+ I = Sa A aA Sf31' al'Aj + Sa A Sf31' aA al' Aj , 
(18) 

Sf3A aA aa Aj+ I = S/ aA Sal' al' Aj + S/ Sal' aAal' Aj . 
(19) 

Subtracting Eq. (19) from Eq. (18), we obtain 

[Sa A aA Sf31' - Sf3A aA Sal']al' Aj 

=SaAaf3 aA Aj + 1 -Sf3
Aaa aAAj + 1 

= af3 [Sa A aA Aj+ I] - af3 Sa A aA Aj+ I 

- aa [S/ aA Aj+ I ] + aa S/ aA Aj+ I . 
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(20) 

If we now use the recursion relation in Eq. (11), we obtain 

[Sa A aA Sf31' - S/ aA Sal']al' AI 

= SAI'[ aa S/ - af3 Sa A ]al' Aj . (21) 

Since (21) must hold for all theA/s, it follows that 

N~f3 =SaAaA Sf3I'-Sf3
AaA Sal' 

(22) 

The lhs of Eq. (22) defines the Nijenhuis torsion tensor8 

associated with the (1,1) tensor SI'V(y) and its vanishing 
follows from the equations of the system. Thus the simple 
Lagrangian of Eq. (3) gives all the essential features of an 
integrable system. 

We now conclude with the specific example of the KdV 
equation. 9 This is a ( 1 + 1) -dimensional continuum system 
with the dynamical variables described by u(x,t). [Thus 
y" -+ U (x,t).] In this case the two Poisson bracket structures 
correspond to 

a FI'V(y) -+D8(x - y) = ~(x - y) , 
ax 

j"V(y) -+M8(x _ y) (23) 

= [~+ ~[~U(X) + U(X)~]] 8(x - y) . 
ax3 3 ax ax 

Let us next consider the Lagrangian 

L KdV = + f dx u(x)D -IU(X) - [B [A,u] - AA [A,u] ] 

+ dxt(x) D-IM-- ___ , f [ 8A 8B] 
8u(x) 8u(x) 

(24) 

where D -I is the inverse of the derivative operator with the 
appropriate asymptotic condition. Now A and Bare func
tionals of the dynamical variable u(x,t) and depend on the 
arbitrary parameter A as well. The Euler-Lagrange equa
tions following from Eq. (24) are [compare with Eqs. (5) 
and (6)] 

D-IM~-~=O, 
8u(x) 8u(x) 

(25) 

D-IU=~-A~ 
8u(x) 8u(x) 

=D-IM~-A~, 
8u(x) 8u(x) 

or, 

~=M~-AD~. 
at 8u(x) 8u(x) 

(26) 

The last of Eqs. (26) is, indeed, what was obtained by 
Lenard, 10 as well as by Chern and Peng II in their study of the 
KdV equation and corresponds to a zero-curvature condi
tion. If we now make the power series expansion 

n 

A [A,u] = IAn-jAj[u] , 
j~O 

then Eq. (26) reduces to 

(27) 
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and 

au BAn (3 1 ) BAn -=M--= D +-(Du+uD) --. 
at Bu(x) 3 Bu(x) 

(28) 

The recursion relation in Eq. (27) is precisely the one satis
fied by the conserved quantities of the KdV equation6 and, 
consequently, the Aj 's can be identified with the KdV Ham
iltonians. Equation (28) then describes the nth equation in 
the KdV hierarchy. All our earlier analysis can now be ap
plied to the KdV equation in a straightforward manner, tak
ing the continuum nature into account. 

In conclusion, we have presented a simple Lagrangian 
for integrable models that describes the entire hierarchy of 
equations. The Lax equation, the recursion relation between 
the conserved quantities, and the vanishing of the Nijenhuis 
torsion tensor also follow from the system of equations de
rived from this Lagrangian. 

Note added: Since Sp, v is a 2N X 2N matrix and there can 
only be N conserved quantities in an integrable system, Eq. 
(15) cannot rigorously be derived from Eq. (14). However, 
from the existence of two Poisson bracket structures and of 
the recursion relation in Eq. (9), we can derive the Lax equa
tion simply following the methods of Refs. 4 and 5. Similar
ly, it does not rigorously follow from Eq. (20) that the Nijen
huis torsion tensor vanishes. While the Nijenhuis torsion 
tensor may vanish for some integrable models, there exist 
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integrable systems for which it does not vanish. We would 
like to thank Professor S. Okubo for pointing this out to us. 
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The concept ofbi-Hamiltonian systems and its connection with the theory of canonoid 
transformations is shown from a geometrical viewpoint. The relations between symplectic and 
canonoid diffeomorphisms are studied using an approach based on the theory of generating 
functions. These results are used for obtaining a new theorem which will represent an intrinsic 
and coordinate-free generalization of the "quadratic Hamiltonian theorem." 

I. INTRODUCTION 

A dynamical system characterized by an even number 
ofreal variables X;, Yo where i = l, ... ,n, with a time evolu
tion represented by the first-order equations 

{

dX' 
-;i-=/;(Xk'Yk)' 

dy; 
dt = g;(Xk,Yk)' 

is called Hamiltonian if there is a function H = H(Xk'Yk) 
such that /;(xk'Yk)=aHlay; and g;(Xk'Yk) 
= -aHlax;. 

If the change of (x;,y;) for (X;,Y;) represents a trans
formation of the phase space, then the above equations of 
motion become 

{

dX. 
--' =F;(Xk,Yk ), 

dt 

dY. 
--' = G;(Xk,Yk ), 

dt 

and thus the transformed system will be Hamiltonian ifthere 
is a real function K=K(Xk,Yk ) satisfying F;(Xk,Yk ) 
= aK lay; and G;(Xk,Yk ) = - aK lax;. 

According to this, two different situations arise. Those 
transformations that preserve the Hamiltonian character of 
a concrete Hamiltonian dynamical system are called canon
oid with respect to this particular system' and those preserv
ing the form of such equations, whatever the original Hamil
tonian function is, are called canonical. 

The relation between canonical and canonoid transfor
mations was investigated by Currie and Saletan,z who 
proved the so-called "canonical transformation theorem'" 
or "quadratic-Hamiltonian theorem,,,3 according to which a 
transformation is canonoid with respect to all quadratic 
Hamiltonians of the form 

H = caS a + da/3S Qs/3, 
where a = 1, ... ,2n; Ca and da/3 are constant; and {s ', ... ,s n} 
represent the positions and {s n + ', ... ,s 2n} the momenta if 
and only if the Poisson brackets are invariant up to a nonzero 
mUltiplicative constant, i.e., it is a generalized or extended 
canonical transformation. This theorem has been considered 

by some authors as one of the fundamental theorems' of 
theoretical mechanics. 

In recent years the geometrical approach to the theory 
of dynamical systems has deserved great attention. Thus a 
general dynamical system is interpreted as a vector field on a 
manifold M and dynamical systems whose evolution is de
scribed by Hamiltonian equations are interpreted as a special 
class of vector fields on symplectic manifolds (M,w), i.e., 
those with flows preserving the symplectic form. Therefore, 
the different theorems and properties of the Lagrangian and 
Hamiltonian dynamics have been translated to this geomet
ric setting4 and in this way we now know that the momentum 
phase space is represented by a symplectic manifold, which 
turns out to be the cotangent bundle T*Q of the configura
tion space Q endowed with its natural symplectic structure 
Wo = - dOo; univalent canonical transformations are repre
sented by symplectomorphisms; and Poisson brackets of dy
namical variables are represented by the action of Wo on their 
associated vector fields; etc. This approach is considered 
more fundamental than the traditional one mainly for three 
reasons: (i) it is valid for topologically nontrivial configura
tion spaces, (ii) the theorems and propositions are proved 
using an intrinsic or coordinate-free formulation and are 
then ready for a possible generalization to the infinite-di
mensional case; and finally, (iii) properties previously 
known in the traditional approach appear here as particular 
cases of these new and more general results. 

A canonical change of coordinates will preserve the 
Hamiltonian structure of the equations, but not the linear or 
quadratic character of the Hamiltonian. Consequently, the 
statement of the "quadratic-Hamiltonian theorem" is clear
ly a coordinate-dependent one. 

The properties of canonoid transformations have re
cently been investigated5

,6 using the tools of modem differ
ential geometry. Thus some interesting properties were ob
tained in an intrinsic way (that is, without reference to a 
concrete type of coordinates) and particularly the existence 
of "generating functions" was proved (in a similar way to 
the better known canonical case). Another approach is due 
to Marmo eta/.,3 who presented a geometrical study ofthis 
matter mainly based on symplectic actions of Lie algebras. 7 

In this paper we first aim to study some aspects of the 
theory of "generating functions" of canonoid transforma-
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tions and then to apply it to deal with the problem of relating 
canonical with canonoid transformations. These results will 
permit us to present a new theorem which will represent an 
intrinsic and coordinate-free generalization of the "quadrat
ic-Hamiltonian theorem." 

The paper is organized as follows. In Sec. II we study the 
theory of bi-Hamiltonian systems and its relation with the 
theory of canonoid transformations from a geometric per
spective. It has been proved that canonoid transformations 
imply the existence of "generating functions" and converse
ly, that it is possible to generate canonoid transformations 
starting from these functions. Section III is mainly devoted 
to the study of properties of these "generating functions." In 
Sec. IV a theorem concerning the relations between canoni
cal and canonoid transformations is proved: As stated 
above, it represents a generalization of the "quadratic-Ham
iltonian theorem." Finally, in Sec. V we will use coordinate 
expressions and consider the particular case of the configu
ration space Q being Kit. In this way we will obtain a new 
version of the "quadratic-Hamiltonian theorem." 

II. BI-HAMIL TONIAN SYSTEMS 

Let (M,w) be a symplectic manifold of dimension 
dim M = 2n. We will denote by x(M) the set of all the C '" 
vector fields defined in M and by x H (M,w) and x LH (M,w ) 
the set of all those vector fields that are Hamiltonian and 
locally Hamiltonian, respectively, that is rexH (M,w) 
means that i(r)w is an exact one-form, while rexLH (M,w) 
means that i(r)w is closed, Le., :f rW = 0, where:f r is the 
Lie derivative with respect to the vector field r. 

A diffeomorphism ct> on M is called symplectic if it pre
serves the two-form w, i.e., <l>* (w) = w. We remark that the 
symplectic character of a particular ct> depends just on its 
relation with the symplectic form wand does not involve any 
other mathematical object. Contrary to this, there is also a 
related concept in the formalism of the symplectic geometry 
which has to do not only with w, but also with a given vector 
field.5 Thus given a locally Hamiltonian vector field 
rexLH(M,w), a transformation ct>eDiff(M) is said to be 
canonoid with respect to r if the transformed field ct> * r is 
also locally Hamiltonian (that is, :f <I> rW = 0). In the lan-.. 
guage of traditional classical mechanics a general canonoid 
transformation "preserves the canonical formalism not for 
all the Hamiltonians but for only some Hamiltonians or per
haps only one.,,8 In a similar way, in this symplectic setting if 
ct> is canonoid with respect to r, probably this property will 
not hold for another vector field r' [ that is, 
ct> * r'EfXLH (M,w) ]. 

Given two different symplectic structures WI and W2 in 
the same manifold M, vector fields that are simultaneously 
locally Hamiltonian with respect to both w I and W2 are called 
bi-Hamiltonian dynamical systems. We will denote by XLH 
(M;w I ,(2 ) the set of such vector fields; if there is no danger 
of confusion we write x LH (w I ,W2 ) • 

If a nonsymplectic transformation ct> is a canonoid 
transformation for r, then :f <I> rW = 0 and consequently, .. 
also :f r ct>*w = O. Therefore, this vector field will be locally 
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Hamiltonian with respect to two different symplectic struc
tures: the primitive w and the new and different ct>*w. 

Thus if ct> is canonoid with respect to r, then reXLH 
(w, ct>* w ), but we remark that the converse is also true. In
deed, let r be such that rexLH (w,ct>*w); then :f r ct>*w = 0 
and therefore, ct>* (:f <I> r w) = O. Hence, ct> is a canonoid .. 
transformation with respect to r. Consequently, a diffeo-
morphism ct>eDiff(M) will be a canonoid transformation 
with respect to any vector field rexLH(M,w) such that 
rexLH (w,ct>*w). 

Finally, from 

:f[X,y JW; =:f x(:f yW;) -:f y(:f xW;), i= 1,2, 

we see that the set XLH (M;W I ,W2 ) is a Lie algebra. 

III. GENERATING FUNCTIONS OF CANONOID 
TRANSFORMATIONS 

Let (M,w) be a symplectic manifold. We recall that this 
manifold is called an exact symplectic manifold if w is exact, 
i.e., there exists a one-form e such that the two-form w is 
given by w = - de (for instance, when M is the cotangent 
bundle T *Q of a manifold Q). In this case, a diffeomorphism 
ct> of M, ct>eDiff(M) is symplectic if and only if (see Ref. 4) 
e - ct>* (0) is closed. This means the existence of a locally 
defined function F such that 

o - ct>* (0) = dF. 

This function F is called a generating function for the sym
plectic transformation ct>. This property will also be true for 
a general symplectic manifold, where the role of 0 is played 
by a local one-form for w (if Mis T*Q, then Oisthe Liouville 
one-form 0o, but in the more general case the function Fwill 
depend on the choice of the local one-form for w). We now 
make a final introductory point concerning this function. 
Indeed, the generating function is not defined in the mani
foldM, but on thegraphG<I> ofct>, G<I> CM XM [in the more 
general case of ct>:(Mlwl) -+ (M2,W2 ); then G<I> CMI XM2 ] 

because G<I> is a Lagrangian submanifold of M XM. How
ever, since G<I> is diffeomorphic to M, we will consider the 
associated F defined in M. 

It was proved in Ref. 5 that the canonoid character of a 
transformation ct> with respect to a vector field r is also relat
ed to the existence of an associated function. Now what must 
be a closed form is not the difference between the one-form 0 
and its pullback ct>*O, but the difference between the corre
sponding Lie derivatives with respect to r. Thus :frO 

- :f r ct>*O being closed is equivalent to ct> being canonoid 
with respect to r. Locally, by the Poincare lemma, there 
exists a function S such that 

dS = :f r 0 - :f r ct>*O. 

We call the function S a generating function for the canonoid 
diffeomorphism ct> and remark that in this case this function 
S depends not only on the transformation ct>, but also on the 
vector field r. 

Every symplectic transformation uniquely determines, 
up to an additive constant and via the one-form e, a function 
F. The converse is not true because two different symplectic 
transformations may yield the same function F. That is, if ct> 
and \{I are symplectomorphisms such that ct>*O = \{I*O, then 
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F4> = F'" (up to an additive constant). This fact can also be 
seen in Darboux coordinates {qi,Pi,i = 1, ... ,n} since then, 
given a function F, the solution Qi = Qi(qk,pk), Pi 
= Pi (qk,pk) , where i,k = 1, ... ,n, of Pi dqi - Pi dQ i = dF 
may be nonunique. 

Let A denote the map 

A:Diff(M) X:f.LH(M,w) -+Ai(M) 

defined by 

A(cp,n =.Y rO -.Y rCP*(O). 

If cP is canonoid with respect to r, then A(cp,n is in the 
subset of closed forms, A(cp,nEZ i(M) CAi(M). There
fore, if we denote by A4> the map A4>::f.LH (M,w) -+Ai(M) 
defined by 

we have :f.LH(W,CP*w) = A ~ i [Z i(M)]. Also, if we denote 
by Ar the map Ar: Diff(M)-+Ai(M) defined by Ar(CP) 
= A(cp,r), we have that A r i [Z i(M)] represents the set of 

all the diffeomorphisms which are canonoid with respect to 
r. Notice that Sp(M,w) CA r i [Z i (M)], where Sp(M,w) 
denotes the group of symplectic transformations. 

If A(cp,nEZ i(M), then for any point pEM there exists 
a connected coordinate neighborhood such that the restric
tionA(cp,n lU is exact, A(cp,nluEB i(U). SinceBi(U) is 
diffeomorphic to C 00 ( U) fR, we see that if cP is canonoid 
with respect to the vector field r, the cP and r uniquely 
determine the function S up to an additive constant. 

Concerning the inverse approach, notice that it is possi
ble to have the existence of more than one element in 
A r i (dS): This will mean that the function S will generate 
several canonoid transformations with respect to r. This 
situation is more complicated than in the symplectic case 
because besides the previous case of cP =1= W, but 
cP* (0) = W* (0), we also have the possibility 
cP* (0) =1= W* (0), but .Y r cP* (0) = .Y r \fI* (0). In local co
ordinates, given a function S, the transformation Q i 
= Qi(q,p), Pi = Pi (q,p) generated by Swith respect to r 

must be obtained by solving second-order differential equa
tions. In some cases the system of equations can admit more 
than one solution. 

Let us now suppose that the diffeomorphism cP is a 
transformation which is canonoid not just for one vector 
field r, but for a family {riOi = 1, ... ,k} of k locally Hamilto
nian vector fields. Then (i) the different riOi = 1, ... ,k, satisfy 

r jE:f. LH (M;w, CP*w) 

and (ii) there will be k different functionsSi,i = 1, ... ,k, such 
that 

.Y riO -.Y riCP*(O) = dSi • 

Notice that property (i) is a direct consequence of 
.Y 4> rW = 0 and property (ii) emphasizes the dependence 
on the 'vector fields of the generating functions. That is, there 
are as many functions Si as vector fields r j • We remark that 
these functions are different, but all are generating functions 
for the same diffeomorphism. 
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Weare interested in studying not only the relation 
between every function Si with its associated vector field r i' 
but also the relation between the different Si'S. 

We remarked that there is a different generating func
tion of cP for every vector field with respect to which cP is a 
canonoid transformation. Thus we can guarantee the exis
tence of an S r for every vector field r in :f. LH (w, CP*w). 

The two extreme cases are when :f.LH(W,CP*w) reduces 
to the null vector field, which corresponds to a noncanonoid 
transformation for any dynamics, and when :f.LH (w,CP*w) is 
the full set :f.LH(M,w), corresponding to CP*(w) =cw, 
where c denotes a constant real number.9

•
10 In this last case 

we will distinguish the two following situations. 
(i) Here cP is itself a symplectomorphism and thus 

CP*(w) = w. In the more traditional language of mechanics 
cP is then called a restricted or univalent canonical or even, if 
there is no danger of confusion, just a canonical transforma
tion. 

(ii) The more general case of cP is such that 
cP* (w) = cwo In the mechanical language cP is usually called 
a generalized or extended canonical transformation and c is 
said to be the valence of the transformation. See, e.g., Ref. 11, 
where some applications to the virial theorem and Toda lat
tice are given. 

The two following propositions study these two situa
tions. 

Proposition 3.1: Let (M,w) be a symplectic manifold and 
cP be a diffeomorphism. Then cP is a symplectomorphism if 
and only if cP is a canonoid transformation with respect to 
every locally Hamiltonian vector field r and there is a r
independent function F such that S r = r(F). 

Proof: Let cP be a symplectomorphism. Then there is a 
function F such that 0 - cP*O = dF. Thus for any 
re:f.LH(M,w) we have 

Hence, cP is canonoid with respect to r and the associated 
function Sr is Sr = reF). Conversely, let cP be canonoid 
for every re:f.LH(M,w). Then .Y rO -.Y rCP*(O) = dS r. 
Thus if every Sr is of the form Sr = r(F), we obtain 
.Y rO -.Y rCP*(O) =.Y r (dF) for any re:f.LH(M,w). 
Since a local basis of:f.(M) can be built from locally Hamil
tonian vector fields, then 0 - cP*O = dF and cP will be a sym
plectomorphism. 

Proposition 3.2: Let (M,w) be a symplectic manifold and 
cP a diffeomorphism such that CP*w = cw, where c is a non
zero constant. Then (i) cP is a canonoid transformation of M 
with respect to every locally Hamiltonian vector field rand 
(ii) there is an r-independent function Fsuch that the gen
erating function S r associated to every vector field r can be 
written as Sr =cr(F) + (l-c){i(r){}-H}, with H a 
(perhaps only locally defined) Hamiltonian for r . 

Proof: (i) Assume that CP*w = cw; then if .Y r w = 0 we 
have 

.Y rW = (l/c).Y rCP*w = (l/c)CP*(.Y <I> rW) = 0 
• 

and therefore, cp. rE:f. LH (M,w). Consequently, cP will be a 
canonoid transformation for any rE:f. LH (M,w). 

(ii) Notice that 
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CiJ - (1/c)~*(CiJ) = - d[O - (1/c)~*(O)]. 

Therefore, ~ is an extended canonical transformation of 
(M,CiJ) with valence c, if and only if 0- (1/c)~*(0) is 
closed. Thus this means the local existence of a function F 
such that 

0- (1/c)~*(O) = dF. 

Using this function F we obtain 

2' rO - 2' r~*(O) = 2' rO - 2' rCO + c2' r dF 

= c2' r dF + (1 - c)d{i(r)O - H} 

= d{cr(F) + (1 - c)(i(r)O - H)}, 

where His a local Hamiltonian for r, i.e., i(r)dO = - dH. 
Hence, we find that the function S r is 

Sr =cr(F) + (1-c){i(r)8-H}. 

Finally, even if the function H is only locally defined, 
this fact does not represent any difficulty because so is Sr. 
Notice, also, that when c = 1 we recover the result of Pro po
sition 3.2. 

Propositions 3.1 and 3.2 can be used for proving when a 
given transformation that is presented at first as a canonoid 
is in fact a (restricted or extended) canonical transforma
tion. Thus in this new approach what we really will analyze 
is not the transformation ~ itself, but its associated set of 
generating functions. 

We have previously stated that the set XLH (M;CiJI,CiJ2) is 
a Lie algebra. The following proposition studies the relation 
between the Lie algebra structure of the set of vector fields 
with respect to which ~ is canonoid and the corresponding 
set of associated functions. 

Proposition 3.3: Let ~ be a diffeomorphism of (M,CiJ) 
which is canonoid with respect to two different locally Ham
iltonian vector fields riO i = 1,2 with the associated generat
ing functions Si,i = 1,2. Then the generating function SI2 of 
~ with respect to the field [r I,r 2] is 
S12 = r l (S2) - r 2(SI)' 

Proof: We have 

2'[r,.r, 1{0 - ~*(O)} 

= 2' r, {2' r, (0 - ~*O)} + 2' r, {2' r, (0 - ~*O)} 

= 2' r, (dS2) - 2' r, (dSI ) = d [r l (S2) - r 2(SI)] 

and the proposition is proved. 
Next, we give a proposition which makes use of the 

expression obtained for S12' together with the properties of a 
particular Lie algebra structure. 

Proposition 3.4: Let ~ be a diffeomorphism canonoid 
with respect to a set oflocally Hamiltonian vector fields {r a' 

a = 1, ... ,2n}, which constitute an effective realization of the 
2n-dimensional Abelian Lie algebra. Then (i) there is a r a -

independent function G such that all the 2n generating func
tions Sa depend on G and (ii) the expression of the trans
formed form ~*(CiJ) is constant in Darboux coordinates for 
CiJ. 

Proof: (i) If {r a,a = 1, ... ,2n} is an effective realization 
of the 2n-dimensional Abelian Lie algebra, we have 

[r a,r P ] = 0, a,/3 = 1, ... ,2n; 

804 J. Math. Phys .• Vol. 31, No.4, April 1990 

consequently, the generating functions SaP that according to 
Proposition 3.3 are given by SaP = r a (Sp) - r P (Sa) must 
be constant. We know that if [r a' r P ] = 0 there exist local 
coordinates (sa) such that the vector fields r a take the 
form 12 r a = a las a. Therefore, in these coordinates we will 
have 

asp aSa ------c a
s

a asp - ap, 

where caP are real constants such that caP = - cPa' Let 
:(S) be defined by :(S) = Sp ds P and let:' (S) denote the 
one-form :'(S) = :(S) - !cp,Bsf' ds

p. The meaning of the 
above system of equations is that d: ' (S) = 0; this is equiva
lent to the existence of a function G = G(gP) such that 
:' (S) = dG. Hence, 

aG 1 
Sp =--+-c pSf'. 

asp 2 f' 

(ii) Let taP denote the components of~*(CiJ) with re
spectto the system of coordinates {sa,a = 1, ... ,2n}, namely, 

~*(CiJ) = taP ds a I\dsp· 

Then since ~ is canonoid with respect to the 
ra = a las a, we have 

2' r (taP ds a 1\ ds P) = 0; ,. 
this means that r f' (taP) = 0, f,l,a,/3 = 1, ... ,2n. Hence, the 
components taP are constant. Finally, Darboux coordinates 
{qi,Pi,i = 1, ... ,n}, forCiJcan be obtained from linearcombina
tions (with constant coefficients) of the s a,s. Hence, the 
transformed two-form ~*(CiJ) will also be constant when 
expressed in the {qi,p;.i = 1, ... ,n} coordinate system. 

If~ is such that ~*(CiJ) = CiJ, then the Poisson brackets 
are preserved; if ~* (CiJ) = CCiJ, then they are preserved up to 
a multiplicative constant. Since the matrix elements of the 
new form ~*(CiJ) are the Lagrange brackets [qi,qk], 
[P;.Pk], and [qi,Pk ], we see that if~ satisfies the hypothesis 
of Proposition 3.4, then the new fundamental Poisson brack
ets (that is, {Qi,Qk}, {Pi,Pk}, and {Qi,Pk}) are constant. 

These properties show that there is a direct relation 
between the structure and size of the subset of XLH (M,CiJ) 
with respect to which ~ is canonoid, the form in which the 
associated function S r depends on r, and the "modifica
tion" or "lack of symplecticity" that ~ produces in the sym
plectic structure. 

A particularly interesting case of a transformation that 
is canonoid for two different vector fields will be when ~ is 
canonoid with respect to two Coo (M)-proportionallocally 
Hamiltonian vector fields r ( and r 2 = /r (,fEC 00 (M). No
tice first that in order for the two vector fields to be locally 
Hamiltonian it is required that d/I\ i( r I)CiJ = 0, as the rela
tion 

.!f r,CiJ =/.!f r,CiJ + d/l\i(rl)CiJ 

shows. We remark that in the :particular case of r ( being a 
Hamiltonian field, then there will be a function H such that 
i( r I)CiJ = dH; the above equation becomes d/I\ dH = 0 and 
implies that the function/must be of the form/=/(H). If 
r I is only locally Hamiltonian the assertion is only locally 
true. 
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Proposition 3.5: Let ct>EDiff(M) be a canonoid transfor
mation with respect to the two locally Hamiltonian vector 
fields r l = rand r 2 =frl,jEC""(M). Then the generat
ing function S2 associated to r 2 takes the form 
S2 =fSI + u(j), where SI denotes the generating function 
of ct> associated to r I and u (j) is a function off 

Proof: If ct> is canonoid with respect to r 2 we have 

.!t' r, {O - ct>*0} = dS2• 

On the other hand, 

.!t'r, {O - ct>*0} =f.!t' r{O - ct>*0} + {i(r) (0 - ct>*O)}df 

=fdSI + {i(r)(0- ct>*O)}df 

since r 2 = fr. Thus combining the two expressions we find 
thatdS2=d(fSI) + [i(r)(O-<I>*O) -SI]dfTherefore, 
the last term must be an exact form and then the expression 
between the square brackets must be a function off Thus we 
find thatS2 is related toSI by S2 =fSI + u, where u = u(j) 
is a function off such that its derivative u' (j) takes the value 
u'(j) = i(r)(O - <1>*0) - SI' 

Notice that in Proposition 3.5 we have not only related 
S2 with SI' but also obtained an expression for SI as a func
tion of r, 0, andf Nevertheless, this expression involves an 
undetermined function u. 

IV. SYMPLECTOMORPHISMS VERSUS CANONOID 
TRANSFORMATIONS 

We have previously proved that if ct> is such that 
ct>*w = CW, then the S r associated to every r takes the form 
Sr = cr(F) + (1 - c){i(r)O - H}. The following propo
sition gives a new relation between ct>, r, and Fwhich will be 
used for obtaining a new expression for S r. 

Proposition 4.1: Let ct> be such that ct>*w = cw. Then 

i(r){0 - <I>*O} = cr(F) + (1 - c){i(r)O}. 

Proof: Ifct>*w = cw, then 0 - (l/c)<I>*O = dFand thus 

i(r){O - <I>*O} = i(r){0 - c[O - dF]} 

= cr(F) + (I - c){i(r)O}. 

Thus using this equality, the function S r given by Proposi
tion 3.2 can be alternatively written as follows: 

Sr=i(r) {O-<I>*O} + (c-I)H. 

This new expression of S r will be of great use later on. 
It is known9

,10 that ifct> is canonoid with respect to every 
locally Hamiltonian vector field (that is, ct>. [XLH (M,w)] 
CXLH(M,w», then ct>*(w) = cw. The following theorem 
proves that there exist inside XLH(M,w) some smaller sub
sets such that in order to guarantee the property 
ct>* (w) = cw it will be sufficient for ct> to be canonoid only 
with respect to one of those subsets. 

Usually, canonoid transformations are considered in 
the particular case of transformations of a symplectic mani
fold (M,w), but as when studying canonical transforma
tions, we first consider the maps <I>:(MI,w l) -+ (M2,W2) re
lating WI to W2' ct>*(w2) = WI and then obtain 
symplectomorphisms of (M,w) ;is a particular case. Here we 
will also consider maps relating two different symplectic 
manifolds. 
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Theorem 4.2: Let (MI,wl ) and (M2,w) be 2n-dimen
sional symplectic manifolds and {XI,x2, ... ,xN}' N>2n a set 
of globally defined vector fields in MI which are locally WI 
Hamiltonian and span x(M.). Then a diffeomorphism 
ct>EDiff(M.,M2) is a generalized canonical transformation if 
and only if the following properties hold. 

(i) Here ct> is canonoid with respect to everyone of the 
fields X k , k = 1, ... ,N. 

(ii) There exist N nonconstant functions fk EC "" (MI) 
such that ct> is canonoid with respect to the new set oflocally 
Hamiltonian fields Yk = fkXk' 

(iii) When i(Xj )i(Xk )wI = 0 there is a locally Hamilto
nian vectorfieldXJk = ZjXk + ZkXj withzj,zkEC ""(M.) for 
which ct> is canonoid. 

Proof: First notice that the number of globally defined 
vector fields required to span x(MI ) must be equal to or 
greater than the dimension of MI since 2n vector fields that 
are linearly independent and span x(M.) do not exist for a 
general MI' Nevertheless, since generating functions are lo
cally defined and coordinate neighborhoods are paralleliza
ble, in every symplectic chart for WI there will be 2n vector 
fields X a , a = 1, ... ,2n in the set {Xk }, k = 1, ... ,N such that 
for every point m in such a chart the 2n vectors Xa (m) will 
form a basis of Tm (MI). 

As far as (iii) of Theorem 4.2 is concerned, let us remark 
that if XJ and X k are locally Hamiltonian, then besides the 
trivial case of the linear combinations ajXj + akXk with the 
coefficients aj, ak only depending on the respective local 
Hamiltonians Hj, H k , there will exist other fields Xjk 
= ZkXJ + ZjXkEXLH(M,WI) withziEC "" (MI), for instance, 

HkXj + HjXk. Therefore, property (iii) assumes the exis
tence of a nontrivial linear combination Xjk = ZjXk + ZkXj 
EXLH (M,w l ) for which ct> is canonoid. 

(i) That ct>*w2 = cW I implies properties (i), (ii), and 
(iii) of Theorem 4.2 follows immediately since these diffeo
morphisms are precisely characterized by ct> * (xLH (Mlw l» 
CXLH (M2w2 ) and therefore since they are canonoid for any 
locally Hamiltonian field so will they be for the X k, Yk , and 
Xjk · 

(ii) Assume now that ct> is a canonoid transformation 
simultaneously for one of the X k and its proportional vector 
field Yk = fkXk' Then if Sk denotes the generating function 
of ct> associated to X k we have 

.!t' X
k 
{Ol - ct>*02} = dSk , 

but since ct> is also canonoid with respect to Yk , the function 
S k takes the form 

Sk = i(Xk ){Ol - <I>*02} - Uf" 
with Uk an undetermined function offk' Thus we obtain 

i(Xk ){d(OI - <I>*02)} + dUk = 0 

and therefore, Uk satisfies 

i(Xk )w I = i(Xk ) <I>*w2 + duk. 
The meaning ofthe function Uk is now clear; its differential 
represents what we can call the "lack of symplecticity" of ct> 
along the integral curves of X k • 

Relating this expression with that obtained for Xj it fol
lows that 
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i(~ )du" + i(Xk )du; = O. 

Moreover, since YkEXLH(M,WI), the functionfk satis
fies dfk /\ i(Xk )WI = O. Also, according to Proposition 
(3.5), du" /\ dfk = O. Therefore, there will be a function mk 
such that du" = mk {i(Xk )w I }. Using this, we obtain 

(mk - mj ){i(~ )i(Xk )w I } = O. 

Since WI is nondegenerate and we can choose a local 
basis from the total set {Xk } in every local chart, for every 
index j there will be at least an index k such that 
i(~ )i(Xk )WI #0. Consequently, the functions mk and mj 
associated to such vector fields satisfy mk = mj' 

Ifi(~ )i(Xk )WI = 0, then according to property (iii) of 
Theorem 4.2 cP is also canonoid with respect to the vector 
field Xjk and consequently, .Y Xj' {Ol - cP* (02 )} as given by 

.Y X
jk 

{Ol - CP*02} 

= Zj dSk + Zk dSj + [i(Xk ){Ol - CP*W2}] dZj 

+ [i(~){01 - CP*02}]dzk 

= d [Zi(Xk ){Ol - CP*02} + zki(~ ){Ol - CP*02}] 

-Zj du" -Zk du; 

must be closed. If for du; and du" we use the expressions 
obtained above, differentiation gives 

m k dZj /\ i(Xk )WI + mj dZk /\ i(~ )WI = O. 

However, if Xjk is locally Hamiltonian, then the functions Zj 
and Zk must satisfy 

dZj /\ i(Xk )w I + dZk /\ i(~ )w I = 0 

and therefore, the condition of cP canonoid with respect to 
Xjk becomes 

(mk - mj ) {dzj /\ i(Xk )wI } = O. 

Consequently, we find that even when i(~ ) i(Xk )WI = 0 the 
coefficients m k and mj must satisfy 

m k =mj =m. 

Notice that the functions m k were introduced by du" 
= m k {i(Xk )wI } and then dmk /\ {i(Xk )wI } = O. This 

means that in any local chart every m k m~st be a function of 
the corresponding local Hamiltonian for X k • Consequently, 
the property m k = mj = m for k,j = 1, ... ,N is only possible 
if the common value m is a constant function. 

Thus we finally obtain 

i(Xk )CP*W2 = c{i(Xk )w I } 

and 

Sk = i(Xk ){Ol - CP*02} + (c - l)Hk, 

with Hk locally defined by dHk = i(Xk )w I and the constant 
c defined by c = 1 - m. 

In short, we have proved that a transformation is gener
alized canonical if and only if it is canonoid with respect to 
the set {Xk, Yk ,Xjk }. We remark that the minimum number 
N of vector fields X k necessary for Theorem 4.2 depends on 
the topological characteristics of MI' Usually MI is the co
tangent bundle T *Qof an n-dimensional manifold Q. In such 
a case N = 2N Q' where N Q denotes the minimum number of 
globally defined vector fields in Q necessary for the span 
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x (Q). Only if Q is parallelizable do we have N Q = n. Obvi
ously, the simplest case will be when it is possible to obtain a 
set of commuting X k , but in any case, Theorem 4.2 does not 
impose any restriction concerning the algebraic structure of 
theXk • 

v. A PARTICULAR CASE: THE QUADRATIC
HAMILTONIAN THEOREM 

The traditional approach to mechanical systems corre
sponds to topologically trivial phase spaces. In these cases M 
is Rn X Rn, locally Hamiltonian vector fields become globally 
Hamiltonian, and the 2n coordinates are also globally de
fined. Consequently, in these cases, if cP is canonoid with 
respect to a Hamiltonian H, then the function S will be glo
bally defined by equations of the form 

a 2H aH a k aQk as 
J Pk - -. + Pk -.{H,Q } + {H'pk}-a . = -a j' 

aq aPk aqJ aqJ qJ q 

a 2H a k aQk as 
--Pk+Pk-{H,Q }+{H,Pk}-=-. 
apj aPk apj apj apj 

Theorem 5.1: Let Fi = Fi(qi), Gi = Gi(Pi)' and 
Ki = Ki (qiqi + I) be 3n arbitrary functions with the only re
striction that Fi = Fi(qi), Gi = Gi(Pi) have nonvanishing 
second derivatives. If cP is a diffeomorphism of the phase 
space Rn X Rn that is canonoid with respect to all the Hamil
tonians of the form 

H = aiqi + hiPi + ciFi(qi) + diGi(Pi) + eiKi(qiqi+ I), 

where ai' ho Co di,andeoi= 1, ... ,nareconstant,thenCPis 
an extended canonical transformation. 

Proof: To begin, first consider the case of cP canonoid 
with respect to the family of Hamiltonians HH = qi, 
i = 1, ... ,n. Then if we denote by SH the associate family of 
generating functions, we have 

aSH = ~{Pk aQk _ p.} aSli = ~{Pk a
Qk

} . 
aqj api aqj J' apj api apj 

Assume now that cP is also canonoid with respect to the 
family H2i = Fi (qi) (the notation means that everyone of 
the Fi is a function of only the corresponding coordinate qi) 
and denote by Su, i = 1, ... ,n its associate set of generating 
functions: Then their derivatives take the values 

asu = D .. r'p aQk + r{p a
2
Qk _ D .. + aPk aQk } 

a j Ij' k a ,k a ja Ij a a j q 'Pj q 'Pi 'Pi q 

aS2i =F; a
2
Qk P

k 
+F;aPk aQk, 

apj apj api api apj 

which can be rewritten in the form 

as2· asl · aQ k aS2i aSH 
--' =F~--' +D .. r'p -- --=F;--; 
aqj , aqj Ij' k apj' apj apj 

from here we find that F;' Sli + u; = F;' Pk (aQ k I api)' with 
the Ui = Ui(qi) such that S2i = qiSli + Ui. 

We have obtained an expression for SIi; therefore, we 
can obtain new values for aSHlaqj and aSHlapj and relate 
them with those previously known. Ifwe do so, we arrive at 

[Pj,Pi] = 0 
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and 

. .{ a(u;)} [qJ,pd = 8~ t - aqi F;' , i,j= t, ... ,n, 

where [.,.] denote the Lagrange brackets of the (qi,Pi) with 
respect to the (Q i,Pi ). We remark that the expression ob
tained for [qi,p i] is well defined since Fi was assumed non
linear and in the points where F;' = 0, then, also u; = 0 in 
such a way that the term u;IF;' is well defined. Repeating 
the argument, but first changing qi for Pi> then Fi (qi) for 
Gi (Pi)' and denoting by Vi the unknown functions obtained 
when integrating and which now will be of the form 
Vi = Vi (Pi)' we will arrive at 

and 

. . { a ( v; )} [ q',Pi] = 8j t - api G ;' , i,j= 1, ... ,n. 

These two results must be compatible; this implies that 

a (u; ) a ( v; ) 
aqi F;' = aPi G;' = const. 

Hence, we can conclude that 

[qi,Pi] = 85 Ci· 

Finally, we will prove that the n constants ci>i = 1, ... ,n, 
are really the same. Let us consider as a Hamiltonian the 
function K( q"qb). Then if S(K) denotes the associate gener
ating function, we have 

as(K) = K" [qa aQk + qb a
Qk

] (8j qb + 8J qa) 
aq' apb aPa 

+ KI[8j aQk + qa a
2
Qk + 8J aQk 

aPb a q' aPb apa 

+ qb a
2
Qk ]Pk + KI[qa a

2
Qk + a

2
Qk ] 

aq' apa apj aPb apj aPa 

x a!}Q k _ (8j qb + 8J qa)K I, 
uq' 

as(K) = K1[qa a
2
Qk + qb a

2
Qk ]Pk 

apj apj aPb apj ap a 

+K1[qa aPk +qb aPk ]a
Qk

. 
apb apa apj 

Integrating the second equation we find 

S(K) = KI[q"Pk aQk + qbPk a
Qk

] + uab (ql, ... ,qn), 
aPb aPa 

where the function Uab must be determined by substituting 
into the first equation. In this way we obtain 
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aUab (£a 1 b £b 1 ,,)K 1 --. = Uj(Ca - )q +Uj(Cb -)q . 
aqJ 

Consequently, 

a (auab ) - - = (Ca -1)K' + (Ca - l)qaqbK", 
aqb aq" 

~(aUab) = (Cb - 1)K ' + (Cb - l)qaqbK", 
aq" aqb 

and we conclude that Ca = Cb' 

Therefore, if the transformation is canonoid with 
respect to the Hamiltonians K) (q1i), 
K2(ir/), ... ,Kn _ 1 (qn - Iqn) we then obtain that 
c) = C2 = ... = Cn and Theorem 5.1 is proved. 

Notice that in the particular case of taking as functions 
Fi> Gi, andKi precisely the quadratic functions (qi)2, (Pi )2, 
and qiqi+ I,i = 1, ... ,n, we will recover the quadratic-Hamil
tonian theorem of Currie and Saletan.2 Moreover, it must be 
remarked that the hypotheses are weaker in this new ap
proach since we have not needed to make use of mixed qua
dratic terms of the form qiqj, withj#i + 1, PiPj and qPj, 
i,j= 1, ... ,n. 

Consequently, the quadratic-Hamiltonian theorem 
turns out to be a particular case of Theorem 5.1. Indeed, if we 
give different values to the 3n different functions Fi , Gi , and 
Ki we will obtain different families of5n independent Hamil
tonians (they are really 5n - 1 since the Kn is superfluous 
because we do not need the term qnql) in such a form that 
everyone will be a sufficient set in order to assure the ex
tended canonicity of the transformation. Obviously, the sim
plest case will correspond to the aforementioned Fi = (qi)2, 
Gi = (Pi)2, andKi = qiqi+ 1. 
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Conformal transformations and the effective action 
in the presence of boundaries 
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The conformal properties of the heat kernel expansion are used to determine the local form of 
the coefficients in a manifold with boundary. The conformal transformation of the effective 
action is obtained. A novel derivation of the boundary term in the Gauss-Bonnet-Chern 
theorem is detailed. 

I. INTRODUCTION 

This is a further l
•
2 installment of our work concerning 

some aspects of conformal transformations in conventional 
field theory. It should be regarded as an immediate continu
ation of Ref. 2., where, among other things, we considered 
the relation between dimensional and ~-function regulariza
tion. In our explicit calculations3.4 using conformal transfor
mations, we employed the ~-function method. The intention 
here is to give a closer look at the dimensional approach5 and 
also to include boundary effects, which have so far been ex
cluded. We wish to determine the boundary contributi~n to 
the conformal transformation of the effective action in three 
and four dimensions. 

The system is a scalar field satisfying Dirichlet condi
tions. For mathematical convenience, the metric of space
time is taken with a positive definite signature. 

In an extensive Appendix we have presented details of 
our conventions regarding boundary quantities (such as the 
extrinsic curvature). We have chosen to do this while giving 
a novel derivation of the boundary term in the Gauss-Bon
net-Chern theorem. Our justification for such an excursion 
is that a similar treatment, with due and explicit regard to 
signs, does not seem to be available. We hope it will prove of 
value since these topics are of increasing interest to physi
cists. 

II. THE C1 COEFFICIENT 

To illustrate the use of the results of Ref. 2 we derive a 
slight generalization of an expression first given by Liischer 
et al.6 and later by Alvarez 7 for the integral of the local Min
akshisundaram coefficient c\n) (y) against an arbitrary test 
functionf(y). The general definition is 

Clen)[g;f]== Iff clen) (g)(y)f(y)dV, 

where dV = gl 12 d;. Sincef can have support on the bound
ary, this integral will contain volume and surface parts: It is a 
convenient way of dealing with the local coefficient. 

The recent paper of Branson and Gilkey8 (received after 
the present work was mostly completed) is also concerned 
with such integrals. 

It is logical to define a corresponding ~ function 

~ [s,g;f] == f ~(s,g) (y,y)f (y)dV, 

related by a Mellin transform to the averaged heat kernel 

K [t;11 == f K(y,y,t)f(y)dV. 

All formal results valid for f = 1 can be lifted to the 
general case by the appropriate notational changes. For ex
ample, if p is a non-negative integer, 

~ [ - p,g;f] = ( - 1 )P[p!/( 41T)n12] C ~~i + P [g;l1. 

It is sufficient for our purposes to determine the behav
ior of ~[s,g; j] under conformal transformations whenf = 1. 

As in Ref. 2, under a conformal change of g we have 

8~ [s,A. 2g;I] I..t = I = 2s~ [s,g;8A. ] + 2s~ [s + 1,g;J 8,1 ], 

where 

J = (m2 + (n - 1)($ - s(n»A2 ) 

with 

s(n) = (n - 2)/4(n - 1). 

The restriction to A. = 1 is inessential, but convenient. 
If s is set equal to - p it follows that 

8Clen) [A. 2g;I] 1..\= I = (n - 2k)Clen) [g;8A. ] 

+ 2Clen21 [g;J 8,1], (1) 

which is our basic equation.2 We are going to use (1) to 
derive Clen) [g;f] given Clen)[g;l], which from now on is 
sometimes denoted by C len) [g). 

Equation (1) can be rewritten as 

Clen) [g;8A. ] = [lI(n - 2kH[ 8Clen) [A. 2g] 1..\= I 

- 2Clen2 1 [g;J 8,1 ]] (2) 

in order to emphasize the structure of the calculation. As an 
example we take k = 1. 

The expression for the standard integrated coefficient 
C in) [g) corresponding to the equation of motion 

(A2 - sR + m 2
) ¢ = 0 

is 

Clen)[g] = m2 111 + [2. - 5] J R dV + 2. r KdS, 
6 . It' 3 Jalt' 

(3) 

where dS is the covariant surface area element on the smooth 
boundary a1, i.e., dS = h 1/2 d n - lX, where h is the in
duced metric on a1. Here K is the trace of the extrinsic 
curvature Kij of a1 in 1. 
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The first term in the bracket in (2), for k = 1, can be 
determined directly from (3) and the known conformal 
transformations of Rand K.9

•
1O One finds 

t5C \n)[A. 2g] IA= I 

= (n -2)[(! -t )f-K Rt5..1dV++fiLK Kt5..1dS] 

+ nm2f t5..1 dV - 2t(n - 1) r n!-' B!-, t5..1 dS, (4) 
.~ Ja~ 

where n!-' is the inward unit normal to the boundary BvII. 
If ( 4) is substituted in the rhs of (2), the last two terms 

of ( 4) combine with the second term in the bracket of (2) to 
give a factor of (n - 2), which can be cancelled, leaving, if 
t5..1 (y) is replaced by I(y ) , 

c\n)[g;f] = m
2 

f-KldV + (! - t) f~ RldV 

+~ r KjdS-~ r n!-'B!-'ldS.(5) 
3 Jag 2 Jag 

The generalization over the result of Refs. 6 and 7 con
sists of working with a more general equation of motion in n 
dimensions. 

The lastterm in (5) has been "generated" by the confor
mal transformation. A direct calculation from the heat equa
tion is more messy, although, of course, we have assumed 
that the form of C In) [g; 1] is already known. However, 
Branson and Gilkey8 have developed a systematic method of 
finding all the numerical coefficients based just on functorial 
properties of the C in) [g;f] similar to (1). 

III. EFFECTIVE ACTION I 

In this section attention is restricted to the conformally 
invariant situation, i.e., m = 0, t = t(n). 

There are two equivalene ways of evaluating the finite 
effective action WR [g]. 

One method consists of working in the actual dimension 
of the space-time and integrating the anomaly, which, up to a 
factor, is just the variation t5WR [A. 2g ]lt5..1. In two dimen
sions this amounts to integrating C \2) [g;t5..1 ] [see (5) ] with 
respect to A and yields a well-known result.6,7,11 The same 
method has been applied to four dimensions l2,1 (in the case 
of an empty boundary). 

The other method uses the result that 

WR [A. 2g] - WR [g] 

[
c(n) [A. 2] c(n) [ ]] = lim (41T) -n12 m/2 g - m/2 g , 

n_m n - m 
(6) 

where m is the dimension of space-time and n is an arbitrary 
dimension. For m = 4 this approach has been used by 
Brown and Ottewill.5 In some ways this approach is more 
convenient since. it deals directly with Wand not its deriva
tive, thus avoiding the function integration. Such a method 
has been used by Melmed 16 when BvII #0. 

In order to discuss the case when BvII is not empty, we 
need the complete coefficient C ~)2 [g], including boundary 
contributions; thus before returning to (6), we consider the 
m = 4 and m = 3 cases more closely. 
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IV. THE C2 COEFFICIENT 

We revert to the more general equation of motion and 
recall that the form of C in) [g] is 

Cin)[g] = f...u ain) (g)(y)dV+ fiLK b~n)(g)(x)dS.(7) 

The volume density for k = 2 has been known for some 
timel3,14 and is 

ain)(g)(y) = (1I180)[IRiem1 2 -IRicI2 + a 2R] 

- .J,,(6t - 1)a2R + 12«6t - 1)R - 6m2)2, 
(8) 

where IRieml 2 = R R !-,vpu and IRicl 2 = R R!-'V We !-,vpu !-'v . 
note that the numerical coefficients are independent of the 
dimension n. 

The boundary contribution b i4
) has recently been eluci

dated by MosslS using the work of Melmed 16 on the confor
mal case, which itself is based on an earlier calculationl7 by 
Kennedy for a flat embedding space vii - BvII. 

The general form of b in) was written by Kennedyl8 as a 
linear combination of terms constructed from the extrinsic 
curvature of BvII and the curvature Rp.vpu of the embedding 
space; we repeat it here: 

bin)(x) =b2,IK+b2,2Ktr(~) +b2,3 tr(~) 

+ b2,4KR + b2,sKRp.vnP.nv + b2,6 Rp.v¥'v 

+ b2,7Rp.vpu~nvnu + b2,sn!-' B!-,R. 

We have defined 

whereyP.(x) define the boundary. (See the Appendix for an 
explanation of the notation used here and later.) 

Some of the coefficients, which we again note are inde
pendent of the dimension n, were determined by considera
tion of special cases such as disks and hemispheres. Thus for 
Dirichlet conditions and m = 0, 

b2,1 =~, b2,2 = - -Ns, b2,3 = 4, b2,4 = fs( 1 - 6t)· 
(9) 

Moss 15 employs a similar approach, but is able to get 
further in four dimensions by using Melmed'sl6 results, as 
we now discuss, restricting ourselves to Dirichlet concJitions 
for simplicity, 

Kennedy 17, 18 shows that when R!-'vpu is zero, b in) is giv
en by 

bin) = 9h/(K) 

=9h [40 tr(~) - 33 tr(K)tr(~) + 5(tr(K»3], 
( 10) 

where, for example, tr(~) = ~jKji and the indices are raised 
and lowered by the intrinsic metric Yij on BvII. [This result 
is given by the first three coefficients in (9).] 

To set our conventions some very standard equations 
are now presented. Under the conformal transformation 
g!-'v -+ A. 2gp.v = e - 2wg!-'v we have the following scalings: 

-2w p. wp. Yij -+e Yij' n -+e n , 

Kij -+Kij (A. 2g) = e - W(K;j + yijn!-'wp.)' 
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so that 

K ..... K(A 2g) = e"'(K + (n - 1 )nPw,,). 

For the embedding scalar curvature, 

R-R(A 2g) 

= e2"'(R(g) + 2(n - 1)0a> + (n - 1)(2 - n)ifw,,) 

(where w" ==a"w and, for later use, wp" ==V" a"w). 
Define the trace-free part of K by 

Pij ==Kij - [lI(n - 1) ]KYij' 

Then 

P i p i ('2) "'pi j ..... jAg=e j' 

As pointed out by Melmed, 16 this simple transformation 
law is the key to extending Kennedy'sI7.18 flat embedding 
space result since one can easily construct conformally in
variant polynomials in Kij' A traced string of s P~ tensors 
scales bye"", so that it is only necessary to find a product of 
such strings which scales as e",(n - 1) in order to give a confor
mal invariant when integrated over the boundary. 

We now return to the coefficient (7) with k = 2 and, for 
the moment, set n = 4: Since the numerical coefficients are 
universal this involves no loss of generality. 

The aim is to use the conformal properties of C 14
) in 

order to find these numerical coefficients and hence the ex
act form of C in) [g], from which WR [A 2g] - WR [g] can be 
found via (6). Further use of (2) then allows C1n

) [g;!] to 
be determined. 

Since we are interested in variations it is convenient to 
rewrite the volume density a14

) [see (8)] as 

a14 )(g)(y) = (1/120) IWeyW - (4r/45)x~)(y) 

- .3b(5s - 1)a2R + 12«6S - I)R - 6m2)2, 
(11) 

where X~) (y) is the Euler characteristic volume density and 
IWeyW = C""peTC""peT, with CP"peTthe Weyl conformal ten
sor. 

We proceed in two stages. First, the conformally invar
iant (m = 0, s = !) case is considered, following Melmed 16; 
this is then extended to the more general equation of motion 
using (1). 

If (11) is substituted into (7) one finds, if m = 0 and 

s=!, 

C1~F[g] =-I-f IWeyWdV 
120 .11 

_ 4r X(4) + _1_ r I(K)dS 
45 945 Jaff 

+ 4r r x14 ) dS+ r UdS. (12) 
45 Jaff Ju 

A number of things have been done to obtain this (inter
mediate) form. First, the boundary contribution to the Euler 
characteristic has been added and subtracted so that the full 
Euler invariant X<4) is exhibited. Second, Kennedy'sI7.18 flat 
space result (10) has been included. The U term is the un
known remainder, which must vanish when the embedding 
space is flat, R ""peT = O. The a2R term has been integrated by 
parts to give a boundary term that has been absorbed into U. 
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We have also put into U those terms in the boundary contri
bution to X(4) that vanish with R ""peT. Thus explicitly, x14

) in 
(12) is 

x14
) = (lI12r) [2 tr(~) - 3 tr(K)tr(~) 

+ (tr(K»3] == (lI32r)p(K). 

We now note the essential relation 

8/(K) + 21p(K) = 168G(K), (13) 

where G(K) is the conformally covariant polynomial16 

G(K) = tr(p3) = tr(~) - tr(K)tr(~) + j(tr(K»3. 
(14) 

Thus (12) becomes 

The important fact that C i~F is conformally invariant 19 
is used to determine the unknown expression U. The first 
three terms in the above equation are manifestly conformally 
invariant and the claim 16 has been made that there are no 
terms constructed from R "vpu and Kij which make the last U 
term also invariant. In fact, it is simple to show that the 
expression 

r Cpvpunvnupl'P dS 
Jail 

= r (R"vpunVnu~ + ~ R"vnPnv Jail 2 

+ J..- R "pv - J..- RK) dS 2 PyA: 6 

is conformally invariant and, also, that this is the only possi
ble such term. The complete conformal coefficient is thus 
(see Moss and Dowker20 ) 

C(4) [g] =-I-f IWey112dV- 4r X(4) 

2CF 120.11 45 

+ ~ r G dS __ 1_ r Cpvpunvnupl'P dS. 
35 Ja.,v 15 Jaff 

(15) 

The coefficient is can be determined from Kenne
dy'sI7.18 values [see (9)] for S =! since in this case there is 
no term like KR. [Kennedy obtained the last coefficient in 
(9) by looking at product spaces of the form JI\xJl2 , 

where JI\ is curved, but has no boundary (e.g., a sphere) 
and Jl2 is flat with a boundary (e.g., a disk). It can be 
checked that ( 15) gives the correct constant term in the heat 
kernel expansions on these spaces. ] 

We now reinstate the nonconformally invariant terms 
(m #0, S #!> in (11) and construct the integrated coeffi
cient (7). Again, the a2R term is integrated by parts and 
relegated to the boundary. Using (15) we can write the com
plete coefficient as 
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C~4)[g] = C~~F[g] found from (16). We note that only the two integrals in (16) 
will contribute. 

+ _1_ f « 6s - l)R - 6m2)2 dV + 1 Y dS, 
72 .. /1 a./I 

(16) 

where Y is to be found. 

From the known conformal behavior of R, K, etc. it is 
easily established that a = is and {3 = - n, which are the 
same values at which Moss arrives. Incidentally, the value of 
a also follows directly from Kennedy'sl8 last coefficient in 
(9)! From the structure of (16) and the fact that Y must 

vanish in the conformal case (up to a divergence), Y takes 
the general form (cf. Mossl5

) 

As a technical point, when the conformal variation in 
( 18) is being evaluated, the condition A = 1 means that one 
need work only to linear order in W (A = e - CU), which is very 
convenient. Y = a« 1 - 6S)R + 6m2)K + {3( 1 - 6S)nlJ aIJR. (17) 

Moss 15 fixes a and {3 [as well as the coefficient of G in 
( 15 )] by special case calculations. Our approach is to use 
the general conformal property (1) for the values n = 4 and 
k = 2, so that (1) reduces to the simpler form 

Incidentally, Eq. (18) also determines the second term 
in (16). That is, if we assume the extra, nonconformally 
invariant volume density to be a general linear combination 
of m4, m2 R, and R 2, Eq. ( 18) uniquely leads to the combina
tion in (16). I5C ~4) [A 2g] IA.= I 

Having now found C ~ 4 ) [g] we can determine C ~ n) sim
ply by rewriting everything in terms of R IJVpu and Kij and 
using the universal nature of the numerical coefficients. 

= 2 f..-K cl4)(g) (y) (m2 + 3 (s - !) a2) I5A(y)dV. 

(18) 

The rhs of ( 18) can be found from (5) and the Ihs is 
Thus from (16) with (15), or (12), we find the explicit 

form (Moss and Dowkero) 

c~n)[g] = f [-I-IRiemI2 - -1-IRicI 2 +_I_«6S - I)R - 6m2)2] dV + 2-1 G(K)dS- -1-1 q(K)dS 
./1 180 180 72 35 a/l 360 all 

- - R nVnu"IJP + - R nlJnV + - R "IJV - - RK dS 11( K 1 1) 15 a /I IJVpu A: 2 IJV 2 IJvA: 6 

(19) 

Here -flrq(K) is the integrand of the boundary term in the Gauss-Bonnet-Chem expression for the Euler number. A 
derivation is given in the Appendix of the standard expression 

A A 

q(K) = - 8 det(K) + 4KR - 8 tr(KR), (20) 

with 

det(K) = ,\p(K). 
A 

Here R i j kl is the intrinsic curvature of aJ/ and is related to the embedding curvature R IJVpu by the Gauss-Codazzi equations. 
Because the dimension n does not appear in the Gauss-Codazzi equations, the coefficients are universal whichever curvature 
is used. 

Since c~n)[g;l] is now known, the object is to employ (2) for k = 2, but any n, in order to determine c~n)[g;f], in 
particular, Ci4

) [g;!]. [NotethatoneneedsEq. (5) in order to evaluate the last term of(2).] 
Working to first order in w it is found, after some calculation, that 

Cin)[g;f] = f [-I-lIRiemI2 -IRic1 2 + a 2R] + ~A 2]fdV +~f Aa2fdV 
./1 180 2 6 ./1 

+_1_ r [(320 tr(~) -~Ktr(~) +~~-4R .A-'V_4KR nlJnV 
360 Ja./I 21 7 21 IJvA: IJV 

+ 16RlJvpunlJnpxvu)f + ~ (14A + +~ -tr(~») nlJ aJ] dS 

+ ~ r [AKf + 7 - 45S nlJ alJ Rf + _1_ (4K + 5nIJ alJ )a2f ] dS, 
3 Jd..-K 30 20 

(21) 

where A = (m2 + (A - S)R). 
An integration by parts has been performed to introduce the conventional a2R term in the volume part, although this is 

not necessarily convenient for further manipulation. 
Equation (21), the conclusion of this section, agrees, up to intrinsic divergences, with the expression given by Branson 
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and Gilkey,S derived by a method that also involves functorial relations between the Minakshisundaram coefficients, but 
which differs in detail and general approach. 

To achieve the agreement it is necessary to use the relation between the embedding and intrinsic Laplacians: 

!l.2W + K( n"'w",) = A2w + n"'n"w",,,. 

V. THE C3 / Z COEFFICIENT 
In three dimensions the relevant object is C ji~ [g), which has been calculated in Ref. 21: It is conveniently written as, for 

m=O, 

Cjii[g] = Iii r (- 3~ + 6 tr(~) - 4R + 12(85' - l)R)dS. 
192 Ja-k 

A straightforward application of (2) yields 

Cjii[g;[J = Iii r [( - 3~ + 6 tr(~) - 4R + 12(85' - 1 )R)j + 30Kn'" BJ - 24n"'n'V", BJ]dS, (22) 
192 JaR 

which agrees with Branson and Gilkey. S 

VI. EFFECTIVE ACTION II 
Using (21), withj= I, m = 0, and 5'= 5'(n), Eq. (6) for the effective action in four dimensions yields, after some 

calculation, 

WR [e- 2"'g] - WR [g] 

= -~ f [( IRieml2 - IRicl2 + !l.2R )W - 2R",,,w"'w" - 4w"'W",!l.2W + 2 (w"'w", )2 + 3(!l.2W)2]dV 
288011 .-k 

1 i [( 320 88 40 " --- -tr(i!) --Ktr(~) +-i!-4R X'" 
576Q"r a II 21 7 21 "''' 

(23) 

where N=n"'w,... The alternative method of integrating the trace anomaly, used in earlier works,S. 12 will now be outlined. 
The standard anomaly equation is 

OWR [A 2g] = - (41T)-2C~4)[A2g;OW] (A=exp( -w», 

so that if we set ow = w dt, 

W R [A 2g] - WR [g) = - (41T) -2 L C i4) [exp( - 2wt)g;w Jdt. (24) 

For the integrand we can use (21), with m = 0 and 5' = !. In four dimensions the expression simplifies a little: 

Ci4)[g;[J = -1-f [/RiemI2 -/RicI2 + !l.2R ]jdV +.2.. r G(K)jdS- _1_ r qfdS+_
1_ r n"'B", RjdS 

180 "II 35 Jail 360 Jail 180 JaIl 

+_1_ r (4K-5n"'B",)!l.JdS--
1
- r (~~-tr(~»)n"'B,..jdS-_l- r C,..vpunvnUPflPjdS. (25) 

60 JaR 42 Ja,1I 5 15 Ja II 

If (25) is substituted into (24) and the integration per
formed it is found that we regain (23), as we should. 

We do not expand on the details except to remark that 
they are somewhat simpler than in the dimensional method. 
The reason is that in the latter, although one deals only with 
C in) [g; 1 ], a conformal transformation has to be performed 
to all orders in wand then an overall factor of (n - 4) ex
tracted. In the integration method it is true that one first has 
to find C in) [g; f], but this involves just a first-order trans-
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formation, which is much simpler. A complete transforma
tion is next necessary, but now one uses C 14

) and no factor 
need be extracted. 

Formula (23) reduces to the known oneS,I2 when the 
boundary is empty. (We draw attention to the fact that the 
corresponding quantity in Ref. 3 suffers from algebraic er
rors.) MeImed has also derived an expression for W using 
the dimensional method,22 but his starting expression for the 
C i4

) coefficient is incomplete. 
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From (22) we can similarly evaluate the effective poten
tial in three dimensions (for m = 0 and S = A). It is found 
that 

WR [Ii. 2g] - WR [g] 

= _1_ r [(7~ _ 10 tr(~) - 2N2 + 4KN 
153617' J<LV 
+ 4R + 4a2w)w - 6KN - 42N2 - 4a2w]dS. (26) 

VII. CONCLUSION 

We do not have any immediate application ofEqs. (23) 
and (26) in mind. However, the first coefficient C \ n) occurs 
in string theory and the higher ones occur in the analysis of 
membrane vacuum energy.23 It is thus possible that our re
sults will prove useful in this area. Different boundary condi
tions will have to be investigated. 

One possible use would be to extend the analysis of high 
temperature expansions of the free energy of quantum fields 
in static space-times3.4 to the case when the (three dimen
sional) spatial section has a boundary. At the moment this 
seems to have only formal interest, but will be considered at 
another time. 

A notable feature of the method using relation (1) is 
that volume and boundary nonconformally invariant pieces 
are much easier to evaluate than conformally invariant 
pieces. In fact, it is the calculation of the latter that involves 
the most effort. Our derivation of C in) (see Ref. 20 and 
above) uses Kennedy's 17 result [see (10)], which is where a 
great deal of the computation is hidden. However, the calcu
lations of Branson and Gilkey8 prove that it is possible to 
determine all the terms in C kn

) from consideration of their 
functorial properties alone. Despite the numerical work, this 
is an important advance in the evaluation of these coeffi
cients. 
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APPENDIX: BOUNDARY GEOMETRY AND THE GAUSS
BONNET -CHERN THEOREM 

For the possible convenience of the reader we describe 
some mathematical results involving boundary effects. To a 
large extent, but not entirely, the discussion will be a rework
ing of standard material, so that it is frankly pedagogical. 
However, the discussion does serve to fix and explain some 
notation used earlier. A few comments on the literature are 
also given to aid the compulsive checker. 

Attention is first turned to Chern's intrinsic proof of the 
generalized Gauss-Bonnet theorem. A useful, but rather ab
breviated, summary is given by Kobayashi and Nomizu,24 
which is roughly followed below. 

The proof involves an essential result due to Hopf. Con
sider an n- (even) dimensional manifold J( with boundary 
aJ( and imagine a vector field X to exist on J(. Hopf 
showed that the Euler number of J( (defined either strictly 
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topologically in terms of a simplicial decomposition or as the 
alternating sum of the dimensions of the cohomology groups 
of J() equals the sum of the indices of X at its zeros, or at its 
singularities if we take X to be a unit vector field, as we do 
from now on. We shall not prove this result here. 

Without loss of generality, assume that there is only one 
singular point Po which does not lie on aJ(; X is otherwise 
arbitrary. 

In global language, X is a section of the unit tangent 
bundle of J(, i.e., of the sphere bundle S(J(); Xis a map
ping from J( to S(J(). 

The local coordinates on S(J() can be taken to be the 
local coordinates y I-' on J(, together with the tangent-space 
vector components U

V and subject to the normalization 
U

V 
U v = 1. Thus S(J() is a manifold of 2n - 1 dimensions. 

Chern's important idea was to work on S(J() rather than 
onJ(. 

If the UV coordinates of the point (yl-', U
V

) of S(J() are 
forgotten we obtain the point VI-' } of J( that lies "below" it. 
This projection will be denoted by 1T:S(J() -J( or 
17': (y,u) -V}. Thus 1T- 1(P) is all that part of S(J() lying 
abovethepointPofJ(. Thisfiberis isometric to the (n - 1) 

sphere. 
As a submanifold of S(J(), X has a boundary consisting 

of the union of those points that lie above the singularity 
point Po with those above the geometric boundary of J(, 
aJ(. In symbols, 

aX(J() = X(Po)UX(aJ(). (AI) 

The important fact (a restatement of Hopfs result) is 
that 

X(Po) = - X1T- 1(po)' (A2) 

In words, (A2) says that the part of the boundary of X(J() 
that lies above the singularity point consists of the fiber at 
that point taken, negatively, as many times as the Euler num
ber X of J(. The minus sign is an orientation effect. 

The generalization of the Euler number density R /417' in 
two dimensions is now introduced as an n form A (detailed 
later) on J( such that, when pulled back to S(J(), it is 
exact: 

1T*A = - dII, (A3) 

where II is an (n - I)-form on S(J(), which Chern con
structs. 

We now note that 17'* maps the cohomology of J( into 
that of S(J(), while X* performs the inverse operation. 
Thus X *17'* amounts to the identity, so that 

f A = f X*1T*(A) = i 1T*A. 
.J~ J~ X(,,#) 

The integral of the Euler density on J( has been turned into 
an integral of its pullback over the image of J( in S(J() via 
the vector field X. (Chern actually makes no formal distinc
tion between these two integrals.) 

Because of (A3), Stokes' theorem can be invoked on 
S(J() to give, using (AI) and (A2), 
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=Xl ll- r ll. (A4) 
,.-'(1'<,) Jx(a,u) 

The integral ofll over the fiber S" - I is unity, so that the 
first term on the rhs of (A4) is just X. (We deal with the 
second, geometrical boundary term later.) The result is an 
elegant, geometric derivation of the Gauss-Bonnet theorem. 

Apart from Chern's original papers25.26 and lectures,27 
the authors know of no other detailed derivation of the state
ment just made than the refined, updated treatment by 
Greub et al. 28 Thus we feel that a lower level elaboration 
would not be out of order here. In any case the geometrical 
details are helpful, even if somewhat standard. 

Cartan's moving frame method is employed with the 
orthonormal tangent basis {ea } and the dual-form basis 
{wa

}. The structure equations are 

dw
a = w b 

/\ Wb a, dWa b = Wa e /\ We b + na b. 

The curvature two-form na b is given in terms of the curva
ture tensor by 

na b = ~ Ra bed We /\ w
d

• 

Our conventions are those of Boothby29 and seem to agree 
with those of Chern. 

It might be useful to remark here that our curvature 
tensor has the opposite sign to that in Hawking and Ellis,30 
for example. This difference is occasioned by the arrange
ment of the structure equations. Hicks31 makes a choice that 
amounts to switching the indices on Wab and nab' The latter 
sign accounts for the lack of a factor of ( - I)P in Hicks' 
definition of 17"* A. (Reference 31, p. 114 denotes the corre
sponding quantity Q and, like Chern, does not distinguish 
between A and 17"* A.) Hick's curvature tensor agrees with 
that of Hawking and Ellis. (The same remarks also apply to 
Spivak32 and Eguchi et al.33 Note, also, that Eisenhart's de
finition9 of the curvature is the same as that of Hawking and 
Ellis, but that his Ricci and scalar curvatures have the oppo
site sign. Our RJ-tv and R agree with those of Hawking and 
Ellis. ) 

Curiously, Kobayashi and Nomizu24 appear to use the 
same conventions as Hicks,31 but have a ( - I)P in their 
expression for 17"* A. 

Another curiosity is that Gilkey34 (pp. 338-339) fol
lows Chern's formulas exactly, apart from omitting the mi
nus sign in (A3). It seems that the second integral in the 
equation for X on p. 339 should have the opposite sign. 

The present authors admit to continuing difficulty in 
chasing through the minus signs in this topic, but hope those 
here are correct. 

The raising and lowering of indices is purely cosmetic if 
the frames are orthonormal and the signature Euclidean. 

If u is a tangent vector, then u = uaea and 

du = ()aea , 

where the one-form () is 

A basis for forms on S(JI) is provided by the set {wa,() a}. 
The explicit expression for the form 17"* A is, if n is even 

(n = 2p), the Pfaffian of the curvature matrix: 
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(AS) 

Using a recursion method, Chern showed that II is given 
by the sum 

1 p-l k 2- p - k 

II = - L (- 1) <Pk, (A6) 
1T" k=O 1.3 ... (2p - 2k - l)k! 

where the <Pk are (n - 1) forms on S(JI) given by 

/\nan-2k+lan-2k+2/\ .,. /\nan-Ian. (A7) 

We shall derive (A6) later by a simplified method. 
The forms A and <Pk are intrinsically defined. 
We remark here that we are following the algebra of 

Chern's first paper25 except for the sign of A, which is as in 
his second paper26 (and later works). 

Substitute (A6) into the first integral on the rhs of 
(A4). The integration domain is the fiber over the point Po. 
On this domain all terms in II that contain an nab will vanish 
because nab involves the w a , which are one-forms in dyJ-t 

and thus are zero on the fiber. Hence only the <Po term sur
vives: Its form is 

<Po = Ea "'a u a,() a, /\ ••• /\ () an. 
, n 

For the same reason as before, the connection forms Wa b 

are zero on the fiber, so that eo can be replaced by dua . Up to 
a factor, <Po can then be recognized as the volume form on 
the sphere sn - I expressed in the Cartesian coordinates ua 

• 

The coefficients are such that the integral of II over the fiber 
is unity, which is the conclusion of this part of the calcula
tion. 

Equation (A4) can then be written as 

X = f A + r II = f A + r X*ll. (A8) 
.u JX(all) .11 Jail 

The second integral is now looked at more closely. 
We choose X to be any extension of the normal vector 

field n on the boundary aJi and rewrite (A8) as 

X = f A + r n*ll, 
.u Jail 

(A9) 

which is the final, formal statement of the generalized 
Gauss-Bonnet-Chern theorem. 

For definiteness we choose n to be the inward vector. [In· 
even dimensions it is easily checked from the explicit formu
las that n*ll = ( - n)*ll. In contrast, for odd dimensions, 
there is a sign change.] The effect of n * on the <P k of (A 7) is 
to replace ua by na

, thecomponentsofn, onaJi. (We could 
set u = - n with no change, in the end.) 

At this point, and possibly earlier, it is advantageous to 
work with boundary adapted frames, which are such that on 
aJl, en = nand {ea } for a = 1 to n - 1 form a basis for the 
tangent space to aJi. (See Ref. 31, p. 81.) 

Then on aJl, wn = 0 and the components na and eo are 
given by 

(AlO) 

The last of Eqs. (AlO) follows from 

(All) 
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wnicn snows inai ine 'form tVn 'l. is rdaiea io ine ex'timslc 
curvature of adl. 

To find the exact relation, some ordinary Riemannian 
geometry is reproduced. 

The intrinsic metric Yi j on the boundary hypersurface 
adl is given in terms of the metric gl''' on dI by (Eisenhart, 9 

p. )46) 

Yij = gl'''y1'. iY" j (1 ,;;;,i,j,;;;,n - 1). 

Here aJ( is defined by yl' = Y f' (x) in terms of the functions 
yl' (x), where Xi are the coordinates on adl andyl' are those 
ondl. 

The inversion of the above equation yields 

gI''' = hI''' + nl'n", 

where 

h IW = yl'.iy"jYj
• 

The tensor hI''' is equivalent to yj and can be considered to 
be the induced metric on adl. (See Hawking and Ellis,30 
Sec. 2.7). The tensor hI'" is a projection operator. 

The extrinsic curvature XI''' is defined by the projection 
of the derivative of an extension of the outward normal vec
tor field - n: 

(AI2) 

[The sign here is that used by Eisenhart9 (his 5 is our n) 
and McKean and Singer. 35 The sign is such that K = tr X is 
positive for a disk. Equation (AI2) should be compared 
with the definition of the second fundamental form V(X, Y) 
in terms of the difference of the covariant derivatives in the 
embedding and embedded spaces (Hicks,31 p. 75): 

DxY-DxY= V(X,y) = - (LX,Y)n, 

where D is the hypersurface derivative and L(X) =Dxn is 
the Weingarten map. 1 

We note the condition 

nl'x,.,,, = O. 

The intrinsic components of K are given by 

Kij = X,.,,,y"',iy"j' 

Similarly, we can define the traceless X,.,,, by 

p"''' = pi}y' ,., .y"., 
,I J 

so that 

P,.,,, = X,.,,, - [lI(n - 1) lX/h,.,,,. 

These general equations can be written with respect to 
boundary adapted frames. To emphasize this special choice, 
the indices It, v, p, etc. are changed to a, b, c, etc. The projec
tion ha 

b then takes the form, expressed as a matrix, 

(
In 1 

h= In -nXn= ~ ~) , 
so that the effect of a projection with h is simply to restrict 
the index range to 1- (n - 1). 

For example, (AI2) becomes 

{ 
- na.b , if l,;;;,a,b,;;;,n - 1, 

Xab = O· h' , ot erwlse, 

and comparison with (A 11) shows that 
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u,."a= -;eaqui', 
the sought-after relation. 

We now return to the expression for n*IT on adl. 
Setting ua equal to na with boundary adapted frames 

means that n*<I>k reduces on adl to 

u*~ = - E @ a, t-.. ... t-..@ an- 2 k 
k a2~~'Qn It ft 

(Al3) 

with all indices restricted to the range 1-+ (n - 1). 
From the structures of (J and n (remember w n = 0 on 

adl), it follows that n*<I>k is proportional to the volume 
element dS on adl (cf. Spivak,32 p. 573). 

As an explicit example we look at the case of n = 4, 
which is relevant for the discussion in Sec. IV. 

Here IT is given by 

IT = (1/24r) [2<1>0 - 3<1>tl 

and n*<I>o is 

n*<I>o = - EabeWn a /\ Wn b /\ Wn c 

= EabcXadXbeXc.reud /\we /\0/ 
= Eabc~efXa dXbeXcf dS = 3!det(x)dS. 

It is here that we use the choice of en as the inward 
normal n. Stokes' theorem takes adl with its induced orien
tation; Wi /\ w2 

/\ ... wn 
- 1 is the volume form on adl only if 

en = n because then, in boundary adapted local coordinates, 
the coordinate of dI normal to adl is positive and dS> O. 
(See Bott and Tu36 and Chern,27 pp. 72-74.) 

The form n*<I>1 is likewise evaluated: 

n*<I>1 = - EabeWn a /\ nbc = ~ Eabe~efXadR bCef dS. 
(AI4) 

In Eq. (AI4) R bcef is the curvature of the embedding 
manifold dI, but the indices run over 1, 2, and 3 only. It is 

A 

better to rewrite IT in terms of the curvature R intrinsic to the 
hypersurface. This is accomplished by the Gauss-Codazzi 
equations, which read, in form language and boundary 
adapted frames (Hicks,31 p. 82), as 

nab = _ Wn a /\Wn b + nab (l,;;;,a,b,;;;,n - 1), 

so that n*IT is given by 

n*IT = - (1I24r) [n*<I>o + 3cPtl, 

where cP1 is 
A Ab 

<1>1 = - EabcWn a /\ n c 

=! Eabe~efXa)? beef dS 
A A 

= [ - XaaR + 2Xab R ab] dS. 

(AI5) 

In convariant equations such as these, the indices a, b, ... 
can be replaced by the general ones It, v, ... if desired. Fur
thermore, Kij can be used instead ofXab, or X,.,,,. For exam
ple, 

Xaa = X,.,'" = K/=K, 

tr(x2
) = XabX

ba = X,.,,,X"'" = Kij~i = tr(~), 
and 

det(x) = det(K). 

For the intrinsic curvature Rijkl obtained from the me-
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ric r ij' we have the relation 

R I'vpa = R ijklyl' yV.yp ya . 
• 1 J .k .1 

Note that we are using the same kernel symbol for the two 
forms ofthe intrinsic curvature. For those who wish to make 
comparisons, Rl'vpa is what Hawking and Ellis30 call R ~bcd' 
not forgetting the difference in conventions. 

The coordinate forms of the Gauss-Codazzi equations 
are sometimes needed. They are (Eisenhart,9 p. 149, taking 
the different conventions into account) 

A 

Rijkl = KUKjk - K;kKjI + Rl'vpayl'.iyvJyp.kya,1 

and 

Kij;k - KikJ = - Rl'vPuyl',iyPJyu,k nv. 

The boundary term in the Gauss-Bonnet-Chern for
mula (A9) is 

r n*ll = 1-.2 r q(K) dS, 
Ja.k 3211 Ja.k 

with 
A A .. 

q(K) = - 8 det(K) + 4KR - 8KijR I', 
which is the expression quoted in the text. 

If the Gauss-Codazzi equations are used to bring back 
the embedding curvature, it is found that n*<I>I' (AI4), is 
given by 

n*<I>I= - [KR-2Rl'v(Knl'nv+¥,V) 

- 2Rl'vpaXvunPnI'] dS. (AI6) 

For completeness, the expression for the volume density 
A will be given and some further, relevant information out
lined. 

If theform of na b is substituted into (A5) there results 

A = [( -1)p/rnJ'pl]Ea "'a Eb, ... bn 

, n 

(In a coordinate frame the indices a, b can be replaced by p, v 
if it is remembered that ~ ... = g-IEI"'" with EI"" the stan
dard epsilon symbol. ) 

We refer to Spivak32 (pp. 385-388) for some historical 
comments. 

The essential statement ofthe previous discussion is that 
A is not exact onJl, but it is exact on the bundleS(JI), i.e., 
when pulled back to S(JI). However, A is closed on JI, 
dA = a by virtue of the Bianchi identity (e.g., Spivak,32 p. 
433). [This also follows from (A3).] Thus A determines a 
cohomology class belonging to ll" (JI). Further, the class is 
independent of the connection. This is equivalent to saying 
that the integral SA (taken over a closed manifold) is a topo
logical invariant and follows from the fact that the difference 
AI - Ao of two forms computed using two connections WI 
and Wo is exact on JI : 

AI - Ao = dW, (AI7) 

as a direct calculation shows (e.g., Spivak,32 p. 434). This is 
an example of a general result in the theory of characteristic 
classes. 

The infinitesimal form of Eq. (AI7) is easily derived. 
From (A5), 
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xDna,a'Ana,a'A'" Anan-Ian; 

using the structure equations, this becomes 

DA = [( - l)p/rnJ'(p - 1)1]Ea "'a 
, n 

X DDwa,a, A na,a. A ... A nan - lan, 

where D is the covariant derivative defined by (to check 
conventions) 

DF/=.dFa b - Fa e A We b + ( - 1 )PWa e A F/ 

for a matrix p form Fa b. 

Use of the Bianchi identity Dnab = a easily produces 
the infinitesimal exactness condition 

(AI8) 

The functional constancy of S Kn dV has been discussed 
from the conventional coordinate viewpoint by Buchdahl. 37 

Of course, Eq. (A 17) is guaranteed by the Gauss-Bon
net theorem, (A9). In fact, the form of II can be deduced 
from the explicit construction of \{I from (A 17). This pro
gram has been carried out by Spivak32 using the full appara
tus of connections on principle fiber bundles, which we have 
tried to avoid. [If B is the frame bundle and w:B-JI is the 
projection, w* A will be given by an equation identical to 
(A5) except that na b now stands for the curvature on B. A 
particular orthonormal moving frame E = {ea } is a section 
of B and what we have been calling na b equals E *na b. 

Further commentary would be out of place here.] 
We shall present an alternative derivation ofll based on 

the infinitesimal variation (A 18). We have not seen this else
where. (The corresponding discussion in Ref. 28 is a modem 
version of Chern's original method.) 

Equation (A9) implies that on aJl, 

D9Ia.Q' = dE - 8(n*ll), (A19) 

where 8A = d(89) [see (AI8)] and we have emphasized 
the fact that we now have to work intrinsically on aJi by 
placing a caret over the exterior derivative. 

We force 89 into the form (A 19) to extract information 
about ll. 

First, D9 is rearranged so that all summed indices range 
over I-n - 1. For the moment we forget the numerical coef
ficient in (AI8) (without change of notation); then 

89 = - 2-= 8w a, A na.,a. A ... A n an - Ian 
'1;"02 " "0" n 

- (n - 2)Ea "'a 8wa,a'Ana,a4 A ... Ann an_I. 
I I'J- I 

(A2a) 

The aim is to write 89 on aJi in terms of intrinsic quan
tities. To do this note that on aJi an index equal to n is a 
"dead" index, so that, for example, Wn a is a vector one-form 
and nn a is a vector two-form. From the structure equations, 

n a = dw a _ W e A W a = Dw a n nne n 

and 

80 b = D8w b a a (A21) 
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in terms of the intrinsic covariant exterior derivative D. The 
li)a bon aJi for l';;;a, b.;;;n - 1 form a set of intrinsic connec
tion forms (Hicks, 3! p. 81). 

We now eliminate na b from (A20) in favor of it b by 

using the Gauss-Codazzi equation (A1S). Because of the E 

symbol there are no complicated combinatorial problems. A 
simple binomial expansion is all that is required! 

Using (A21) slight manipUlation yields 

_ P~,2 (P-2) 2(p-l) E ... {jli)a,a"I\D [li) a'I\"'I\li) an_2k] I\Oan-2k+lan-2O+21\"·I\Oan-lan. 
k~O k n _ 3 _ 2k a, an n n 

AA 

The intrinsic Bianchi identity on aJl, Dn = 0 allows the second term to be written as 

d[P~2(P-2) 2(p-l) E ... {jli)a,a'l\li) a'I\"'I\li) an_2'I\Oan_2.+lan_2.+21\"'I\Oan_lan] 
k~O k n _ 3 _ 2k a, an n n 

(A22) 

where we have again employed (A21) and extended the summation range to k = 0 in the last term, where the summand is 
zero for this value. 

Putting the above expressions together we obtain 

{j91 = -{j [P~! (P-1) 2 6 ... li) a'I\"'I\li) an_2'l\oan-2.+lan-2.+21\"'l\oan-lan] +d=: 
a.1t' k~O k n _ 1 _ 2k a, an n n , 

where a is the expression in square brackets in the first term 
in (A22). 

Comparing with (A19) we now have an explicit form 
forn·n: 

n.n = _ Pi! (p - 1) 2 $k' 
k=O k n-1-2k 

where $k is given by (A13) with 0 for n. 
In order to regain Chern's expression (A6) we have to 

reinstate the embedding curvature n. Again, a simple bi
nomial expansion and a resummation using the formula 

N ( _ l)m 

~o mIeN - m)!(2N - 2m + 1) 

= (_l)N22N +! (N + I)! 
(2N + 2)!' 

produces the answer (if the overall numerical coefficient is 
restored): 

1 p-! 2- p - k 

n·n =- L (- l)k n·<I>k· 
rr' k=O 1.3 ... (2p-2k-l)k! 

As far as this calculation goes, aJi is an arbitrary, 
closed hypersurface (boundary) of JI. Thus after removal 
of the n· and reversion to a general frame, we obtain Chern's 
formula (A6). In the above derivation the forms <l>k arise 
naturally and there is no need for any recursion relations. 

The advantage of this method over the one outlined by 
Spivak32 is that it is conceptually and algebraically simpler, 
although a certain amount of exterior analysis is needed. 
Further, Spivak resorts to special case calculation to evalu
ate the coefficients. 

The case when JI has odd dimension n, 
= m + 1 = 2q + 1 can be treated in a similar fashion be
cause general topological arguments show that the Euler 
number of JI is half that of the boundary aJi and we can 
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I 
apply the previous formulas to this even-dimensional mani
fold. Thus 

X(JI) = r n.n = 1. X(aJt) = 1. r A 2q , 
JaN' 2 2 Ja.# 

where 

A 

= - (l12n1T'1q!)<I>q' 
A 

Eliminating n in favor of n we find the simple binomial 
form 

n·n = - -n 1_ ± (- l)k (qk) n·<I>k· 
2 1T'1q! k= 0 

Removal ofn· gives the expression quoted by Chern.26 
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Sectional curvature is related to tidal accelerations for small objects of nonzero rest mass. 
Generically, the magnification of tidal accelerations due to high speed goes as the 
square of the magnification of energy. However, some space-times have directions with 
bounded increases in tidal accelerations for relativistic speeds. These investigations also yield 
a characterization of null directions that fail to satisfy the generic condition used in 
singularity theorems. For Ricci flat four-dimensional space-times, tidally nondestructive 
directions are characterized as repeated principal null directions. 

I. INTRODUCTION 

In special relativity, objects with nonzero rest mass are 
restricted to speeds strictly less than c because of the un
bounded increase in energy as their speed approaches c. 
On the other hand, these objects do not experience tidal 
accelerations as their speed increases. In general relativity, 
one has the corresponding energy increase as the speed 
approaches c and we show that one also has, generically, 
an unbounded increase in tidal accelerations. In other 
words, one has (generically) that high speeds have the 
effect of magnifying tidal forces. Geometrically, the un
bounded increases in tidal accelerations correspond to the 
sectional curvature becoming generically unbounded near 
degenerate (i.e., null) sections. On the other hand, in some 
space-times there are certain directions such that (presum
ably small) objects may approach speed c in these direc· 
tions and yet unbounded tidal accelerations are not expe
rienced. The inward and outward radial directions in 
Schwarzschild space-time give examples of such "tidally 
nondestructive" directions. These nondestructive direc
tions correspond to null directions that fail to satisfy the 
generic condition, but not all null directions that fail to 
satisfy the generic condition correspond to nondestructive 
directions. Null directions that fail to satisfy the generic 
condition are characterized in terms of indeterminate null 
planes. Nondestructive directions are characterized in 
terms of null vectors that have constant sectional curva
ture for all nondegenerate sections containing them. In the 
Ricci flat case, a direction is fully indeterminate iff it is a 
principal null direction. Furthermore, it is nondestructive 
iff it is a repeated principal null direction. In this paper all 
observers traverse geodesics and are thus unaccelerated. 
For a general investigation of accelerating observers, see 
Retzloff et al. I,2 

There is an interesting directional paradox. A given 
spatial direction for a fixed frame may correspond to a 
nondestructive direction and yet the spatially opposite di
rection may be destructive. This apparent paradox is ex
plained in terms of the fact that objects moving in opposite 
spatial directions have world velocity vectors that are nei
ther parallel nor antiparallel. 

On the other hand, let the Ricci flat four-dimensional 
space-time (M,g) have two nondestructive null directions 
at each point. In this case, (M,g) must be of Petrov type D 
and each of these two null directions is a double principal 
null direction. For such a space-time, one may always 
choose a frame at a fixed point p of M such that the cor
responding spatial directions appear as direct opposites. 

A number of authors have investigated problems asso
ciated with the sectional curvature near null sections. 
ThOrpe3 showed that sectional curvature can be continu
ously extended to null sections only in the case of constant 
curvature. Various boundedness conditions which imply 
constant curvature have been obtained by Kulkarni,4 Dajc
zer and Nomizu,s Harris,6 and Nomizu.7 A related func
tion called null sectional curvature has been studied by 
HarrisS and Koch.9 The values of the sectional curvature 
function have been investigated by Beem and Parker. \0 An 
extensive investigation of sectional curvature has been 
done by Hall, 11,12 Cormack and Hall, \3 Hall and Rendall,14 
Rendall, IS Kulkarni,16,17 and Ruh.IS Among other things, 
these authors have investigated to what extent the curva
ture determines the metric. In a generic sense, the sectional 
curvature determines the metric and the curvature tensor 
determines the metric up to a constant factor. Examples 
show that this determination of the metric tensor is only 
true in a generic sense; see Yau. 19 In certain cases, there 
are techniques for calculating the metric from the curva
ture; see Quevedo. 20 

II. SECTIONAL CURVATURE AND TIDAL 
ACCELERATION 

Let (M,g) be a space-time of signature ( + , - , ... , - ) 
and dimension n > 2. If u and v are tangent vectors at some 
point p of M, and if they span a nondegenerate two
dimensional section of T

f 
M, the sectional curvature K for 

this section is given by2 

g(R(u,v)v,u) 
K(u,v) g(u,u)g(v,v) _ fg(U,V)]2 . (2.1) 

The numerator and denominator of K are each homo
geneous polynomials of degree 4 in 2n variables. We will 
denote these polynomials by PI and P2, respectively: 
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PI (u,v) =g(R(u,v)v,u), 

P2(U,V) =g(U,U)g(V,V) - [g(U,V) f. (2.2) 

The two-dimensional section determined by u and v is 
null or degenerate exactly when P2 (u,v) = 0. A null sec
tion is a pole if PI (u,v)*O and is indeterminate if 
PI (u,v) = 0. In dimension three, a null vector determines 
exactly one degenerate section which is then either a pole 
or indeterminate. In higher dimensions, a null vector de
termines an (n - 3 )-dimensional family of degenerate 
planes. For higher dimensions, we will use the following 
definition to help subclassify the behavior of the sectional 
curvature function at null directions. 

Definition 2.1: Let w be a null vector. If all null planes 
containing w are poles, then w will be called a complete 
pole. If at least one null plane containing w is a pole and at 
least one is indeterminate, then w will be called partially 
indeterminate. If all planes containing ware indeterminate, 
then w is fully indeterminate. 

In Sec. V we will show that a null direction is fully 
indeterminate iff it fails to satisfy the generic condition 
used in the proof of singularity theorems. 

To investigate tidal forces, one starts with a unit speed 
timelike geodesic y. The Jacobi equation,22,23 

J" + R(J,y')y' =0, (2.3) 

me.asures the divergence of nearby geodesics. Conse
quently, the Jacobi field J measures the tidal acceleration 
of nearby test particles. 23

,24 If one takes y' to be Eo 
= a/ axo and takes a parallel orthonormal basis 
Eo, ... ,En _ I along the geodesic, then in local coordinates 
(Ji)" = RiOkOJk, where Ji represents the component of 
J in the Ei direction. Here J is assumed to be orthogonal to 
the geodesic and thus jJ = 0. In this paper J will denote 
both the vector field along the geodesic and the corre
sponding column with components .f for i running from 1 
to n - 1. Letting B be the (n - 1) X (n - 1) matrix with 
(i,k) component R iOkO, the Jacobi equation becomes 
J" =BJ, where B is a real symmetric matrix which we shall 
call the tidal acceleration matrix. For a given Jacobi field J 
the magnitude of the tidal acceleration is 

[ - g(J", J")] 112= [RiOkoRiOmolkJm]1I2, 

where the summation is over all three indices i, k, and m. 
The radial component of the tidal acceleration is given by 

-g(J",J)/[ -g(J,J)]112 

= - g( - R(J,y')y', .1)/[ - g(J, J)]I12 

= - K(J,y')[ - g(J,J)] 112. 

The principal axis theorem guarantees that the eigen
values of the tidal acceleration matrix B are real and that 
for fixed t there is an orthogonal matrix which diagonalizes 
B. Let bi be the ith eigenvalue of B and let the correspond
ing unit eigenvector be denoted by ei' If J is equal to ei' 
then the tidal acceleration is I bil and the radial tidal ac
celeration is bi' Furthermore, - bi is equal to the sectional 
curvature K(ei ,y') of the timelike plane of ei and y'. Di-
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agonalizing B, one obtains that for unit length Jacobi fields 
at a fixed point p of M, the largest tidal acceleration is 
equal to the maximum of I bi I, where bi are the eigenvalues 
of B. Furthermore, this largest value is equal to the max
imum of the absolute values of the sectional curvatures of 
all timelike planes that contain the vector y'. This value 
will be denoted by Max ( y' ) . 

Definition 2.2: If u is a timelike vector at p, then 
Max(u) will be the maximum of IK(u,v) I, where this 
maximum is taken over all nonzero spacelike vectors v at 
p. 

An object of nonzero mass and nonzero volume can 
only withstand a limited tidal acceleration in each direc
tion. Assume for simplicity that one has a spherical object 
of uniform construction and that the centroid of this object 
traverses a geodesic y. If Max ( y') exceeds a certain value, 
then the integrity of the object is lost. We now define as 
nondestructive those indeterminate null directions where 
some nearby timelike directions have bounded values for 
Max (u). Here two nontrivial vectors determine the same 
direction at p if each is a positive scalar multiple of the 
other. A topology on the set of directions may be obtained 
by taking a positive definite auxiliary metric on M and 
identifying each direction with a point of the unit sphere 
bundle over M using this auxiliary metric. 

Definition 2.3: The null vector w at p is said to define 
a nondestructive (world) direction if there is a continuous 
curve X(t) of timelike vectors at p defined for all tin [0,1) 
such that (1) the direction determined by X(t) approaches 
the direction of w as t approaches 1, and (2) Max(X ( t» is 
uniformly bounded on [0,1). 

The above definition requires that there exists a one 
parameter family of observers at p going arbitrarily close 
to the speed of light such that all members of this family 
have uniformly bounded tidal accelerations. In other 
words, at the point p it is possible in some theoretical sense 
for a small object to go arbitrarily close to c and not face 
unbounded tidal forces. We have stated the above defini
tion in terms of directions since if all X(t) are taken as unit 
vectors, then the vectors X(t) cannot converge to any fixed 
null vector. 

A null direction which fails to be nondestructive will 
be called destructive. The next proposition shows that if 
the null vector w determines a nondestructive direction, 
then the sectional curvatures of planes containing ware 
uniformly bounded. 

Proposition 2.4: If the null vector w determines a non
destructive direction, then there is some number L such 
that every nondegenerate plane containing w has the ab
solute value of its sectional curvature less than L. 

Proof' Let X(t) be a continuous family of timelike 
vectors with the direction of X(t) converging to the direc
tion of w as t --+ 1. Assuming that no such number L exists, 
then for each fixed integer N there is some vector u at p 
such that the plane [w,u] spanned by wand u is nonde
generate and IK(w,u) I >N. The sectional curvature func
tion is continuous on nondegenerate planes and thus for all 
t sufficiently close to one, the inequality IK(X(t),u) I >N 
must hold. Since N was arbitrary, this implies that the null 
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vector w determines a destructive direction that contra
dicts the hypothesis. • 

Proposition 2.5: Let w be a null vector at some p in 
(M,g) and assume there is some number L such that every 
nondegenerate plane containing w has the absolute value of 
its sectional curvature less than L. Then w must be fully 
indeterminate. 

Proof: Assume w is not fully indeterminate. Let 
PI (w,v)':FO and P2(w,v) = O. There is some sequence of 
vectors {Uk} at p, converging to v, such that the planes 
[W,Uk] are all nondegenerate. Furthermore, 
PI (W,Uk) -+PI (w,v) and P2(W,Uk) -+0 as t-+ 1. 
Hence, IK(w,Uk) 1-+ + 00, in contradiction to the 
hypothesis. • 

Note that Propositions 2.4 and 2.5 imply that fully 
indeterminate is a necessary condition for nondestructive. 
On the other hand, fully indeterminate is not a sufficient 
condition for a null direction to be nondestructive. 

In order to study the generic nature of destructive 
directions, we assume the dimension of M is at least three 
and use the coarse C 2 topology2S on the space Lor(M) of 
all Lorentzian metrics on M. Note that if Eo. ... ,En _ I form 
an orthonormal frame at p as above, then for all metrics g' 
sufficiently close to g in this topology the vector Eo will 
continue to be timelike. If g' is a metric near g, then we 
shall use Eo(g'), ... ,En -I (g') to denote the orthonormal 
basis for g' obtained by using Gram-Schmidt orthogonal
ization on the original basis. We require that Eo(g') be 
parallel to the original Eo and that the plane [Eo,EI1 be 
equal to the plane [Eo (g' ) ,E I (g' ) ). 

The next result shows that, generically, extended ob
jects with nonzero rest mass cannot go close to the speed of 
light without facing unbounded tidal accelerations. We 
omit the proof. 

Proposition 2.6: Assume that M is a manifold of dimen
sion at least three. Let p be a point of M and let u, v be two 
linearly independent tangent vectors at p. Let Z be the 
subset of Lor(M) such that U is timelike. For each g in Z 
let Eo(g) be a unit timelike vector in the direction of U and 
let EI (g) be the unit spacelike vector that is orthogonal to 
Eo(g), that lies in the plane of U and v, and that has a 
positive component in the v direction. Let U be the set of 
all g in Z such that Eo(g) + EI (g) is either a complete 
pole or partially indeterminate. Then U is open and dense 
in Z using the coarse C 2 topology. 

The Whitney or fine C 2 topology is an alternative to
pology on Lor(M) which is always at least as fine as the 
coarse C 2 topology. We remark that Proposition 2.6 re
mains valid if the word coarse is replaced with the word 
fine. It should be mentioned that the entire space Lor(M) 
may be empty since some compact manifolds do not admit 
a Lorentzian metric. Thus the set Z in the last proposition 
is open but may also be empty. 

One usually regards the sectional curvature as a ratio 
of two quartics. However, by changing the domain, one 
may regard the sectional curvature as a ratio of quadratics. 
Let G2 (n) denote the Grassmann manifold of 
two-dimensional linear subspaces of R n and let A 2 R n be the 
second exterior power of Rn. An element of A2Rn is called 
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decomposable if it is a simple product of the form U A w. A 
nontrivial decomposable element U A w corresponds to the 
element of G2(n) with basis u, w. Clearly, all nonzero 
scalar multiples of U A w yield the same element of the 
Grassmann manifold. Furthermore, each element of 
G2(n) corresponds to a decomposable two-vector of 
A 2 R n and also to all nonzero scalar multiples of this two
vector. If E\> .... En is a basis of Rn. then E;AEj (1 ..; i 
< j < n) is a basis for A2R n and the dimension ofthis last 
space is d=n(n - 1)/2. Deleting the zero two-vector and 
identifying the elements of A 2 R n that differ by a nonzero 
scalar multiple. we obtain the real projective space 
RP d - I of dimension d - 1. Thus we may regard G2 (n) as 
a subset of RP d - I via this Plucker embedding. Further
more, the above-mentioned basis yields coordinates for 
A 2 R n and homogeneous coordinates for RP d - I. 

Fix a point p of M and. for convenience. an orthonor
mal basis Eo ..... En _ I at p. The tangent space Tp M is a 
copy of R n and the sectional curvature at p is a function 
defined on the (nondegenerate) elements of G2 (n ). The 
function g(R(u.v)v.u) determines a quadratic function on 
A 2 R n which will be denoted by QI and the function 
A2g(U Aw) = g(u.u)g(v.v) - fg(U.V)]2 determines a sec
ond quadratic function which will be denoted by Q2' In 
terms of the basis Ea A E{J. the form QI is represented by a 
symmetric matrix of size dX d with elements Ra{J&J> where 
the pair a. {3 (a < {3) is thought of as a single index and the 
pair fJ, u (15 < u) is also. Similarly. the form Q2 is repre
sented by a dXd symmetric matrix whose elements are the 
2 X 2 subdeterminants of the matrix g. It follows that the 
sectional curvature defined on G2 (n) regarded as a subset 
of RP d - I extends to a ratio of quadratics on RP d - I. We 
shall abuse notation slightly and use K = QI/Q2 for this 
ratio on RP d - I as well. The null variety is the projective 
variety N = {zi Q2(Z) = O} and the homaloidal variety is 
H = {zIQI(z) = O}. When convenient, we may use the 
same letters to denote their intersections with G2(n); these 
intersections are the null locus N and homaloidal locus H. 
respectively. In the next section of this paper we consider 
the special case of n = 3. 

III. SOME THREE-DIMENSIONAL RESULTS AND 
APPLICATIONS 

We now consider three-dimensional space-times. This 
is one dimension too low from a physical viewpoint. but it 
is an important dimension because results from dimension 
three can be used to study higher dimensions. In particu
lar. if q is a fixed point of four-dimensional space-time 
Mo. and L is a three-dimensional timelike linear subspace 
of Tq Mo. then the behavior of the sectional curvature on 
the linear subspace L will be the same as that on the tan
gent space of some three-dimensional space-time. 

Let (M,g) be a three-dimensional space-time. In Beem 
and Parker. 1O the planes in Tp M are represented as points 
of G2 ( 3) = RP 2 and the sectional curvature is concretely 
represented as a ratio of quadratics on RP 2. Note that the 
notation used in Beem and Parker lO is for a three
dimensional space-time with X3 timelike. In the present 
paper we use the Xo direction as timelike and hence our 
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present fonnulas differ slightly in appearance. Using ho
mogeneous coordinates [YI:Y2:Y3] on RP2, one obtains 

K A(YI)2 + BYtY2 + C(Y2)2 + DYtY3 + EY1Y3 + F(Y3)2 

(Y3)2 - (YI)2 _ (Y2)2 

With our present notation, A = R 0202, B = - 2RoI02, 
C = R OIOI , D = 2R2102, E = 2R 1201 , and F = R 2121 . 

Letting Y3 = 0 be the line at infinity, one obtains 

AX2 + Bxy + cl + Dx + Ey + F 
K = 1 _ x2 _ ; , (3.1 ) 

where x = y 11Y3, Y = Y21Y3, and each point (x,y) repre
sents a plane in Tp M. Let 

Q\(x,y) =Ax2 + Bxy + cl + Dx + Ey + F 

and 

Q2(X,y) = 1 - x 2 -I. 

The set of (x,y) that satisfies Ql (x,y) = 0 is the homa
loidal locus H and the set of (x,y) that satisfies 
Q2(X,y) = 0 is the null locus N. Since the space-time is 
three-dimensional, a given null vector of the space-time 
detennines either a complete pole or a fully indetenninate 
direction. The points in the (x,y) model that are common 
to both the null locus and the homaloidal locus represent 
null planes tangent to the null cone of the space-time at a 
fully indetenninate null direction. Note that if the homa
loidal locus does not contain all of the null locus, then it 
follows easily that the two conics have at most four points 
in common. This shows that for a three-dimensional space
time each point has either all null directions nondestruc
tive or at most four null directions nondestructive. In fact, 
we will prove the stronger result that for a point of three
dimensional space-time either all null directions are non
destructive or else at most two null directions are nonde
structive. 

In this (x,y) model, the points x 2 + 1 < I lying inside 
the unit circle correspond to spacelike planes, the unit cir
cle corresponds to null planes, and the points x2 + 1 
> 1 lying outside the unit circle correspond to timelike 
planes. The collection of all planes containing a fixed vec
tor v in Tp M corresponds to a line. If v is timelike, the 
corresponding line in the xy-plane misses the unit circle. 
The collection of planes in Tp M that contain the null 
vectorEo + Elcorrespondstothelinex= -linthe(x,y) 
model. In particular, the null plane in Tp M with basis 
{Eo + E I, E 2} corresponds to the point ( - 1,0). This null 
plane is indetenninate when PI (Eo + E\>E2) = O. This 
yields R 2020 + 2R2120 + R2121 = 0, which can also be writ
ten as A -D+ F=O. 

Lemma 3.1: The sectional curvature of all planes of 
Tp M containing the null vector w = Eo + EI is bounded 
iff (1) A - D + F=O and (2) E - B=O. Furthennore, if 
the sectional curvature of planes containing w is bounded, 
then all nondegenerate planes containing w have the same 
constant curvature K = - C = - RIOlO' 

Proof: The sectional curvature of these planes is given 
by Eq. (3.1) evaluated along the line x = - 1. Assume first 
that (1) and (2) hold. Equation (3.1) shows that K is 
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identically equal to the desired - C along the line x = - 1 
and is thus also bounded. Assume now that the sectional 
curvature is bounded. Then PI (w,E2 ) = 0 implies that Eq. 
(1) must hold. Using (1) and x = - 1, Eq. (3.1) takes the 
fonn 

K=( -By+cl+Ey)/-I. (3.2) 

Since this must be bounded for all y, one obtains the re
quired equation (2) and K = - C by letting y approach 
O. • 

Proposition 3.2: The null vector w = Eo + EI defines a 
nondestructive direction iff (1) A - D + F=O and (2) 
E-B=O. 

Proof: Assume w is nondestructive. Proposition 2.5 
and Lemma 3.1 imply that (1) and (2) hold. In order to 
show that (1) and (2) imply w is nondestructive, it suffices 
to show that the tidal acceleration matrix B converges to a 
matrix with finite values as one takes a one parameter 
family of boosts in the Xo x I plane corresponding to ob
servers going arbitrarily close to c in the XI direction. We 
omit the details of this calculation since they will be done 
for the four-dimensional case in the next section. • 

Lemma 3.1 and Proposition 3.2 yield the following 
result. 

Theorem 3.3: Let M be a three-dimensional space
time. The following are equivalent: (a) the null vector w is 
nondestructive; (b) the set of values of the sectional cur
vature of all planes containing w is bounded; (c) the set of 
values of the sectional curvature of all planes containing w 
is constant. 

We now consider the implications for the homaloidal 
locus of the above equations (1) and (2). Set D=A + F. 
The homaloidal locus QI (x,y) = 0 becomes 

AX2 + Bxy + cl + (A + F)x + Ey + F=O. (3.3) 

The implicit function theorem yields that if A=I=F, then 
this locus is a manifold near ( - 1,0). Differentiating Eq. 
(3.3) with respect to y and solving for dxldy one obtains 

dx -Bx- 2Cy-E 

dy 2Ax+By+A +F' 

which yields (dxldy) =0 at ( - 1,0) if B=E. Thus, given 
A=I=F and Eq. (1), the homaloidal locus is tangent to the 
null locus at ( - 1,0) if Eq. (2) holds. Assume now that 
both (1) and (2) hold. In this case the multiplicity of the 
intersection of homaloidal locus and the null locus is two 
provided that the conics do not coincide. If A =F and 
B=E, then Eq. (3.3) becomes 

Ax2 +Bxy+ cl + 2Ax +By+A=O, 

which can be rewritten as 

(3.4) 

If C=O, then this locus may be the entire (x,y) plane, 
two lines one of which is given by x + 1 =0, or the line 
x + 1 =0 counted twice. Notice that one again finds that if 
the homaloidal locus does not contain the null locus, then 
the multiplicity of intersection of the two loci at ( - 1,0), 
is at least two. 
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If C~O, then the quadratic formula may be used on 
Eq. (3.4) to obtain 

Y= [(x + 1)( - B± (B2 - 4AC)1I2)]l2C. (3.5) 

It follows that the homaloidal locus may be the single 
point ( - 1,0), a line through ( - 1,0) of slope - B/2C 
counted twice, or two lines through ( - 1,0), neither of 
which is tangent to the null locus at ( - 1,0). Note that in 
all of the cases considered, the homaloidal locus must ei
ther be degenerate or tangent to the null locus at ( - 1,0). 
Of course, any spatial direction in Tp M may be rotated to 
point in the positive XI direction. This means that the geo
metric relation of the homaloidal locus to the null locus 
must be similar to one of the cases described above at all 
nondestructive null directions. Since none of the cases in
clude the two conics intersecting transversally with multi
plicity one, we obtain the following result. 

Proposition 3.4: Let p be a fixed point of a three
dimensional space-time (M,g). Then exactly one of the 
following is true at p. 

( 1) All null directions at p are nondestructive and the 
space-time has constant sectional curvature at the point p. 

(2) There are exactly two nondestructive null direc
tions at p. 

(3) There is exactly one nondestructive null direction 
atp. 

( 4) There are no nondestructive null directions at p. 

IV. BOOSTS AND NONDESTRUCTIVE DIRECTIONS IN 
DIMENSION FOUR AND HIGHER 

Let (M,g) be four-dimensional with local coordinates 
XO""'X3 centered at a point p and assume that the natural 
basis is orthonormal. Denoting this frame by Eo, ... ,E3 at 
the point p, one may ask if the null vector w = Eo 
+ EI is nondestructive. Here EI is the first space direction 

for the observer (i.e., the XI direction in our notation). 
Essentially, the question is whether there can exist (for 
this observer) small objects going close to speed c in spatial 
directions close to the XI direction such that these objects 
feel only bounded tidal accelerations. We begin by consid
ering objects which go in exactly the XI direction with 
speed arbitrarily close to c. This requirement corresponds 
to the timelike vectors X(t) of Definition 2.3 being asso
ciated with pure boosts. 

Three necessary conditions for w = Eo + EI to be 
nondestructive are found by using Propositions 2.4 and 2.5 
to obtain P I (w,E2) = 0, PI (W,E3) = 0, and Pj(w,E2 
+ E3 ) = O. These three equations yield 

R 2020 + 2R2120 + R2121 =0, 

R 3030 + 2R3130 + R3131 =0, 

R 2030 + R 2031 + R2130 + R 2131 =0. 

(4.la) 

( 4.1b) 

(4.1c) 

It is easy to verify that these equations are both necessary 
and sufficient for this w to be fully indeterminate. 

Let YO""'Y3 be new local coordinates derived from a 
boost in the xoXl-plane. Let Raf3&r denote the components 
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of the curvature at p in the original X coordinates and let 
KafJljq denote the curvature components at p in the y co
ordinates. 

Define the y coordinates by Yo = Xo cosh () 
XI sinh (), YI = - Xo sinh () + XI cosh (), Y2 

= X2, and Y3 = X3' Usingch«() for cosh ()andsh«() for 
sinh (), one obtains 

R IOIO=R IOIO, 

K 2020= ch2«()R2020 + 2 ch«()sh«()R2021 

+ sh2
( () R212 I> 

K 1020=ch( ()R I020 + she ()R I021 , 

K 1030=ch( ()R I030 + she ()R I031 , 

K2030=ch2«()R2030 + ch«()sh«()R2031 

+ ch«()sh«()R2130 + Sh2«()R2131> 

K3030=ch2( ()R3030 + 2 ch( ()sh( ()R3031 

+ sh2«()R313I • 

(4.2) 

Letting X ( () = (cosh () Eo + (sinh () E I> the direction of 
X( () converges to the direction of was () .... + 00. Further
more, for fixed () the mapping given by the above boost 
takes X( () into the unit vector in the Yo direction. In order 
for the sectional curvature of planes containing X ( () to be 
uniformly bounded as () .... + 00, it is sufficient that the 
elements of Kll/) converge to finite limits as () .... + 00. As
suming these limits exist, one may obtain the following 
equations from KI020 and KI030: 

R I020 + RI021 =0, 

RI030 + RI031 =0. 

(4.3a) 

(4.3b) 

Lemma 4.1: If all nondegenerate planes containing 
w = Eo + EI have the same sectional curvature, then all of 
the equations of (4.1) and (4.3) are satisfied. 

Proof" Propositions 2.4 and 2.5 yield the three equa
tions of ( 4.1 ). The equations of ( 4.3) follow from Lemma 
3.1, applied to the three-dimensional slices corresponding 
to x3=0 and X2=0. • 

It follows easily that the equations of (4.1) and (4.3) 
must be satisfied if Eo + EI is nondestructive. Further
more, the equations of (4.1) and (4.3) together imply that 
the K i 0 j 0 matrix converges to a limiting matrix as 
() .... + 00. We have thus proven that the five equations 
given in (4.1) and (4.3) are necessary and sufficient for 
Eo + EI to be nondestructive. Using Lemma 3.1, one finds 
these equations imply that all nondegenerate planes con
taining w have constant sectional curvature - RIOlO' 

Proposition 4.2: Let p be a fixed point of the four
dimensional space-time (M,g) and let the curvature tensor 
be given with respect to an orthonormal basis Ea at p. If 
w = Eo + El> then the following are equivalent: 

(a) the null vector w is nondestructive; 
(b) there is a number L such that the absolute value of 

the sectional curvature of every nondegenerate plane con
taining w is less than L; 
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( c) every nondegenerate plane containing the null vec
tor w has sectional curvature given by the constant 
- RIOlO; 

(d) the above matrix Rjojo converges to a limit as 
0 .... + 00; 

(e) Eqs. (4.1a), (4.1b), (4.1c), (4.3a), and (4.3b) 
hold at p. 

Physically, the above conditions are necessary and suf
ficient for very small objects going along a geodesic in the 
positive xI-direction to have bounded tidal accelerations at 
p no matter how close to the speed of light they are trav
eling. Corresponding conditions may be obtained for ob
jects going in the opposite spatial direction by similar 
methods. 

An interesting observation is the following "direc
tional paradox." The required conditions for being able to 
go close to c in the positive XI direction and to have 
bounded tidal accelerations are different from the require
ments that must be satisfied to be able to go in the negative 
XI direction and to have bounded tidal accelerations. There 
is an "apparent" lack of symmetry. Of course, the reason 
for the lack of symmetry is that one must consider the 
world vectors associated with moving objects and not just 
the spatial components of these vectors. The world vectors 
for objects going fast in the respective positive and negative 
XI directions are far from being either parallel or antipar
allel. 

In order to get a physical interpretation of Eqs. (4.1)
(4.3), let v={3=tanh (), (1- v2 ) -112=y=cosh () and let 
()-+ + 00. The classical special relativistic magnification of 
energy associated with the moving mass is y = cosh (). 

Remark 4.3: Let w = Eo + EI. 
(a) If w is either a complete pole or partially indeter

minate, then at least one of the equations of ( 4.1) fails and 
from (4.2), it follows that the "high-speed" magnification 
of tidal acceleration is roughly proportional to i, which is 
the square of the magnification of energy. 

(b) If w is fully indeterminate, but destructive, then 
the equations of ( 4.1) hold and it is one of the equations of 
(4.3) that fails. In this case, the magnification of tidal 
acceleration is roughly proportional to y which is the same 
as that of the energy. 

(c) If w is nondestructive, then one has magnification 
of energy but no unbounded increase in tidal accelerations. 
Thus, one does not get a corresponding magnification of 
tidal acceleration. 

We obtain the following sufficient condition for a null 
direction to be nondestructive. We say that two regular 
varieties intersect tangentially at a point iff their tangent 
hyperplanes coincide at that point. 

Theorem 4.4: Let p be a fixed point of a space-time M 
of dimension at least three. Every tangential intersection of 
the null and homaloidal loci in G2 ( Tp M) determines a 
nondestructive null direction in Tp M. 

Proof: First, compare the list of cases for nondestruc
tive null directions in dimension three given in Sec. III to 
the complete list of caseslO for HnN to verify the result for 
dimension three. Then observe that every three-

824 J. Math. Phys .• Vol. 31. No.4. April 1990 

dimensional slice of a tangential intersection is a tangential 
intersection. • 

Note that the results of Sec. III show that even for 
three-dimensional space-times, there are nondestructive 
null directions that correspond to nontangential intersec
tions of HnN. Thus a tangential intersection fails to be a 
necessary requirement for the corresponding null vector to 
be nondestructive. 

v. THE GENERIC CONDITION AND PRINCIPAL NULL 
DIRECTIONS 

In this section we relate our results to the generic 
condition24 and principal null directions26 in four
dimensional space-times. An inextendible (null) geodesic 
y: (a,b) -+ M with tangent vector W is said to satisfy the 
generic condition if there is some parameter value t such 
that WCwo'W[aRb]cd{eWfl*O at the point y(t). It will be 
satisfied in the Ricci fiat case if the null geodesic y contains 
some point where the Weyl tensor Cabed is not trivial and 
W does not lie in one of the so-called principal null direc
tions (there are at most four such). Fix a point p in M and 
let W be a null vector at p. We will say that W is nonge
nericif WCwo'W[aRb]cd[eWfl = O. 

Starting with the null vector W, extend to a pseudo
orthonormal basis W, N, E2, E3 of T #. With our 
sign convention, this yields g( W,N) = 1 and 
g(W,W)=g(N,N)=g(W,Ej)=G(N,Ej)=O for i=2,3. 
Let Kabed denote the components of the curvature tensor in 
this basis. Clearly, the contravariant components Ware 
given by WI = W2 = W3 = 0 and W 0 = 1. The covariant 
components of W are given by Wo = W2 = W4 = 0 and 
WI = 1. The nongeneric condition for W is then 
WCwo'W[aKb]cd[eWfl = O. In these coordinates, this equa
tion simplifies to 

(5.1) 

The indices a, b, e, f can each take on the values from 0 to 
3. A close inspection of Eq. (5.1) together with standard 
curvature identities yields the following result. 22 

Lemma 5.1: The null vector W is nongeneric iff 
KbOOe = 0 for a1l2<:;b, e<:;3, where Kabed are the components 
of the curvature tensor calculated in the pseudo
orthonormal frame W, N, E2, E3• 

In order to relate the result of Lemma 5.1 to the three 
equations of (4.1), let Eo, Eb E2, E3 be an orthonormal 
frame at the fixed point p and assume W = Eo + Eb 
N = (Eo - EI )/2. Let Rabed represent the components of 
the curvature in the orthonormal frame. 

Proposition 5.2: The null vector W = Eo + EI is non
generic iffEqs. (4.la), (4.lb), and (4.lc) all hold atp. 

Proof: The equation K2OO2 = 0 is equivalent to the equa
tion 

g(E2, R ( W,E2) W) 

=g(E2, R(Eo + Eb E2) (Eo + EI»=O. 

Using the multilinearity properties of the metric g and 
curvature R as well as curvature identities, one finds that 
K 2OO2 = 0 is equivalent to Eq. (4.la). Similarly, one finds 
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that K3OO3 = 0 and K2OO3 = 0 are equivalent to Eqs. 
(4.1b) and (4.1c), respectively. • 

This proposition yields the following two corollaries. 
Corollary 5.3: A null direction at a fixed pointp fails to 

satisfy the generic condition iff it is a fully indeterminate 
direction. 

Corollary 5.4: If W determines a nondestructive null 
direction, then the generic condition fails for W. 

Assume now that (M,g) is Ricci flat. In this case, the 
curvature tensor Rabed is equal to the Weyl tensor C abed. 

We now consider a null tetrad k, I, m, in defined by k 
= (Eo + E I)/.J2, I = (Eo - EI)/.J2, m = (E2 
- iE3)/.J2, and in = (E2 - iE3)/.J2. Note that kO 

= 10 = 1I.J2, kl = _II = 1I.J2, m2 = 1I.J2, m3 = 
i/.J2. Define two complex coefficients '1'0' '1'1 by 

'1'0= Cabed~mbkemd 

and 

'1'1 = C abed ~/bkemd. 

The null direction determined by k is a principal null 
direction26 iff '1'0 = O. For (M,g) Ricci flat, this holds if the 
three equations (4.1a), (4.1b), and (4.1c) are satisfied 
substituting C abed for R abed• The null direction determined 
by k is a repeated null direction iff '1'1 = 0 and '1'0 = O. 
Using the above k, I, m, and curvature identities, the real 
part of '1'1 = 0 yields 

ClOO2 + C1012 =0. (5.2) 

The imaginary part of '1'1 = 0 yields 

C0103 + COl\3 =0. (5.3) 

Note that for Ricci flat space-times, Eqs. (5.2) and (5.3) 
are equivalent to Eqs. (4.3a) and (4.3b), respectively. We 
have thus established the following theorem. 

Theorem 5.5: Let (M,g) be a four-dimensional Lorent
zian manifold and assume that (M,g) is Ricci flat. Let p be 
a point of M and let k be a null vector at p. 

(a) The null vector k is fully indeterminate iff it lies in 
a principal null direction. 

(b) The null vector k is nondestructive iff it is a re
peated principal null direction. 

(c) If (M,g) is not flat, there are at most four fully 
indeterminate directions at p. 

(d) If (M,g) is not flat, there are at most two nonde
structive directions at p. 

Note that if (M,g) is Ricci flat with exactly two non
destructive directions at each point [i.e., case (d) of The
orem 5.5 holds], then (M,g) is of Petrov type D. 

VI. SCHWARZSCHILD SPACE-TIME 

In this section we shall give a short discussion of how 
the results of this paper relate to Schwarzschild space
time. Using "static" coordinates, the exterior Schwarzs
child metric is given for signature ( - , + , + , + ) by 
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d;= - (1- 2M/r)dt 2 + (1- 2M/r) -ldr 2 

+ r 2(dfP + sin2 odt/i). 
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Using the standard orthonormal basis 

Eo= (1 _ 2M) -1/2 aa, EI = (1 _ 2M) 1/2 ~ 
r t r ar' 

-I a . a 
E2 = r ao ' E3 = (r sm (J) - I acf> ' 

the nonzero components of the curvature tensor all may be 
obtained from the following equations using symmetry 
properties of the curvature tensor23,27: 

R0101 = - 2M/r 3, R0202=R0303=M/r 3, 

R2323=2M/r3, R1212=R\3\3= -M/r3. (6.1) 

Assume y' = Eo and that there is Jacobi field of length 
I JI· It follows easily,23 that for J = I JI EI there is a stretch
ing acceleration of magnitude (2IJIM)/r 3. For J= IJIE2 
and for J = I JI E3, one obtains compressions of magnitUde 
(IJIM)/r 3. On the other hand, consider a freely falling 
observer moving at time t=O in the cf> direction. Assume 
that in the above orthonormal frame the moving observer 
has speed v = tanh A. Thus (I - v2 ) - 1/2 = cosh A. The 
world velocity vector of the moving observer becomes 
y(O) =coshAEo + sinhAE3.LettheJacobifieldatt=0 
be J = I J lEI in order to measure the tidal acceleration in 
the radial direction, which in this case is orthogonal to the 
direction of motion. Using 

J" = - R(J,y)y' 

= - R( IJIEl>cosh A Eo + sinhA E3) 

X (cosh A Eo + sinh A E3 ), 

one finds that 

J" = IJI (2M cosh2 A + M sinh2 A)r- 3EI. (6.2) 

Consequently, it is clear that as A -+ + 00 (i.e., v ap
proaches c) the tidal acceleration becomes unbounded in 
the r direction. 

Consider a steel ball of radius b that traverses a non
radial geodesic in this model. This ball will have a closest 
approach to the central mass M. Let ro denote the value of 
r at the closest approach. Equation (6.2) shows that there 
is some speed (measured by static observers) such that the 
ball will be destroyed if it is going this speed or faster when 
r= roo Clearly, the speed corresponding to destruction de
pends on the radius b, the tensile strength of the ball and 
the value of roo Notice that no matter how large the value 
of ro, there will be some speed yielding certain destruction 
in this model. It should be mentioned that the tidal accel
erations build as the r coordinate of this geodesic 
approaches its smallest value ro and hence this effect does 
not correspond to tidal accelerations that just act for short 
time periods. Note in this regard that the classical special 
relativistic time dilation of the moving particle is given by 
(cosh A) - I and that the acceleration J" in Eq. (6.2) has 
factors corresponding to cosh2 A and sinh2 A. Thus for the 
situation described by Eq. (6.2), the "high-speed" magni
fication of tidal acceleration roughly goes as the square of 
the increase in energy as the square of the reciprocal of the 
time dilation. This is a consequence of Eo + E3 being a 
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complete pole and not just a reflection of the nature of 
Schwarzschild space-time. 

The radial directions (both inwards and outwards) are 
nondestructive in the Schwarzschild space-time. It is well 
known23 that for a fixed point of this space-time, the tidal 
accelerations are independent of speed when the direction 
of motion is radial. This means that for a steel ball moving 
along a radial geodesic, the tidal accelerations calculated at 
the centroid are the same as those for a similar steel ball at 
rest in the "static" frame. Tidal forces and radiation for a 
radially falling body in Schwarzschild space-time have 
been studied by Mashhoon.28 

To view the sectional curvature of Schwarzschild 
space-time in terms of RP 5, use the above orthonormal 
basis Eo, ... ,E3• Relative to this basis the metric 
tensor is g=diag( - 1,1,1,1). Thus, A2g 
=diag( - 1, - 1, - 1,1,1,1). At any point (to,ro,Oo,tPo), 

QI =M(ro) - 3[ - 2POl2 + P022 + Po/ 

- P122 - P132 + 2P2l), 

Q2= - POl
2 

- Pol- Pol + P12
2 + PIl + P2/ 

in Plucker coordinates. We recall that these are homoge
neous coordinates in RP 5 in which G2 ( 4) is given by 
POI P23 - P02 P13 + P03 PI2 = 0. Now the variety N 
= {pIQ2(P) = o}and similarlyH= {pIQI(p) = O}. 

It follows that 

H={plp022 + Po/- P122 - P132=2(POI2 - P2ln, 
N={pIPol + Pol- P122 - PI/= - (POI2 - P2/n. 

Thus at HnN,poI = ±P23' 

In order that this intersection be tangential, we must have 

VQI = [ - 2POI: P02: P03: - P12: - P13: 2p23], 

VQ2= [ - POI: - P02: - P03:P12:P13:P23] 

parallel. Now this happens iff either POI = P23 = ° or P02 
= P03 = P12 = P13 = 0. Substituting the latter into the equa
tion for G2(4), we obtain POI = P23 = ° in HnN, which is 
not possible with homogeneous coordinates. Therefore we 
must have POI = P23 = ° and at least one of the other four 
nonzero. 

Using the symmetries of the equations, we may as well 
assume that P13*O. Letting x = P02/P13' Y = P03/PI3' and 
z = P12/P13' we obtain 

HnN={(x,y,z) Ix2 + y - z2= I}, 

G2(4) = {(x,y,z) Ix=yz}, 

in this affine R3 in the copy of RP 3 given by POI = P23 
= OinRp5. 

Now, solve x=yz successively for each variable and 
substitute into x2 + y - z2 = 1 to obtain the equations for 
the tangential part of HnN in G2 (4): 

y=±l, x=±z. 

Therefore, we have two pencils of planes, 

P03= ±P13,POI =P02=P12=P23 =0, 
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each containing a common null vector: (1, ± 1, 0, 0), 
respectively. These are precisely the inward and outward 
radial directions at each space-time point(to,ro.Oo,tPo). One 
may easily verify that there are no other nondestructive 
null directions. 

VII. CONCLUSIONS 

In this paper tidal accelerations for freely falling ob
jects of nonzero volume and nonzero mass are considered. 
One assumes the centroid of the object traverses a timelike 
geodesic and studies the tidal accelerations using Jacobi 
fields. It makes sense to fix a point of the geodesic and 
consider the tidal accelerations associated with Jacobi 
fields having given values at that point. 

We find that, generically, high speeds magnify tidal 
accelerations in an unbounded fashion. If one investigates 
tidal accelerations by boosting towards a fixed null direc
tion, then generically the magnification of tidal accelera
tions due to high speed goes as the square of the magnifi
cation of energy. Since one can never know the true 
physical metric tensor exactly, this suggests that at high 
speeds the objects under consideration must be destroyed. 
On the other hand, the spaces of constant (sectional) cur
vature show that for at least some models these unbounded 
tidal accelerations need not occur. Furthermore, for some 
space-times that do not have constant sectional curvature 
(e.g., Schwarzschild space-time) there are certain direc
tions that are tidally nondestructive. A null direction is 
shown to be nondestructive iff there is some constant Ko 
such that all nondegenerate planes containing this null di
rection have sectional curvature Ko. It should be remem
bered though that, in addition to being not physically able 
to know the metric tensor exactly, one cannot physically 
determine spatial directions exactly, either. 

A natural question is how the results of this paper are 
related to waves in general relativity. Classically, one has 
the waves traversing null geodesics. This has the important 
implication that they cannot have unit speed parametriza
tions, but must have affine parametrizations that are inde
pendent of arc length. Thus sectional curvature does not 
have the same interpretation for zero rest mass objects 
traversing null geodesics as for nonzero mass objects tra
versing timelike geodesics. Mashhoon29 has considered 
waves in general relativity and the difficulties with assum
ing that they traverse null geodesics. The basic problem is 
that if null geodesics are converging or diverging, then 
how do waves maintain their integrity? They should tend 
to spread or contract in the presence of gravitational fields 
and this tendency should be larger for longer wave lengths 
and higher gravitational fields (i.e., space-times with larger 
curvature) . 

The relation of sectional curvature and wave surfaces 
has been investigated by Hall and Rendanl4 and by Hall. 30 

Using the results of Hall,3o one may obtain an alternative 
derivation of parts (a) and (b) of Theorem 5.5. 
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The unitary matrix that brings a Hermitian matrix H into block-diagonal form can be 
uniquely determined under very simple and transparent conditions. In this work the 
block-diagonalization problem is investigated in the framework of the second quantization 
formalism. Starting with an operator H which in any n-particle Fock space has a 
well-defined matrix representation an attempt was made to answer the question whether the 
transformation matrices T which can be separately given in the various n-p~icle spaces 
can be considered as different matrix representations of the same operator T. Interestingly, 

A 

the very important result was reached that the block-diagonalization operator T exists 
and is unique. As a particular example, attention was concentrated on the case of an operator 
A 

H given by a one-particle operator. In this case the block-diagonalization operator can 
be constructed and given in explicit form. This approach is applied to the theory of Green's 
function where the block-diagonalization of the Hamiltonian has interesting consequences 
that are illustrated in some details. 

I. INTRODUCTION 

A Hermitian matrix H can be block-diagonalized, i.e., 
transformed into a block-diagonal matrix by a unitary 
transformation 

(1.1 ) 

The block-diagonal matrix H consists of square matrices 
(blocks) along its diagonal and is zero elsewhere. 

There are several physical problems that involve the 
block-diagonalization of Hermitian matrices. Some of 
these are discussed in Ref. 1 and include examples from 
quasidegenerate perturbation theory2,3 and many-body 
Green's functions.~ The block structure of the resulting 
block-diagonal matrix, i.e., the dimensions and character
ization of the diagonal blocks (see also Sec. II), is usually 
determined by the problem under investigation and by the 
physical situation at hand. 

In general, there are infinitely many different unitary 
transformation T that block-diagonalize H for a given 
block structure. All of them can be cast into the form 1 

T=SF, ( 1.2) 

where S is the eigenvector matrix of Hand F is any uni
tary block-diagonal matrix with the same block structure 
as H. In Ref. 1 it has been investigated under which ele
mentary conditions the block-diagonalization becomes 
unique. By an elementary condition we mean a condition 
that is simple and convincing so that it may be considered 
a "must" in realistic applications. Two different conditions 
have been found that lead to the same unique F and thus T. 
It is this unique transformation matrix T that plays the 
central role in the present paper. Whenever unambiguous 
we shall use in the following the term "block
diagonalization" as synonymous to block-diagonalization 
with the unique T. 

In many applications H will be the matrix obtained by 
representing the Hamiltonian H of the systems under in-

vestigation in a basis {I /foq)}. In these and in other cases 
Eq. (1.1) uniquely gives rise to the operator relation 

(1.3 ) 

once a basis {/foq} is defined. The block-diagonalization 
problem addressed in Eq. (1.1) applies to a system with a 
fixed number n of particles. If n is varied another matrix 
equation arises (H changes with n). On the other hand, it 
is of interest to simultaneously study the same or another 
system with different number of particles. This goal can be 
achieved if we start from Eq. (1.3) and work within the 
formalism of second quantization.4-7 This powerful quan
tum mechanical formalism allows us to write operators 
(observables) in a form that is independent of the number 
of particles contained in the system. In the present work 

A A 

we investigate an operator T that block-diagonalizes H for 
all numbers '.1: With this terminology we understand that 
the operator T gives rise in any n-particle space to a matrix 
T that blo.£k-diagonalizes the matrix representation of the 
operator H in the same n-particle space representation. 
The existence of such a general operator T will give the 
block-diagonalization a more general meaning and may 
lead to a wider field of application. 

To illustrate our theory we will then focus our atten
tion to the simple problem where the matrix H that has to 
be block-diagonalized is the matrix representation of a so 
called one-particle operator H describing, for instance, 
particles in an external field. In this case the "block
diagonalization operator" T can be written down in ex
plicit form and its existence and uniqueness can be directly 
proven. 

We apply the block-diagonalization procedure to the 
theory of Green's functions.4-7 We have shown elsewhere8 

that the block-diagonalization of the Hamiltonian matrix 
in a suitable basis of configuration functions assumes in the 
case of a one-particle operator H a very interesting and 
simple physical interpretation. We will investigate this 
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problem further and derive an explicit form for the trans
formation matrix T. The matrix elements of T can be ob
tained by means of a recursive procedure that determines 
the transformation matrix uniquely. 

II. PRELIMINARIES AND DEFINITIONS 

In order to define an operator in second quantization it 
is first necessary to introduce a set of creation and annihi
lation operators al and aa' respectively, related to some 
suitable basis of one-particle states {I IPa)}. The set 
{ I IPa>} is an orthonormal complete set of states given by 
IIPa> = allvac>, where ~ac> represents the vacuum con
figuration. An operator H, as for example, the Hamilto
nian of a physical system, is usually described in this for
malism as a sum of two terms: 

(2.1) 
"'-

where Ho is a one-particle operator diagonal in the one-
particle basis {I IPa>} 

(2.2) 
a 

, "'-
The second term HI is in general composed of a nondiag-
onal one-particle and two-particle operators. For applica-

"'-
tions to electronic systems, Ho is often naturally chosen as 
the Hartree-Fock operator, and the set {I IPa>} is com
posed of the one-particle states deriving from a self
consistent energy calculation on the ground state of the 
system. "'-

The eigenstates of Ho in any n-particle Fock space are 
described by single determinants I ifJ;> build up from n 
one-particle states of the set {I IPa> }: 

(2.3) 

The set { I ifJ;>} is an orthonormal complete set of states in 
the n-particle space. The functions ifJ; will be referred to as 
the n-particle configuration functions. 

Now we introduce a "reference space" that is a par
ticular N-particle space and denote by a "reference func
tion" a particular one-determinant function ifJ~ belonging 
to this space: 

I A.N) =at at ·"atlvac>. (2.4) '1'0 ON 0N_l 0 

The state I ifJ~> could be, for example, the N-particle 
Hartree-Fock ground state of the system. Accordingly, we 
divide the set of the one-particle states { I IPa> } into the two 
subsets {I IPa>}e and {I IPa> h· The subset {I IPa>}e contains 
the N one-particle states that are needed to construct 
I ifJ~>· These one-particle states and the corresponding cre
ation and annihilation operators will be referred to as "oc
cupied" states and operators, respectively. The subset 
{ I IP a) } E is the complementary set to { I IP a) h and contains 
the "unoccupied" one-particle states. The greek letters are 
used throughout this work to label the o~e-particle states 
of the set { I IPa) } and the related creation and annihilation 
operators. If necessary, we will specify explicitly whether 
we are referring to occupied or unoccupied one-particle 
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states and whenever'unambiguous use for the former the 
subscripts i,j,k,l,... and for the latter the SUbscripts 
u,v,w, .... 

In anx n-particle space the eigenstates { I ifJ;>} of the 
operator Ho can be now classified according to the number 
of unoccupied creation operators necessary to construct 
the eigenstate. Hence, in any n-particle space the set 
{ I ifJ;>} can be subdivided as follows: 

The subset {I ifJ;> hr) contains the n-particle configuration 
states which can be represented by a single determinant in 
which r one-particle states are unoccupied (i.e., s=n-r 
are occupied). We will refer to the subset {I ifJ;> hr) as to 
the "configuration class r" of the n-particle space. The 
configuration states of this class can also be classified in the 
hole (h)-particle (p) notation with respect to the refer
ence state I ifJ~> as (N - s)h - rp configurations. For ex
ample, in the (N - 1 )-particle space the class r = 0,1,2, ... 
contain the Ih,2h - Ip,3h - 2p,... configuration states. 
This h - p notation is less useful in the present context. In 
our notation a configuration state is thus characterized by 
the two parameters nand r, where n specifies the n-particle 
space and r the class to which the state belongs. Since we 
do not always need to work with a specific configuration 
state, but only to know its configuration class, we will 
denote a configuration state of the class {I ifJ;> hr) simply 
by I n,r>. In each n-particle space we have n + 1 configu
ration classes r, with r running from 0 to n. It is important 
to remark that in the N-particle space, which is our refer
ence space, the class 0 is composed of the N-particle ref
erence state lifJ~> [Eq. (2.4)] only. The state lifJ:) is in
deed the only configuration state that builds up a class by 
itself, being the only state that can be constructed with the 
N occupied one-particle states only. 

The simplest example of this classification is given by 
the set of one-particle configuration states {I ifJ!>}. This set 
splits into the two possible classes 0 and 1 that obviously 
coincide with the subsets {I IPa>}e and {I IPa> h of the one
particle states, respectively. 

The general classification introduced above will be 
used throughout this work. The number N that character
izes our reference space and is used for the definition of the 
configuration classes is in principle completely arbitrary. 
However, the choice of a particular N-particle space as 
reference space may arise naturally in the investigation of 
the physical problems at hand. For instance, in studying 
processes that change the number of particles in the target 
system, it seems reasonable to choose N to be the number 
of particles in the initial system. 

For Hamiltonian operators B one usually works with 
a matrix representation H in the basis of the configuration 
functions, i.e., the eigenfunctions of Bo. Throughout this 
work we make use of the configuration classes that give to 
the matrix H a well-defined block structure consistent in 
all n-particle spac~ In any n-particle space the matrix rep
resentation H of H can be viewed as a (n + 1) X (n + 1) 
block matrix composed of (n + 1) diagonal blocks and of 
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coupling blocks among the configuration classes. Each row 
and column of blocks is labeled with the index r that runs 
from 0 to n and is spanned by the corresponding configu
ration class {I cfJ;> hr)' The corresponding eigenvector ma
trix S of H that appears in Eq. ( 1.2) can be considered a 
block matrix as well with the same block structure. In the 
next sections we will always refer to this block structure 
and we will be interested in the block-diagonalization of 
the matrix H, i.e., in decoupling the various configuration 
classes so that H becomes block-diagonal. We would like 
to stress that the block structure used here is only one 
which can be consistently used in second quantization in 
all n-particle Fock spaces once annihilation and creation 
operators for occupied and unoccupied one-particle states 
are introduced. 

The configuration states {I cfJ;>} and
A 

the eigenvector 
matrix S define an "eigenstate operator" S. The eigenstate 
operator S is that operator which in any n-particle space 
gives rise to the matrix S when represented in the basis 

A 

{I cfJ;)}· The operator S can be viewed as the operator 
transforming the configuration states to the exact eigen
states. As an interesting example we discuss the case where 

A A 

the operator H is the sum of the diagonal term H 0 [Eq. 
A 

(2.2)] and a nondiagonal term HI of the form 

(2.6) 

A 

Since the operator H is a one-particle operator, its eigen-
states can be described by single determinants { I 'I';>} in a 
suitabl~ one-particle basis set {I q5 a>}. The eigenstate op
erator S is therefore the operator that transforms the one
particle states of the set { I CPa> } i~to the one-particle states 
ofthe set {I q5 a>}. The operator S can be explicitly written 
down5

,7 in second quantization form and reads: 
A .A 

S=e'S, (2.7a) 

s = st. (2.7b) 

Here s is a Hermitian one-particle operator. S is unitary 
and, by definition, it transforms the configuration func-

A 

tions of the set { I cfJ;> } into the exact eigenfunctions of H of 
the set {I 'I';>} in any n-particle space;... For example, the 
application of the eigenstate operator S to the N-particle 
reference function I cfJ(i> [Eq. (2.4)] yields 

N 

I'I'~>= II {j6.lvac>. 
i=1 I 

(2.8) 

The relation between the creation and annihilation opera
tors related to the sets {I CPa>} and {I q5 a>} is given by 

at=St{jts a a 

(2.9) 
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In general HI contains also non-one~article terms. We 
assume that in this case the operator S can be again rep
resented in second quantization by an exponential operator 
of the form given in Eq. (2.7a), but the operator s is no 
longer given by a one-particle operator as in Eq. (2.7b). 
Heresmust be now an infinite sum of many-particle terms. 

III. EXISTENCE OF A BLOCK-DIAGONALIZATION 
OPERATOR 

In this section we want to demonstrate that the block
diagonalization operator T exists. More precisely, for any 
n-particle ~pace, the matrix T that is the matrix represen
tation of T in the basis { I cfJ;> } block-diagonalizes the ma-

A A 

trix representation H of H. The same T should, of course, 
apply to all n. Each of the transformation matrices T 
should fulfill the conditions of Ref. I (see also the Intro
duction). Before starting with the discussion it is useful to 
briefly review the principal points introduced in Ref. 1. 
There, two theorems concerned with the uniqueness of the 
block-diagonalization transformation T are proven and 
discussed. Both theorems can be formulated once the block 
structure is introduced. The first theorem can be expressed 
as the theorem of "minimal action of the transformation 
T" and states that T follows uniquely from the condition 
that its Euclidean norm is as near as possible to the norm 
of the unit matrix, i.e., that liT - 111 = min. The second 
theorem is introduced in a more general context and as
serts that the uniqueness of T follows if T is "fully deter
mined" by the eigenvector matrix S of H. With "fully 
determined" it is meant that a prescription g exists such 
that the block-diagonal matrix F [which together with S 
gives rise to T, see Eq. (1.2)] satisfies the condition F 
= g( S). Each diagonal block of the matrix F depends only 
on the corresponding diagonal block of the eigenvector 
matrix S and hence 

(3.1 ) 

SBO denotes the block-diagonal part of the eigenvector ma
trix S. According to our definition of classes, S is a matrix 
with a well-defined block structure and the matrix SBO is 
obtained from S by retaining its diagonal blocks and put
ting to zero the off-diagonal blocks. In this and in the next 
section we make use of the above cited second and first 
theorem of Ref. 1, respectively. The relevant formulas will 
be restated whenever necessary. 

In order to prove the existence of an operator TWhich 
underlies the matrix T of Eq. (1.1) we need to transfer the 
relation expressed by Eq. (3.1) to operators. To be spe
cific, we denote by A (n) the matrix representation of the 
operator A in the n-particle space. As discussed in the 
preceding section, we dispose of a general eigenstate oper
ator S, the matrix representation of which is the eigenvec
tor matrix Sen) in any n-particle space. In order to transfer 
Eq. (3.1) to operators we now have to investigate whether 
it is possible to define an operator S BO which in any n
particle space gives rise to a matrix s~'B. Interestingly, the 
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A 

operator AS BD can be obtained by means of pr9Jection op-
erators r!Jl nr acting on the eigenstate operator S. The sim-

A 

plest way to proceed is to define the operator S BD as 
follows: 

n 

SBD= L L f) nrS f) nn (3.2) 
n r=O 

and the~ determine a suitable form ~r the projection op
erator r!Jl nr The projection operator r!Jl nr can be defined as 
follows: 

A A A 

r!Jl nr= P rQn-r, 

with 

P r=D(rl - ~ aLau), 

QS=D(s 1 - ~ a;a} 

(3.3) 

(3.4a) 

(3.4b) 

We remember that the indices u and j refer to unoccupied 
and occupied one-particle states, respectively. In Eqs.(3.4) 
the operator l:uatau(l:,aiaJ is the number operator which 
counts the one-particle states belonging to {1'Pa)}e (be
longing to {1'Pa)}~)' Here r is the number of unoccupied 
one-particle states necessary to construct a configuration 
function of the class r, i.e., the number which characterizes 
the configuration class r, and s= (n - r) denotes the num
ber of occupied one-particle states appxaring in the config
uration functions of the class r. Here 1 is the identity op-

A 

erator. The symbol 15 indicates that the operators P rand 
Q.n _ r can be identified with the identity operator when the 
expression in parentheses vanishes and are zero elsewhere. 
Clearly the operator f) nr [Eq. (3.4)] is the identity oper
ator when the indices rand n - r of the operators P rand 
Q n _ r of Eqs. (3.4) determine the class r of the n-particle 
space. In fact, identifying with I n,r') a configuration state 
of the n-particle space belonging to the class r', the appli
cation of the operators P rand Qs on this configuration 
function yields 

Prl n,r') = Dr," I n,r'), 

Qsl n,r') = Ds,n _" I n,r'). 

(3.Sa) 

(3.Sb) 

Hence, according to Eq. (3.2), S BD is that operator which 
has as matrix representation the block-diagonal matrix 
s~'8. It is therefore possible to define a matrix F(n) and the 
relation (3.1) is valid in all n-particle spaces. The same 
relation (3.1) leads thus straightforwardly to the corre
sponding operator relation 

A A 

F=g( SBD), (3.6) 

'Xhich asserts the existence and uniqueness of the operator 
F. 

IV. CONSTRUCTION OF THE 
BLOCK-OIAGONALIZA TION OPERATOR 

In this section we want to investigate explicitly the 
problem of block-diagonalizing a matrix H which is the 

A 

representation of a one-particle operator H composed of a 
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A A 
diagonal part H 0 [Eq. (2.2)] and of a nondiagonal part W 
[Eq. (2.6)]. The eigenvector matrix S of H is the matrix 

A 

representation of an exponential opelator S [Eqs. (2.7)] 
which brings the eigenfunctions of H 0 ~f the set {I t/J~) } 
into the exact eigenfunctistns { I \{I~) } of H in any n-particle 
space. The Hamiltonian H can be represented in the basis 
of the configuration functions {I t/J~)}. With the classifica
tion introduced in the preceding chapters for the configu
ration functions, the matrix representation H(n) of if can 
be viewed as a block-tridiagonal matrix. By a block
tridiagonal matrix we understand a matrix which has non
vanishing blocks only along the diagonal and the first 
neighboring diagonals. 

Now we want to find an explicit form for the block-
A 

diagonalization operator T. For our purpose we will make 
use of the Theorem 1 of Ref. 1 according to which the 
transformation matrix T(n) derives uniquely from the con
dition that the Euclidean norm of (T(n) - 1) takes on its 
minimum or, equivalently, that the trace of (T(n) 
+ T(n)t), i.e., Tr(T(m) + T(n)t) takes on its maximum. 

Since the matrix s~'8F(n) is a block-diagonal matrix where 
the different classes of configurations are decoupled, we 
can consider each block separately and write 

where with s~n) and F~n) we indicate the diagonal blocks of 
the matrices S(n) and F(n), respectively. 

We begin with the analysis in the one-particle space. 
This is the simplest n-particle space and the configuration 
functions t/J~'s can be subdivided into two classes only 
(class 0 and 1; see Sec. II). Since the matrix F must be a 
unitary block-diagonal matrix in the one-p.article space, we 

"'-
assume that the corresponding operator F can be written 
in second quantization form as follows: 

A A A 

F =exp(i( I h + I p», (4.2a) 

(4.2b) 

A ~ t 
I p= £.. luva;pv, (4.2c) 

The operator F represented in the one-particle space 
clearly gives rise to a unitary block-diagonal matrix F(l), 

where the blocks spanned by the classes 0 and 1 decouple 
from each other. 

The first term of the lhs of Eq. (4.1) can be explicitly 
written in the one-particle space in the class r=O as (an 
analogous result holds for the class r= 1) 

Tr(S61)F61»= L (S61)F61)i,i (4.3) 
i 

We decompose now the eigenvector matrix Sb1
) according 

to 

(4.4) 
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where D is a diagonal matrix with positive definite diago
nal elements Dj• This decomposition is unique up to phase 
factors. 9,10 With the aid of Eq. (4.4) we can rewrite Eq. 
(4.3) as 

Tr(S~I)F~I) =Tr(DX), (4.5) 

where X is a unitary matrix defined as 

(4.6) 

Since X is a unitary matrix, Eq. (4.5) takes on its maxi
mum when X is the unit matrix. From Eq. (4.6) it follows 
that Fbi) = VUt. This result fulfills Eq. (3.1), see also Ref. 
1, and determines the number fij in Eq. (4.2b). The anal
ogous result for the class r= 1 determines the numbers 
fuv in ~ (4.2c). In this way we have determined the 
operator F. We will show now that the same operator F 
leads to matrices F(n) which satisfy Eq. (4.1). Conse
quently, the expression given in f-q. (4.2) is a suitable 
form for describing the operator F and we dispose of an 
explicit formula for the block-diagonalization operator in 
second quantization. 

Before starting with the proof we are reminded that 
since H is a one-particle operator, its eigenfunctions can be 

A 

described, as well as those of H 0, by one-~terminant funs:: 
tions. Therefore, the matrix elements of S [Eqs. (2.7)], F 
[Eqs. (4.2)] and of anyone-particle operator possess a 
very simple and useful form. Consider, for example, one 
element of the eigenvector matrix s(n): 

s(n) = (.l.n I 'lin ) qq' 'f'q q, 

( I -t -t -t I ) = vac aq aq •• 'aq a , a, ... a , vac . 
I 2 n qn q(n-l) ql 

(4.7) 

Here the creation operators a l refer to the exact one
particle states of the set {I ~ a)} (the one-particle basis set 
in which the Hamiltonian H is diagonal). Equation (4.7) 
describes the overlap of two determinants and can be 
therefore rewritten as 

A A A 

=det I (qJqll S I qJq;)(qJq21 S I qJq~)'" (qJqn I S I qJq~) I· 
(4.8) 

With this expression we indicate the determinant of the 
matrix, the elements of which are the overlap of the un
perturbed and exact one-particle states used to construct 
ItfJ;) and I'll;), respectively. 

Making use of this property we can demonstrate that 
in any n-particle space the relation expressed in Eq. (4.1) 
is satisfied for the blocks spanned by all the configuration 
classes. We show here as an explicit example the case of 
the class 0 in the two-particle space. The treatment of the 
classes 0 and n of any n-particle space is completely anal
ogous. The proof for the other classes (1 to n - 1) is more 
lengthy and is not reported here. In our example we will 
study only the first term of Eq. (4.1) since the complex 
conjugate term gives rise to the same result. 
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A configuration function belonging to the class 0 in the 
two-particle space is a single determinant built up from 
two one-particle states of the set {I qJa)}e: 

I tfJ;) =a]a; I vac) = I qJfPj) , i<j. (4.9) 

Hence, the first term of Eq. (4.1) can be explicitly written 
as follows: 

Tr(S(2)Ft{2» _ '" (S(2)Ft{2» .... o 0 - ~ 0 0 1),1)" 

i<j 

(4.10) 

We introduced here a matrix FO(2) instead of Fb2) and we 
suppose that the matrix FO(2) is the matrix representation 

A 

(If a ~ne-particle F which can be different from the oper-
ator F in that the numbers fij and fuv can differ from those 
determined by F( 1). We will then show that we obtain 

A A 

necessarily F=F if Eq. (4.1) is fulfilled. Writing Eq. 
A '" (4.10) as an expectation value of the operators Sand F on 

the configuration functions of class 0 [see Eq. (4.9)] we 
obtain 

Tr(S~2)Fo(2» = L L (qJfPjl S I qJf<CPl)(qJf<CP11 F I qJfP)· 
i<j kd 

(4.11 ) 

Since F' is block diagonal by definition, the configuration 
states I qJ f<CP I) also belong to the class O. Equation (4.11) 
can be rewritten to give 

(4.12) 

where To(l) is the upper left block of the matrix T,(I) 
= S(l)F,(I). UsingEq. (4.4) to decompose the eigenvector 
matrix sb1) and the notation X' = VtFo(l)U yields: 

(4.13) 

The rhs of Eq. (4.10) assumes the following explicit form: 

~ ~D;D/X;~;j-XijX;j)' 
IJ 

(4.14 ) 

The factor (X:~;j - XijXJ;> can be viewed as one of the 
principal minors of rank 2 of the unitary matrix X'. The 
rhs of Eq. (4.13) is thus a linear combination of all prin
cipal minors of rank 2 of the matrix X' weighted with 
positive coefficients. If we now require that the Ihs of Eq. 
( 4.13) takes on its maximum, it follows that X' must be 
the unit matrix (since X' is a unitary matrix, the individual 
principal minors are largest when X' = 1). Hence, by com
parison with Eq. (4.6) it follows that X' = X and Fo(l) 
= VUt, and remembering that Fb 1) = vut I we finally ob-

A A 

tain that F=F. 
The general proof for the class 0 of a general n-particle 

space can be carried out in an analogous way. One always 
obtains 

Here the sum runs over all the occupied one-particle states 
and Xj)n?"j i i "'i is one of the principal minors of rank n 

I 2 ~" I 2 n 
of the umtary matrix X'. Tr(To(n» could thus be 
expressed by the trace of To(l) or powers of it. Equation 
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( 4.15) represents again a linear combination of all princi
pal minors of rank n (taken with positive coefficients) and 
takes on its maximum when X' = X = 1. 

A 

A simple operator F has been introduced and the 
block-diagonalization of the matrix U(\) into two blocks 
allows to fix !!.te number Ii} and luv in Eq. (4.2) and thus 
the o,Rerator F. We have then shown that the same oper
ator F applies to all n-particle spaces: It gives rise to the 
block-diagonal matrix F(n), which together with the eigen
vector matrix s(n) block-diagonalizes the Hamiltonian 
u(n).It is worth noting that the operator T=SF trans
forms H into two decoupled parts, one related to the oc
cupied and the other to the unoccupied space of creation 
and annihilation operators. Explicitly this can be written 
as 

~ At A A - t - t 
H = T H T = L h;Pi aj + L h u,p;Pv' ( 4.16) 

kj u<v 

In this expression the matrix elements h i} and Ii uv_ are 
elements of the block-diagonal matrix U(I) 
= T(l)tU(llT(1) The elements Ii·· and Ii belong to the • IJ UJL 
two different blocks along the diagonal of U ( I) . 

V. APPLICATION: GREEN'S FUNCTIONS 

Block-diagonalizing the Hamiltonian and decoupling 
the configuration classes from each other is very useful in 
the theory of the Green's functions.4--7. We continue our 
study in the second quantization formalism and d,efine a 
Green's function in a very general form which contains as 
special cases the various Green's functions known in the 
literature. For this purpose we introduce a vector of oper
ators 0 the elements of which are all possible products of 
creation and annihilation operators 

OA_( t t t tt) - aa,acPp,···,aa,aaap,aaa{flY' ... a;ptp... . '(5.1 ) 

In this expression it is understood that the single vector 
elements stand for arrays of all possible values of the in
dices a,p, ... which run over all the one-particle labels. By 
means of this operator we define the general Green's func
tion matrix as follows: 

where 

A N A 

O=(w-Eo + H). 

(5.2a) 

(5.2b) 

(5.2c) 

In Eqs. (5.2) AI \{I~) is the N-particle ground state of the 
Hamiltonian H and E~ is its energy. It is easy to see that 
the elements of 0 that produce a different change in the 
number of particles do not couple to each other and there
fore the elements of the vector 0 containing a number na 
of annihilation operators and a number nc of creation op
erators such that the quantity (na - nc) is different can be 
considered separately. As an example we write here the 
part 0' of the vector 0 composed of simple operators so 
that na - nc= 1 

(5.3 ) 
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The common one-particle Green's function4--7 is obtained 
A 

from the first element {aa} of 0'. 
A 

If we require to block-diagonalize H in the Green's 
function matrix, we have to introduce in Eq. (5.2a) the 
identity operator in the form of T rt and obtain 

A 

G(w)=(vtl n -II V), 

where 

A A 

n = (w - ~ + Ii). 

(5.4a) 

(5.4b) 

(5.4c) 
~ A 

The operators H and thus n in Eq. (5.4c) are block-
diagonal, i.e., the various configuration classes are decou
pled in all n-particle representations. 

We investigate now the consequences of the block
diagonalization of the one-particle Hamiltonian H in the 
Green's function G. As mentioned before, the different 
n-particle Fock spaces are by definition decoupled from 
each other since the Hamiltonian is a particle number con
serving o,Rerator. Therefor~ we may restrict our analysis to 
the part 0' [Eq. (5.3)] bf 0, which couples the N-particle 
space to the (N - I)-particle space and describes the re
moval of one particle from the exact N-particle ground 
state I \{I~). We find it, however, important to stress that 
all the following considerations can very easily be trans
ferred to other Fock spaces, i.e., to other Green's func
tions, using trivial modifications only. 

Inserting into Eq. (5.2a) a complete set of c09.,figura
tion states, it is easy to see that, if the operators 0 a and 
A A 

o (3 are identified with the elements of the operator 0' the 
only non vanishing contributions come from the set 
{11,6:-I)} and Eq. (5.2a) takes on the explicit form 

Ga{3(w) = L (\{I~I 0 ~t 11,6: - I) 
q,q' 

X (1,6: - II (w - E~ + H) - I 11,6~ - I) 

x(I,6~-IIOpl\{l~), (5.5a) 

G(w) = yt[ (w - E~)l + U] - Iy 

= vt[(w - E~)l + if] -IV. (5.5b) 

The configuration states { 11,6: - I)} can be divided, ac
cording to our general definition of classes, into N classes 
r, with r running from 0 to N - 1. There is a correspon
dence between the configuration classes of the (N - 1)-

A 

particle space and the blocks of the operator 0'. By select-
ing suitably the indices of the simple operators in the 
expression (5.3) the operator 0' can be ulteriorly subdi-

A 

vided into a "physical part" 0 p which has a one-to-one 
correspondence with the configuration classes and an "un
physioal part." The physical part contains the operators 
a;.ajpp p"" i.e., where all creation operators are related to 
unoccupied and the annihilation operators to occupied 
one-particle states. The other combinations constitute the 
unphysical part. As will become clear below, the consid
eration of the physical part only is sufficient to derive the 
most important consequences of the application of the 
block-diagonalization operator T to the Green's function. 
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Taking into account in Eqs. (5.2) the operator Op only, 
the matrix representation of the Green's function becomes 
a square matrix, where the blocks can be unambiguously 
labeled with the indices r of the configuration classes. The 
matrix of the residues has now a defined block structure 
and the single blocks can be written as 

"'- N 
Yr,,=(N -l,rl O"I\f1o)' (5.6) 

Interestingly, the residues matrix Y is a lower triangular 
block matrix, i.e., it has nonvanishing contributions only in 
the diagonal blocks and in the blocks below the diagonal. 
Moreover, we can show that the block-diagonalization of 

"'-
the Hamiltonian H in the expression of the Green's func-
tion also has an important consequence: the transformed 
residues matrix Y [Eq. (5.4b)] becomes an upper triangu
lar block matrix (see below). As a direct consequence, the 
spaces spanned by the different configuration classes r cou
ple only with the classes r' < r. This fact has an important 
and easy physical interpretation: Consider for example the 
usual one-particle Green's function, which is described by 
the residues I Y) = aa I \f1~). If we perform in Eq. (5.2) 
the transformation defined by Eq. (2.9) of the creation and 
annihilation operators, thus going from the unperturbed 
ones {aa} to the "exact" ones {a a}, it is easy to see that 
the one-particle Green's function expressed in the latter 
operators has occupied indices only. Consequently the one
particle Green's function has only N poles and they are all 
characterizeable by the occupied one-particle states. It is 
thus reasonable to search for a representation of the one
particle Green's function in the space spanned only by the 
configuration class 0 of the (N - 1 )-particle space. By 
similar arguments, the propagator specified by I Y) 
= alatPr I \f1~) can be transformed into a matrix with in
dices which correspond only to the configuration classes 0 
and 1 of the (N - 1 )-particle space. Hence, by using the 
transformation r in the Green's function we simulta
neously cast all propagators into their respective smallest 
configuration spaces possible. This implies a block
diagonal Hamiltonian and an upper triangular matrix of 
r~sidues. The action of the block-diagonalization operator 
T on the Green's function G is graphically represented in 
Fig. 1. 

In order to show that the transformed residues matrix 
Y is an upper triangular block matrix we recall first that 
the operator r satisfies the following important relation8

: 

rltP~)=I\f1~). (5.7) 

Consider now the block Y r" of Y: 
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FIG. 1. Action of the operator T on the 
Green's function for the specific case of 
the three-particle Fock space. In this 
space there are four configuration classes 
r, with r running from 0 to 3. The inverse 
matrix ii-I becomes a block-diagonal 
matrix and the matrix of residues 
changes from a lower to an upper trian-
gu1ar block form. 

(5.8) 

Since r is by definition a one-particle operator, the expres
sion rt (} "T represents a unitary transformation of tbe 
operators aa and al appearing in (} ". The operator 0" 
which derives from this transformation is thus composed 
of the same number of creation and annwilation operators 
as (} ". The operators that appear in 0" can always be 
written as linear combination of th~ operators aa and al. 
Therefore, the block Y r" is zero if 0" contains more sim
ple operators than necessary to construct a state IN - l,r) 
of the class r by applying creation and annihilation oper
ators to I tP~). It follows that the lower triangular blocks of 
the matrix Y vanish identically and our statement is 
proven. 

VI. CONNECTION TO THE GRAM-SCHMIDT 
ORTHOGONALIZATION PROCEDURE AND THE 
EXPLICIT MATRIX REPRESENTATION OF T 

The fact that the product Tty gives rise to an upper 
triangular block matrix reminds of the classical QR de
composition (or Gram-Schmidt orthogonalization proce
dure) of a square matrix. \0 As is well known, the QR 
procedure is a decomposition of a square real matrix M 
into a product of a unitary matrix Q and an upper trian
gular matrix R according to 

M=QR. (6.1 ) 

This decomposition is unique up to phase factors. In order 
to generalize Eq. (6.1) to block matrices we have simply to 
identify the matrices with square matrices having a well 
determined block structure in which R is an upper trian
gular block matrix. In this case the decomposition 
expressed by Eq. (6.1) is no longer unique. Two different 
QR decompositions can differ at most by a unitary block
diagonal matrix. To prove our statement, consider another 
QR decomposition for the block matrix M. With an anol
ogous notation as used in Eq. (6.1) we can write: 

M=Q'R'. (6.2) 

From Eqs. (6.1) and (6.2) it follows that 

R'=Q,tQR. (6.3) 

Assuming that the diagonal blocks of the matrices 
involved in Eq. (6.3) are not singular and taking into 
account that both Rand R' are upper triangular block 
matrices, it necessarily follows that the unitary matrix Q/Q 
is a block-diagonal matrix. 

A. Tarantelli and L. S. Cederbaum 834 



                                                                                                                                    

Identifying V with the m~rix to be QR-decomposed 
we find that, because of V = 1Y, we may consider Q = T 
and R' = Y, in accordance with the results of the preced
ing section. It turns out that the matrix T and the matrix 
Q (which is obtained by simply orthogonalizing the col
umns of blocks of the matrix V by means of the Gram
Schmidt procedure) may differ at most by a unitary block
diagonal matrix. The block-diagonalizing transformation 
matrix T is just one of the possible unitary matrices that 
follow from the QR-decomposition of V. We shall see be
low how T is obtained from V. 

Now we attempt to find explicit expressions for the 
matrix representation of the operator T which block
diagonalizes the Hamiltonian ii. Such expressions are very 
helpful in performing practical calculations. In any n
particle space the matrix T reads l

,8: 

(6.4) 

where 

(6.5) 

We already found out elsewhere8 that the first column 
of blocks of the matrix U coincides with the first column of 
the matrix V, up to a factor (t/Jffl'llff) - 1. The calculation 
of the remaining part of U can be performed by subse
quently computing one column of blocks after the other. 
The line of the general calculation and the details of the 
explicit derivation of the second column as an example are 
reported in the Appendix. Here we quote the results that 
we have obtained for the first three columns: 

UIO= «t/J~I 'II~» - IV 10, 

Uri = «t/J~I 'II~» -1{Vrl - PI (r)VIOUOl}, 

U12 = «t/J~I'II~» -1{V12 + ~Pl(r)P2(r)VIOU02 
- P2(r)VrlUI2}' 

(6.6a) 

(6.6b) 

(6.6c) 

In these formulas the coefficients pi(r) are given by pi(r) 

= i - r. The general form for the block U,." of U is also 
given in the Appendix. The expressions presented in Eqs. 
(6.6) still contain some unknown block elements of the 
matrix U itself. These terms are the blocks U,." with r < r 
and can be obtained by using the necessary condition that 
the matrix (utU) is a block-diagonal matrix. In other 
words, we require, according to the definition, that the 
columns of the matrix U are orthogonal to each other. As 
an example, we determine here UOlt the knowledge of 
which completes the computation of the second column of 
blocks of U. In order to obtain the term UOI we use the 
condition 

(6.7) 

and the result reads: 

UOI = (PI) - I L (VIO)tVrI' (6.8a) 
r 

where 
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Pl= L (VIO )tpl(r)VIO, (6.8b) 
r 

If the Green's function in question is specified, PI can be 
given explicitly. For instance, dealing with the one-particle 
Green's function it takes on the following appearance: 

(6.8c) 

Once U is calculated, the transformation matrix T is ob
tained by multiplying it with the unitarization factor 
(utU) -112, which is a block-diagonal matrix. This com
pletes the computation of an explicit form for the block
diagonalization matrix T. 

These formulas have ~n obtained under the assump
tion that the Hamiltonian H is a one-particle operator and 
thus the corresponding N-particle ground state is described 
by a single determinant. However, we anticipate that these 
formulas are also meaningful in the more general case of 
an Hamiltonian where the interaction part contains also 
two-particle terms, by simply identifying I 'IIff) with the 
exact N-particle ground state of the system (see next sec
tion and Ref. 8). We should mention here that I 'IIff) is the 
only a priori unknown quantity in the expression of V and 
hence ofT [see Eqs. (5.5) and (6.6)]. 

VII. DISCUSSION AND CONCLUSIONS 

The unitary matrix that brings a Hermitian matrix H 
into block-diagonal form can be uniquely determined un
der very simple and transparent conditions. In this work 
we investigated the block-diagonalization problem in the 
framework of the second" quantization formalism. We 
started with an operator H that in any n-particle Fock 
space has a well-defined matrix representation and 
attempted to answer the question whether the transforma
tion matrices T that can be separately given in the various 
N-particle spaces can be considered as different matrix rep
resentations of the same operator T. Interestingly, we 
reached the very important result that the block-

" diagonalization operator T exists and is unique. As a par-
ticular example we concentrated our attention to the case 

" of an operator H given by a one-particle operator. In this 
case the block-diagonalization operator can be constructed 
and given in explicit form. 

As an important application we approached the 
Green's function theory. The Green's function could be 
defined in a very general way. This general form contains 
the information about all propagators related to the same 
physical process. As a specific example we analyzed the 
various propagators that describe the process of removal of 
one particle from the exact ground state of the system. As 
is well known, the propagators that are suitable to describe 
this process connect two Fock spaces, which can be char
acterized as N- and (N - 1 )-particle spaces. We point out, 
however, that the theory can be straightforwardly gener
alized to any other Green's function and to any other 
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Fock space by simple modifications. This is possible be
cause we have at our disposal a block-diagonalization op-

'" erator T which produces the same effects and conse-
quences in any n-particle space. 

If the Hamiltonian that appears in the Green's func
tion is taken to be a one-particle operator describing, for 
instance, particles in an external field, the block
diagonalization of the Hamiltonian matrix allows for an 
exact reformulation of the propagators which has a very 
interesting interpretation. From an algebraic point of view 
the block-diagonalization of the Hamiltonian matrix has as 
a direct consequence that the physical part of the residues 
matrix becomes an upper triangular block matrix. The 
physical interpretation of this transformation can be sum
marized as follows: each propagator can be exactly refor
mulated as a matrix in that configuration space which has 
the same dimension and the same characteristics as the 
matrix which one would obtain in the space spanned by 
the exact eigenstates of the Hamiltonian. This space is 
clearly the smallest space necessary to have an exact rep
resentation of the propagators. This property of the prop
agators can be explicitly proven by taking into account 
that the Hamiltonian of the system is a one-particle oper
ator and thus its eigenstates are described by single Slater 
determinants in a suitable basis of one-particle states. Since 
we can perform the transformation by means of an oper
ator T which is uniquely defined, we have an instrument 
which allows for an exact and simultaneous reformulation 
of all propagators related to the same process. Moreover, 
the matrix elements of the transformation matrix T can be 
explicitly constructed by means of a procedure which is 
strictly related to the well known Gram-Schmidt orthog
onalization procedure. We have demonstrated that the re
sults that one obtains by simply orthogonalizing the col
umns of blocks of the residues matrix to each other and by 
our transformation may differ at most by a block-diagonal 
unitary matrix which can be given. 

Finally, we would like to briefly discuss the impor
tance of the block-diagonalization operator T in the more 
general case of a Hamiltonian that contains, in addition to 
the one-particle term, also two-particle interactions. The 
explicit construction of the matrix elements of T shows 
that all formulas (which are obtained by taking into ac
count that the exact eigenstates of the one-particle opera
tor ii are Slater determinants) are expressed as a function 
of the exact N-particle ground state l'I'ii) only. Clearly, if 
the Hamiltonian contains also two-body terms, I 'l'ii) is no 
longer a determinant and in general is not known exactly. 
In this case the block-diagonalization operator becomes 
very complicated. However, the transformation matrix ob
tained here for the one-particle Hamiltonian is still useful 
also in the general case if we simply identify I 'l'ii) with the 
exact N-particle ground state. Although with this proce
dure the transformation T does not block-diagonalize ex
actly the Hamiltonian matrix H, the transformed Hamil
tonian assumes a very interesting structure.8 It can bt1 
proven that this structure is very useful in computing 
propagators consistently in perturbation theory. 
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APPENDIX 

In the following we will carry out the explicit calcula
tion of the second column of blocks of the matrix U [Eq. 
(6.3)]. The procedure of calculation is completely general 
and can be applied to any Green's function. In particular 
the results that can be obtained for the matrix U are inde
pendent of the choice of the n-particle space. The simplest 
way to derive the matrix U is to consider the one-particle 
Green's function and the related propagators of higher 
order, i.e., to work in the (N - I)-particle configuration 
space. As mentioned in the text and explained in detail in 
Ref. 8, the first column of the matrix U reads: 

U,o=S~-I)(S/%-I» -1= «4>~1 'I'~» -Iy,o. (AI) 

Here with S~ - 1) we denote the block "' of the eigenvec
tor matrix S(N - I) of H(N - 1). In the following we drop the 
superscript (N - 1) whenever unnecessary. 

The second block of columns of the matrix U reads, by 
definition [see Eq. (6.3)], 

(A2) 

and we attempt now to find an explicit form of this quan
tity in terms of the blocks of y. For this purpose we ana
lyze the expression 

yrIS\1=~ L L (N - I,rla);apjl'l'~)(4)~laJataul'l'f-I). 2 .. 
U IJ (A3) 

The states I 'I'{" - I) are eigenstates of H(N - I) and corre
spond to the configuration class r = 1. 

To start the discussion, we transform Eq. (A3) into a 
sum of two terms obtained by considering the sum over the 
unoccupied index u as a sum over all one-particle indices a 
minus a sum over the occupied ones: 

yrIS\1=~ L L (N - I,rla!aPjl'l'~)(4)~laJa;aal'l'f-l) 
2 a ij 

I 
-2 L (N - I,rla!aPjl'l'~) 

k.ij 

(A4) 

The two terms of Eq. (A4) have now to be handled in a 
different way. The second term is indeed quite easy to 
transform into a more suitable form since the operators 
aJ, aj, and ak have all occupied indices and therefore act 
on the reference state (4)iil in a well-known way. Using the 
anticommutation properties of these operators and bearing 
in mind that a creation operator with occupied index gives 
a vanishing contribution when acting on the reference 
state, we obtain for the second term of Eq. (A4): 
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where s is the number of occupied one-particle states in 
IN - 1,r), i.e., s=N - 1 - r. 

By transforming the operators a'lapj into the operators 
ala pa r which act on I'I'~> [see Eq. (2.9)], we obtain 
for the first term of Eq. (A4) 

1 ~ ( 1 I-t- - I,.,N)(A.NI-t-t- I,TlN-I> -~ N- ,r akajaj TO '1'0 ajajak TI 
2 k,jJ 

+ ~ L L (N - 1 ,r I a! a j a j I 'l't> 
2 u jJ 

(A6) 

where we have taken into account that a creation operator 
a j with occupied index gives zero by acting on I 'I'~>. The 
second term of Eq. (A6) can be straightforwardly rewrit
ten to give SrI (¢~I 'I'~>, while the first term gives rise to 

To obtain this result we made use of the anticommutation 
relations of the "exact" operators and finally, using Eq. 
(2.9) we transformed the remaining "exact" operator a j 
into the operator aj. In Eq. (A7) s is the number of 
"exact" occupied one-particle states in 1'1'1" - I>, i.e., 
s- =N -2. 

Collecting all above results we have 

Y rIS l1 =PI (r)YrnSOI + Srl(¢~I'I't>· (A8) 

From this equation, recalling Eq. (A2) it is easy to derive 
the final form, Eq. (6.6b). 

837 J. Math. Phys., Vol. 31, No.4, April 1990 

The successive columns of the matrix U are derived 
using the same procedure. For example, the third column 
is calculated starting with the analysis of the expression 
Y 12S22 and in general the r'th column is obtained by eval
uating Y,ISII' The expressions which we derive by the 
transformations and the anticommutation rules of the op
erators are composed of more terms and are more complex 
since the number of operators which have to be handled is 
larger for larger r'. The general formula for the block 
U", of U reads: 

{ 

1- I } 

U",=(¢<il'l'b',>-I Y rl + L Cr,l,kYrkUkl' (A9a) 
k=O 

where 

Cr,l,k 

( _l)"-k 

(r' - k)! 

1 

II (1- r). (A9b) 
I=k+ I 
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The propagator relative to a particle constrained to move in a finite region of space is 
calculated in the framework of path integrals. This region of the three-dimensional space is 
delimited through a sector of opening angle a, and also through the action of two attractive 
harmonic potentials, one being central and located in the Oxy plan, and the other directed 
along the z axis, with respective pulsations wand Wo. It is shown that for a = 1T/2 and 1T the 
propagator is the sum of propagators evaluated on classical paths. The important case of the 
edge (a = 21T) is considered. 

I. INTRODUCTION 
K(r"r;;n = J iPxiPPxiPyiPPyiPziPPz 

Xexp [~ iT dt(pxx + pyy + pzz 

In this paper, we present a calculation of the propagator 
relative to a particle confined in a region of the three-dimen
sional space, delimited through the action of an external 
force. This study is done in the framework of path integrals. 

The external potential that acts upon the particle is 
made up of an angular part Vs and a harmonic part V HO' 

The first one, Vs , maintains the particle in a sector of open
ing angle a, situated in the plan Oxy, 

p;+p;+p; ] - - Vs (X,y) - vHO (x,y,z) . 
2m 

{a, if ° < ¢ < a, 
Vs(x,y) = Vs(¢) = 

00, elsewhere. 
The second potential is a sum of harmonic oscillators, 

VHO (x,y,z) = !mw2(x2 + y2) + !mw~r, 
of which the pulsations wand Wo are of arbitrary value. For 
confined particles, the exact solution of the Schrodinger 
equation exists only for certain particular regions. For the 
region under consideration the case a = 21T has recently 
been solved exactly in the Schrodinger formalism 1 and 
through the image method. 2 

In the framework of the path integral formalism, only 
the pure sector (VHO = 0) has been treated.3 

Our aim is to find the propagator for a particle moving 
inside the compound potential Vs + V HO' utilizing integrals 
that are calculated either directly or through the image 
method (Sec. II). For particular values of the opening angle 
a of the sector, a = 1T/2 and a = 1T, it is shown that the 
propagator collapses, as it should, into an algebraic sum on 
classical paths (Sec. III). Finally, the really important case 
a = 21T is analyzed. This case has been studied in the absence 
of harmonic forces, by Sommerfeld in the framework of opti
cal diffraction through an edge.4 

II. PROPAGATOR 

In the canonical version the propagator in Cartesian co
ordinates is written 

(1) 

The motion along the z axis being independent of the others, 
the propagator ( 1) is factorized in a product of two propaga
tors: 

K(r" r;;n = Kxy (x"y"x;,y;;nKz (z"z;;n, (2) 

where 

Kz(z,,z;;n 

= J iP ziP pz exp{ ~ iT dt [pzz - ~! -+ mw~r ]} 

= [ mwo ] 112 exp {~ mwo 
2i1rli sin (won Ii 2 sin(won 

X[(zJ+z7)coS(won-2z,zd}, (3) 

is the known propagator relative to the harmonic oscillator 
along the z axis,5 and 

Kxy(x"y"x;,y;;n 

= J iPxiPPxiPyiPPy exp {~ iT dt [pxx 

+ pyy - «p; + p;)/2m) 

_ Vs(X,y) - ~mw2(x2 + y2)]} , (4) 

is the propagator describing the motion of the particle in the 
Oxyplan. 
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A. Calculation of Kxy 

It is advantageous to change the coordinate system, and 
to go over to polar coordinates: 

x =pcost/J, 

Y = P sin t/J, O<p < 00 and O<t/J<217'. 

The propagator (4) has then the following form6
: 

Kxy (PI,t/JI,p;,t/J;;n 

= [PIP;] -1/2 f gpgppgt/Jgp." 

xexp {~ iT dt [ppp + p.,,~ 

p~ p~ -1f/4 1 2 2]} (5) --- - Vs(t/J) --mwp , 
2m 2mp2 2 

the quantum correction ~/8mp2 being exclusively the result 
of the coordinate change. 

On the other hand, the motion of the particle in the plan 
Oxy is restricted to the interior of the sector ( Vs = 00 on the 
outside) and thus 

Kxy = 0 if the points (x;, y;) = (Pi>t/J;) 

or (xI' YI ) = (PI,t/J1 ) 

do not belong to the sector. 
Then, if (Xi> Y;) and (xI' YI ) belong to the sector, or if 

0< t/JI' t/J; < a, and o <PI' P; < 00, the propagator to be calcu
lated becomes 

Let us increase the domain of variation of t/J and therefore the 
opening of the sector, via the following canonical transfor
mation: 

O<t/J <a-O < 0< 17', 

0= (17'/a)t/J; Pe = (a/17')p.", 
(7) 

and if we take into consideration the transformation of the 
measure 

• N-I N dp"'j 17' 
gt/Jgp." = 11m II dt/Jj II -=-~O~Pe, 

N-coj=1 j=127Tfz a 

then (6) becomes 

Kxy = : (PIP;)-1/2 f gpgPpgOgPe 

Xexp {~ iT dt [ppp + PeB 

_ P~ _ (Pe17'/a)2 -1f/4 _ 1. mw2p2]} . (8) 
2m 2mp2 2 

Let us now utilize the following result obtained for the rigid 
rotator6•

7
: 
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f gOgPe 

xexp{i.i
T 

dt [peB _ p~ _ If(n
2 

- 1/4) ]} 
Ii 0 2ma2 2ma2 sin2 0 

= f exp[ - i. (/ + n + 1~2)2IfT] 
1=0 Ii 2ma 

x(/+n+J..) (/+2n)! 
2 l! 

(sin 01 sin oy 12p I~ nn (cos ( / )P I~ nn (cos 0;). (9) 

This formula is simplified when setting n = 1/2 and utilizing 
the relationS 

P ;-':~;2 (cos 0) = [2/(17' sin 0)] I 12(sin ( vOl/v), 

with v= 1 + 1 
In this case Eq. (9) becomes 

f gOgpeexp[~ iT dt(pe B - 2~a2)] 
= ~ f exp[ - i 1fJ2~sin(/OI ) sin (lO; ). 

17' 1 = I Ii 2ma2 J 
( 10) 

Now Eq. (10) can also be obtained through the image meth
od: it suffices to set a = 1, L = 17' in the calculus of Ref. 9. 

It is easy to verify with the help of the Poisson summa
tion formula 

I=~ co /(/) = mX co f_+coco dt/J/(t/J)e
2itrm

." 

that Eq. (10) is the algebraic sum of the propagators relative 
to all possible classical paths. 

Let us first perform the integration in (8) on ~ 0 ~ P e, 
using the expression (10) (setting a = a/17'), and let us go 
back to the old variable t/J [t/J = (a/17')0] : 

Kxy = ~ f sin(117' t/JI)sin(117' t/J;) 
a 1=1 a a 

X {[PIP;] -1/2 f gpgPP exp [ ~ iT dt [ppp 

_ p~ _ ~ ((/17')2 _ 1.) _ 1. mw2p2]]} . 
2m 2mp2 a 4 2 

(11 ) 

The variable P." has thus been quantized (P." -1i117'/a) as it 
should. 

Let us then perform the integration on ~p~pp. The 
path integral ofthe harmonic oscillator, supplemented by a 
centrifugal barrier, has been calculated a long time ag06 

through direct integration. This very integral has recently 
also been obtained via the image method. 10 

Thus, finally kxy can be evaluated either through direct 
integration or through utilization of the image method. 

Its expression reads 

Kxy (PI,t/J1' p;,t/J;;n 

2mw [ imw 2 ] =.. exp -- (PI + P7)cot(wn 
ilia sm(wn 21i 

co • (117' ). (117') (mwptP;) + L sm -t/JI sm -t/J; Iltr,a .. , 
1= I a a zli sm(wn 

(12) 
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where Iv is the modified Bessel function. 
The product of the propagator ( 12) with the propagator 

( 3) gives the explicit expression of the propagator defined in 
( 1 ). It is then easy to deduce from it the spectrum and the 
corresponding wave functions. 

B. Spectrum and wave functions 

When setting x = (m(J)/Ii)p;. y = (m(J)/Ii)p;. 
Z = e - 2iwT ( Izl < I). in the formula 11 

(xyz) - v/2 [ X + y] (2 (xyz) 1/2) 
"":""'!'--'--- exp - z -- I 

I-z I-z v I-z 

00 L~(x)L~(y) 
= I nl Z'. 

n=O r(n+v+1) 
it is possible to separate the variables PI' Pi> and Tin (12). 
This leads to 

( 13) 

where 

[
2m(J) nl ] 112 

/"1 (p) = ---,;- r(n + 1 + i-n/a) 

X (m(J) 2)l1r/2a ex [ - m(J) 2] L hrla(m(J) 2) 
Ii P P 21i P n Ii P • 

the L ~ being the Laguerre polynomials. 
In the expression (3). the separation of the variables z I' 

Zi> and Tis also possible. and has been done a long time ag05
: 

Kz = m~o <l>m (z/)<I>m (Zj )exp [ - i(J)o( m + ~ )T] . 
(14) 

where 

<l>m (z) = (':0) 114 [2 nnlj1/2 

xexp[ - ~:o r]Hn(Z~m:o). 
the Hn being the Hermite polynomials. 

The product of the propagators (13) and (14) leads 
then to the spectrum 

Emnl = wo(m +~) + w(2n + 1 + rn/a). 

as well as to the corresponding wave functions 

tPmnl (p.t/J.z) = (2/a) 1/2 sin (hrt/J/a)fnl (p )<I>m (z). 

with (m.n) = 0.1.2 •...• 00. and 1= 1.2.3 •...• 00. 

III. PARTICULAR CASES 

Let us now examine particular opening angles of the 
sector. Let us show that for a = 1T/2. 1T. 21T. the propagator 
(I) [whichisa product of the series (12) and the propagator 
(3)] can be put into a compact form. 
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A. First case: a=1I'/2 

Thanks to the formula 12 

00 

cos[z sin t/J] = Jo(z) + 2 I J2k (z)cos(2kt/J). 
k=1 

where t/J is replaced by 1T/2 - 8. it is easy to show that the 
propagator (I) takes the following form: 

KfT/2 (r/.rj;T) = F( T){exp[ (i/Ii)ScJ (A.D;T)] 

+ exp [(i/Ii)Scl (/3.D;T)] 

- exp [(i/Ii)Scl (/I.D;T)] 

- exp[ (i/Ii)Scl (/2.D ;T) n. (15) 

whereD designates the starting point. rj = (Xi> Yi>Zj). of the 
particle. and A designates its end point rl = (XI' YI,z/) at 
final time. Sc is the action. evaluated along the classical path. 
of the particle submitted to the potential VHO (xyz): 

ScJ(A.D;T) 

and 

= (m(J)/2 sin «(J)T»[ (x; + y} + x; + Y;) cos «(J)T) 

- 2x1 Xj - 2YI Y;] + m(J)o/(2 sin (woT) ) 

X [(z} + Z;)cos«(J)oT) - 2zlz; ] 

F( T) = m(J) m(J)o 
[ ]

1/2 

2i1Tli sin «(J) T) 2i1Tli sin «(J)o T) 

- Det -----_ [ [i a
2
scJ ]]112 

21T1i ar .iJr; • 

is the usual fluctuation factor. 
The points II' 12, and 13 are the images of the point A 

with respect to the reflecting. vertical. and horizontal walls. 
Their coordinates are (- XI' Y /'Z I)' (XI' - Y /'z I ). and 
( - x/' - YI.z/)' respectively. 

Thus fora = 1T/2. the propagator (15) collapses into an 
algebraic sum on the four classical paths. 

B. Second case: a = 11' 

Thanks to the Fourier expansion 13 

+00 

exp[u cos t/J] = I eilo/>II (u). 
1= - 00 

it is easy to show that that propagator collapses into a sum on 
two classical paths: 

KfT (rf.r;;T) = F( T){exp[ (i/Ii)ScJ (A.D;T)] 

- exp[ (i/Ii)ScJ(/2.D;T) n. (16) 

12 being the image of D with respect to the horizontal wall. 

C. Third case: a = 211' 

Thanks to the formula 14 

[~r/2 exp[izcos(2t/J)] r cos 0/> exp( -it2)dt 

= ~Jo(Z) + I exp[i1Tk] J k/2 (z)cos(kt/J). 
2 k=1 4 

one can show that in this case: 
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K 21f (r"r;;n 

= ~ F(n{exp[! Sc/(A,D;n] 

where 

erf(z) = - exp( - u2 )du 2 iZ 

.[iio 
is the standard error function. 

One can see that in this case the propagator (17) is de
composed into two parts: one associated with the two classi
cal paths (incidental and reflexive) and the other corre
sponding to the edge diffraction, expressed through the 
terms containing the error functions. Although the error 
functions are superpositions of Gaussians, it is not possible, 
in this case, to have for the propagator a sum on classical 
paths. 15 

IV. CONCLUSION 

We have calculated exactly in the Feynman approach 
the propagator ( 1) of a particle confined in a region, and we 
have made obvious the fact that one can obtain Eq. (12) and 
thus (1) either through a direct integration calculus or 
through the image method. We have shown that for the par
ticular cases of opening angles a = 11'/2 and 11', the propaga
tor takes quite a remarkable form. It is possible to show in a 
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general fashion that for opening angles a of the sector, such 
as the ratio 1T" / a is an integer, the propagator collapses into a 
sum of propagators evaluated on classical paths. For the im
portant case a = 211' the expression (17 )-the main result of 
this paper-was already obtained in Ref. 1 (but one has to 
replace t/J by 11' + fJ), in the Schrooinger formalism. 

Finally, by suppressing the propagator Kz and by mak
ing (t) tend towards 0, one comes back to the results of the 
pure sector.3 
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The operators of the form H = weD) + :Iva (1T" x), which are a natural generalization of N
body SchrOdinger operators, are studied. Certain criteria are presented that allow one to verify 
if a given pseudodifferential operator is Kato smooth with respect to H. 

I. INTRODUCTION 

Let K be a Hilbert space, A a subset of R, H a self
adjoint operator, and C a bounded operator. Let EtJ. (H) 

denote the spectral projection of H onto A. We say that Cis 
H-smooth (or Kato smooth with respect to H) on A if and 
only if, for any t/JERan Et. (H), 

f: 00 IICeiHtt/lll2 dt< 00 • 

This concept has been introduced by Kato. 1.2 The H-smooth 
operators appear very often in the theory of Schrodinger 
operators, especially when we want to prove the absence of 
the singular continuous spectrum and the asymptotic com
pleteness of the wave operators. 1.3-1 1 The theory of H
smooth operators is especially interesting in the context of 
N-body SchrOdinger operators. It can be shown, for in
stance, that if A is a compact interval that avoids the thresh
olds and eigenvalues of a fairly general N-body Schrodinger 
operator H, then (ixi + 1) - 1/2 - € is H-smooth on fl.. This 
was proved in the three-body case in Refs. 12 and 13 and in 
the N-body case in Ref. 14 (see, also, Refs. 15 and 16). There 
also exists an interesting different proof of this fact. 17 

The importance of H-smooth operators is especially evi
dent in the remarkable paper 1 

1 by Sigal and Soffer devoted to 
the proof of the asymptotic completeness of the short range 
N-body scattering. The proof that the operators from a suffi
ciently rich family are Kato smooth with respect to an N
body Schrodinger operator was the crucial step of the proof 
contained in Ref. 11 (see, also, Ref. 18). 

Regular N-body SchrOdinger operators are self-adjoint 
operators on L 2(R3N

) of the form 

(see, e.g., Refs. 11, 14, and 19-21). By an appropriate choice 
of the coordinates in the configuration space the kinetic en
ergy operator can be made equal to minus the Laplacian. 
The fact that the potentials vij depend on the differences of 
the positions of the particles is often not essential in the 
mathematical analysis of such operators. Thus following 
Refs. 22-24 instead of (1.1) one can study operators on 
L 2(X) ofthe form 

H= -fl.+ L Va (1T"x) , 
QEd 

where X is a Euclidean space isomorphic to Rn 
, {Xa : OEd} 

is a family of its subspaces,.xu = X j Xa , the 1T" are the ca
nonical surjections from X onto .xu , and the Va are the real 
functions on xa. 

One can go one step further. Let us forget about the 
scalar product in X; let K be the space dual to X, w a real 
function on K and D = (lji)V. By a dispersive N-body 
Schrodinger operator we will mean a self-adjoint operator on 
L 2 (X) of the form 

H = weD) + L Va (1T"x) . ( 1.2) 
<lE." 

Such operators have a lot in common with regular N-body 
Schrodinger operators [for which w(k) can be made equal 
to k 2] . They seem to be of a significant physical interest, e.g., 
in the physics of interacting relativistic particles or in solid 
state physics. 

This paper is devoted to the study of H-smooth opera
tors, where His of the type (1.2). Weare partly motivated by 
the possibility of applying our results in the scattering theory 
of such operators. Besides, we think that H-smooth opera
tors are interesting for their own sake providing some nontri
vial information about the properties of the evolution eiHt . 
Loosely speaking, the H-smoothness of C on fl. means that 
the particles with the energy in A "spend a finite amount of 
time in B "'B." 

We will assume in this paper that the potentials Va decay 
in some sense at least as 11T" x I - p. , where Jl > O. We will as
sume, moreover, that for some fixed open interval Ao and 
any E> 0 the operator ( Ix I + 1) - 1/2 - E is H-smooth on Ao. 
It turns out that this property can be proved for a certain 
class of dispersive N-body Schrodinger operators and an ap
propriately chosen Ao by using the so-called Mourre esti
mate (see Ref. 25 and, also, Refs. 12-16 and 24). As we said 
earlier, this property is well known in the case w(k) = k 2, if 
Ko does not contain thresholds or bound states. 

Throughout this paper we will try to find conditions on 
the symbol w of a pseudodifferential operator w(x,D) that 
will guarantee theH-smoothness ofw(x,D) on A ifK C fl.o.1t 
turns out that this property depends to a great extent on the 
phase space support of w. In particular. it is natural to intro
duce the following definition. Let n be a subset of the phase 
space X xKandACR. We say that nt.Y.9' tJ. if and only if 
WES -1/2 andsupp wCnimplytheH-smoothnessofw(x,D) 
on A. (Here S'" denotes the set 
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The lettersJV and g; in JV g; a stand for "no propagation." 
The family JV g; a is a variation of the concept of the propa
gation set used in Ref. 11. A very similar concept was used 
also in Ref. 18. 

Now let us say a few words on how the paper is orga
nized. The first three sections give basic definitions. In Sec. 
IV, we study a certain subset of the phase space that we call 
the energy shell. Roughly speaking, we show that the com
plement of the energy shell belongs to JV g; a if Xc 6.0' This 
fact is easy to prove and was essentially known before. 26 Its 
proof is based on the so-called geometric method (see, e.g., 
Refs. 14, 15,24, and 27-30). 

Section V introduces a more powerful technique for 
finding H-smooth operators that goes back to Putnam and 
Kato.2.3.9.11 The main idea of this method is the following 
fact: if B is bounded and i[H,B] is positive, then the square 
root of i[H,B] is H-smooth. We use this method jointly with 
the geometric method and the calculus of pseudodifferential 
operators to obtain an interesting criterion for finding sets 
belonging to JV g; a' Roughly speaking this criterion says 
thatifnCX XK, ueS°, XC6.oand the Poisson bracketofw 
and u is non-negative on the energy shell and strictly positive 
on n, then nEJY g; a' 

In Sec. VI we try to formulate a more constructive crite
rion for verifying if a given n belongs to JV g; a' This crite
rion, we think, is based on an intuitively appealing analysis 
of the geometry of the phase space. Roughly speaking, we try 
to understand better the asymptotic properties of the evolu
tion eiHt by thinking in terms of classical physics. 

Unfortunately, the family of H-smooth operators that 
we can get by using the methods of this paper is rather limit
ed. In particular, in the case w (k) = k 2, Sigal and Soffer had 
to find a different family of H-smooth operators in order to 
prove the asymptotic completeness of the N-body short 
range scattering (see the propagation theorem in Refs. 11 
and 18). Let us point out that the techniques that we use in 
our paper are somewhat different than those used in Refs. 11 
and 18. Looseley speaking, in this paper we avoid studying 
what happens ifthe particles interact and we concentrate on 
the free motion. The interaction enters our considerations 
chiefly through the confinement of the particles to the ener
gy shell and the possible absence of conservation of the mo
mentum in some regions of configuration space. 

The new ingredient that makes it possible to obtain a 
richer family of H-smooth operators in the case w(k) = k 2 
in Refs. 11 and 18 is the exploitation ofthe properties of the 
operator r = !(D' (x/lxl) + (x/lxl)' D) and the applica
tion of the Mourre estimate. Unfortunately, there seems to 
be no natural generalization of the operator r in the case of a 
general dispersive w(k). Nevertheless, the family ofthe H
smooth operators that one can obtain by using the methods 
of this paper, while not so spectacular as the one described in 
Refs. 11 and 18, is also quite nontrivial and interesting. 

II. GEOMETRY OF THE PHASE SPACE 

Throughout this paper X will denote a vector space iso
morphic to lR" ; {Xa : aed} will be a certain finite family of 
its subspaces. To be consistent with the notation used in the 
literature we will write a l Ca2 whenever X a , ::JXa, and 
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alUa2 = a3 whenever Xa, nxa, =Xa, (see, e.g., Refs. 19-
23). Here Xam;n will denote X and Xamax = {O}. We will as
sume the following properties of d: 

(1) amin ed , 

(2) amaxed , 

(3) if a l,a2ed, then a l Ua2ed . 

We will denote X IXa by X". The spaces dual to Xa, X, 
andXawill be denoted by Ka, K, andK a. We will fix a scalar 
product in X that will enable us to identify X" with a certain 
subspace of X and Ka with a certain subspace of K. The 
symbol1T a will denote the projections of K and X onto Ka 
and Xa; ~ will be the projections of K and X onto K a and 
xa. 

If yeX, then let us define the unitary operator Uy on 
L2(X) such that (Uyq7)(x) =q7(x-y). An operator 
BeB(L 2(X» will be called a-fibered if and only if UyB 
= BUy, for yeXa .9.14 Such operators can be decomposed as 

B= ('" dka B(ka) , 
JKa 

where kal---+B(ka ) is a function from Loo (Ka,B(L 2(X" »). 
Here, Ixl will denote the Euclidean norm of x; B(y,r) will 
denote the ball of center y and radius r. 

We fix a certain fixed positive COO function 
X3Xt---+(x)elR such that, for Ixl > 1, we have (x) = IxI

We also define 

S';(X XKa) 

= {ueC 00 (X XKa): la~a~aul,,;;cap(x)m-'a'.5}. 

We will usually write S'; instead of S';(X XK) and S';(X) 
instead of S';(X X {O}). 

Let O";;E, 0,,;;c5,,;;1, and OU CX. Define 

OU£'.5 = {xeX: dist(x,OU )";;Elxl.5}. 

If O";;K and QCKa , we define 

QK= {kaeKa: dist(ka,Q)<;K}. 

IfncX XK, we define 

n£,.5,K = U {x}£,.5 X {k}K . 
(X,k)EO 

A subset n of X X K is called conical if and only if 
(x,k)eX xK and AelR implies (Ax,k)en. It is called a-fi
bered if and only if (x,k)en and 1Tak = 1Tak' implies 
(x,k')en. 

We define Za = Xa \. U b¢aXb and Z(£,Il) 
a 

=X:,.5\,Ub¢aX:,Il. NotethatX= UQE.afZ~£,Il). 
In all the above symbols we will usually drop c5 if c5 = 1. 
It is easy to see that there exists Eo > 0 such that if 

O<;E";;Eo, aq:b, and bq:a, then X: nx: = {O}. For such E, 

the family {Z ~£): aed} is a partition of X into disjoint sets. 
The rest of this section is devoted to the construction of a 

family of special partitions of unity on X. Similar partitions 
of unity (usually with c5 = 1) are a typical ingredient of the 
geometric method. 1 1,23,27-30 

Proposition 2.1: Let 0<c5< 1 and 0<E1 <E2; or c5 = 1 
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and 0 < EI < E2 < Eo. Then there exists a family offunctionsja 
such that 

(a)jaeS~(X); 

(b) O..;ja..;l; 

(c) suppja C(X:2,cS\Ubct:aX~I,cS)UB(0,R), for some R ; 

The family {ja : aed} described in Proposition 2.1 will 
be called a 0 partition of unity, In the proof of the above 
proposition we will need the following property of the sets 
A"'cS; this property is easy to show and we omit its proof. 

Lemma 2.2: Let O<EI <a<E2, 0..;15..;1, and ACX. 
Then there exits 0 </3 such that 

and 

Now let us choose feCO'(X) such that f'>O, 
S f(x)dx = 1, and suppfCB(O,l). Define 

f("'cS)(x,x') = [(x)cSE] -nf(X'/E(X)6) , 

where n = dim X. We easily show the following lemma. 
Lemma 2.3: Let g be a bounded measurable function on 

X. Define 

g"'cS(x) = f g(x - x') f("'cS) (x,x')dx' . 

Then 

(a) 1"'cS= 1, 

(b) supp g"'cSC (supp g)",cSUB(0,2) , 

(c) g",6eS~ (X) . 

Now we can construct our partition of unity. 
Proof of Proposition 2.1: We will restrict ourselves to the 

case 0";0<1. Note that ifa=f:.b, then z~a,6)nZla,cS) is a 
bounded set. Let E I < a < E2 and let X a be the characteristic 
function of Z ~a,cS). Take /3> 0 such that 

and 

Then the ~,cS, constructed as in Lemma 2.3, satisfy (a)-(c). 
They also satisfy (d) outside a certain bounded set. Thus it is 
enough to change X:,cS appropriately within a bounded set to 
getja satisfying the required conditions. Q.E.D. 

III. THE HAMILTONIAN 

In this section we state precisely the assumptions on N
body dispersive Schrooinger Hamiltonians that we will use 
in our paper. 
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Hypothesis A: Let w be a real valued CoO function on K 
such that 

(a) w,>O, 

(b) lim w(k) = ct:) , 

Ik 1- 00 

(c) la%w(k)I";cAw(k) + 1),forallmulti-indicesa, 

(d) there existc and N such that w(k)<.c(k - k ,)Nw(k') . 

Note that hypothesis A is satisfied if w(k) = k 2. 
The unboundedness of w will cause some technical 

problems. To deal with them it will be helpful to introduce 
the spaces 

S6'(w + I) = {ueC 00 (X XK): 

la~a~ul,,;ca,8(x)m-lalcS(w(k) + I)}. 

Note that weS g (w + 1). The properties of pseudodifferen
tial operators with symbols from S 6'{w + 1) are the subject 
of the Appendix. 

Next we describe the assumptions that we will impose 
on the potentials. 

Hypothesis B: Suppose that 1 '>J1- > 0 and, for any aed, 
we have a real function Va on X" such that 

(a) (w(D) + I)-IVa (17""x) (17""x)P is bounded, 

(b) (w(D) + 1)-IVva (17""x)(17""x)I+ P isbounded, 

(c) lim II(w(D) + A)-IVa (17""x) II = 0 . 
A-oo 

Note that Hypothesis B(c) guarantees that Va (17"" x) isa 
relatively bounded perturbation of w(D) with an arbitrarily 
small bound. 

Let 

V(x) = L Va (17""x) . 
ae.r/ 

We define H to be the self-adjoint operator such that 
~ (H) = ~(w(D» and H = w(D) + V. 

Unfortunately, unlike Hypotheses A and B, our third 
assumption on the Hamiltonian is implicit. 

Hypothesis C: We fix a certain open bounded 
interval ~o and we assume that for any E> 0 the operator 
(Ixl + I) - 112 -" is H-smooth on ~o. 

For a discussion of hypothesis C we refer the reader to 
the Introduction. 

We also need to define 

Va (x) = L Vb(tf'X) 
bCa 

and 1a = V - Va' Then the so-called "cluster Hamilto
nians" Ha are defined as self-adjoint operators such that 
~ (Ha) = ..@'(w(D» and Ha = w(D) + Va' Note that 
Ham;n = w(D) and Ham .. = H. We will often writeHoinstead 
of w(D). 
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Note that cluster Hamiltonians Ha are a-fibered and we 
can write 

Let a e R. We define 

ESa (a) = {kaEKa: ano(Ha (ka) )#O}, 

where u(B) denotes the spectrum of B. It is easy to show that 
for any bounded a the set ESa (a) is bounded. 

An important role will be played in our paper by the 
following subset of X xK: 

~ Yea) = U Xa X1Ta-
I(ESa (a». 

ae.r/ 

Here ~ Y ( a) will be called the energy shell for the energy 
range a. 

IV. PROPAGATION OUTSIDE THE ENERGY SHELL 

It is intuitively clear that quantum particles should tend 
to "live" in a neighborhood of the energy shell. This intuition 
can be expressed by the following theorem. 

Theorem 4.1: Let K> 0, m < -! + /-l, and K e ao. Let 
uESm and U = 0 on ~ Y~~. Then u(x,D) and u(x,D)* are 
H-smooth on a. 

The above theorem immediately implies the following 
corollary. 

Corollary 4.2: Let K>O and Keao. Then 
X XK\.~S~:e/Y'9 t.,. 

The following lemma will be needed in the proof of 
Theorem 4.1. 

Lemma 4.3: Suppose that 1;;;.15>0, zES"', andja is an 
element of a 15 partition of unity constructed in Proposition 
2.1. Then 

ja (x)(z(x,k) - z( 1Tax,k»ES '; - I + 6 (4.1 ) 

and 

ja(X)z(1Tax,k)ES'; . (4.2) 

Proof: First note that· 

(4.3) 

is a linear combination of terms 

(4.4) 

where a 1 + a 2 = a. Now (4.4) equals 

a~'.ia (x) f (~x)·Vx a~2a~Z(1TaX + r~x,k)dr. 
(4.5) 

The absolute value of (4.5) is less than or equal to 

cafJ(x) -la.l61~xl f dr(1TaX + r~x)m- <la.1 + \) 

<CaP (X) - <Ia.l- 1)6+ m - (la,1 + \) . 

(We used the fact that on the support of ja we have 
l~xl<E(X)6 and (1TaX + r~x)<c(x).) 

Consequently, the absolute value of ( 4. 3) is less than or 
equal toc~p(x)m-I +6-laI6. This implies (4.1). Now, (4.2) 
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follows from (4.1) and the fact that ja(x)z(x,k)ES';. 
Q.E.D. 

The next facts needed in the proof of Theorem 4.1 can be 
easily shown by using the methods of Sec. 5 of Ref. 18 and by 
the calculus of pseudodifferential operators contained in the 
Appendix. (The methods of Sec. 5 of Ref. 18 belong to the 
standard folklore of Schrooinger operators; they are based 
especially on the techniques of Ref. 11.) 

Lemma 4.4: (a) Let uES:;'. Then 
(x)A u(x,D) (x) - m - A is bounded for any AER. 

(b) LetFEC 0' (R). Then (x)A F(H)(Ho + 1) (x) -A is 
bounded for any A. 

(c) Suppose that FEC 0' (R), aE~, andja is an element 
ofa 15 partition of unity. Then 

(x)A(F(H) - F(Ha) )ja (x) (X)1'6 - A 

is bounded for any A. 
Now we are ready for the proof of Theorem 4.1. 
Proof of Theorem 4.1: Clearly if u~ , then 

u(x,D) - u(x,D)* = B (x)m-I , 

for some bounded operator B. Thus it is enough to show that 
u(x,D)* is H-smooth on a. 

ChoosepaEC 0' (Ka) such thatpa = Ion ESa (ao) and 
supp Pa e ESa (aoy. Let 0 < 15 < 1 and letja be a 15 partition 
of unity. Choose FEC 0' (R) such that supp Fe ao and F = 1 
on a. Let us prove the following fact. 

Lemma 4.5: Let Pa ,ja' and Fbe as above and let uES ';. 
Then, for any A, 

(x)AF(H) [U(X,D) - ~/a (x)u(1Tax,D)Pa (Da)] 

X (x) - m + min (61'. I - 6) - A 

is bounded. 
Proof: Write 

F(H) [U(x,D) - ~/a (x)u( 1Tax,D)Pa (Da) ] 

= L {[ F(H) - F(Ha) lia (x)u(X,D) [1- Pa (Da)] 
QE.~ 

+ F(Ha) [Pa (Da ),ja (x)u(x,D)] 

+ F(H)ja (x) [u(x,D) - u(1Tax,D) ]Pa (Da)} 

= CI + C2 + C3 • 

Now, by Lemmas 4.3 and 4.4 and Proposition AI, the fol
lowing operators are bounded for any A: 

(x)AC)(x) -m+!'6-A, 

(x)AC
2
(x) -m+6-A, 

and 

(x)AC
3
(x) - m+ 1-6-,1. 

This immediately implies our statement. Q.E.D. 
Now we continue with the proof of Theorem 4.1. We set 

B = (x) - m+min<61'.1-6)F(H)u(x,D) . 

Clearly ja (x)u(1Tax,D)Pa (Da) = 0, for any aE~. Thus 
Lemma 4.5 implies the boundedness of B. But 

u(x,D)*Et.,(H) = B*(x)m-min(/)p.,1-6)Et., (H) . 
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Thus the theorem follows from hypothesis C. Q.E.D. 

V. THEOREM ON POSITIVE POISSON BRACKETS 

It is well known that if we find a bounded operator B 
such that the commutator i[H,B] is positive then the square 
root of i[H,B] is H-smooth. This fact is known as the Put
nam-Kato theorem.2

,3,9 It is easy to show a slightly more 
general version of this fact. 

Lemma 5.1: Let B, C, C;, and C ;, for i = 1 , ... ,k, belong 
to B(/7t'); let H be a self-adjoint operator on /7t'; and let 
11 C R. Suppose that C; and C; are H-smooth on 11 and 

EA (H)i[H,B ]EA (H) 
k 

;pEA (H)C*CEA (H) + L EA (H)CrC;EA (H) . 
;=1 

(5.1) 

Then Cis H-smooth on 11. 
In this section we use Lemma 5.1 to obtain an interest

ing criterion for the local H-smoothness of pseudodifferen
tial operators. This criterion is the central result of our pa
per. Its advantage over Lemma 5.1 lies in the fact that it is 
expressed in terms of functions on the phase space X X K, 
instead of operators on L 2(X). The positivity of EA (H)i 
X [H,B]EA (H) is replaced in this criterion by the positivity 
of the Poisson bracket of the kinetic energy w(k) and a cer
tain function on the energy shell. 

Theorem 5.2: Suppose that A C 110 and ueS°. Assume, 
moreover, the following three conditions. 

(i) Suppose that E> 0 and Qa are bounded subsets of 
Ka. Let 

u(x,k) = L Ua (X,1Tak ) , 
CIE.o/ 

and 

supp Ua C(X\ U X:)XQa . 
b¢a 

(ii) Suppose that K>O and w, Wi' w;eS- 1/2
, for 

i = 1, ... ,k. Assume, moreover, that 
k 

{w,u} - IwI2 - L w;w;;PO, 
;=1 

on ?f Y(11
0

)O,K. 

(iii) Let w;(x,D) and w;(x,D) beH-smooth on 11. 
Then w(x,D) is H-smooth on 11. 
The following corollary is an immediate consequence of 

Theorem 5.2. 
Corollary 5.3: Suppose that E, K>O, ACl1o, 

(y,p)E?f Y(l1o), and the Qa are bounded subsets of K Q • 

Suppose that u is a function on X X K and the Ua are func
tions on X XKa such that 

u(x,k) = L Ua (X,1Tak ) 
CIE." 

and 

supp Ua C(X\ U X:)XQa . 
b¢a 

We assume that u and the ua's are differentiable for Ixl;60 
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and homogeneous of degree zero with respect to x. Finally 
assume that 

{w,u};PO, on ?f Y(110)0.K, 

and 

{w,U}(y,p) > O. (5.2) 

Then there exists an open conical set .n containing (y,p) 
such that .neA'" f!ll A • 

Theorem 5.2 will follow from Lemma 5.1 and the fol
lowing propositions. 

Proposition 5.4: Suppose that OEd, ua satisfies condi
tion (i) of Theorem 5.2 and 11 is a bounded subset ofR. Then 
there exists a bounded operator B such that 

EA (H)i[ V,ua (x,Da) JEA (H) 

= EA (H) (x) - (\ +I'J!2B (x) - (\ +!-,)!2EA (H). (5.3) 

Proposition 5.5: Suppose that condition (ii) of Theorem 
5.2 holds. Let 0 <It' <It. then there exists C such that 

EA (H)i[Ho,Hu(x,D) + u(x,D)*)]EA (H) 

;PEA (H) [ - c(x) - (\ +1") + w(x,D)*w(x,D) 

+ ;tl w;(x,D)*w;(x,D) JEA (H) . 

Proof of Theorem 5.2 given Propositions 5.4 and 5.5: 
We set B = Hu(x,D) + u(x,D)*], C = w(x,D), 
C;=w;(x,D), C;=w;(x,D), for i=l, ... ,k, Ck + 1 
= (x) - (\ +1")/2, and C,,+ 1 = cl(x) - (\ +1.<,)12. Then we 
apply Lemma 5.1. By Propositions 5.4 and 5.5, we can 
choose C1 such that (5.1) is satisfied. Hypothesis A implies 
that Ck + 1 and C" + 1 are H-smooth on 11. Thus the theorem 
follows by Lemma 5.1. Q.E.D. 

Proposition 5.4 will follow from the following lemma. 
Lemma 5.6. 

(X)A [ V;ua (x,Da)] (Ho + 1) -I(X) 1 +I'-A 

is bounded for any A.ER. 
Proof: Set 

A ( ) (2) - dim K. f dk (k) - ;kaZ. Ua X,Za = 1T aUa X, a e . 

Clearly 

Ua (x,Da) = f ua (x,za )eiDaZ
• dZa , 

any, for any N, 

IUa (x,za) l,,;cN(za) -N. 

Now 

[ V;ua (x,Da)] = L [Vb (~X),Ua (x,Da) j. 
~a 

Moreover, 
(X)A [u b (~x),ua (x,Da >] (Ho + I) -I(X) 1 +I'-A 

= (X)A f dZa f d". ua (x,za )za [Vb (~x + 1'Za ) ,iDa ] 

xeiz.'D·(Ho + I)-I(X)I +I'-A. (5.4) 

The norm of (5.4) is bounded by 
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f dZa f drll (x) 1+ 1"( Tf'x) - I - p,Ua (x,za )Za ('TZa) 1+ 1"11 

X II (Tf'X) I +p,(Tf'x + rZa) -I-p,(rza) -1-1"11· 

X II(x)A (Tf'x + rZa)1 +p,VVb(Tf'x + 'TZa) 

X (Ho + 1)-I(X) -A II II (X)AeiZ.Da(X) -All. (5.5) 

Since b<!a, on supp ua we have (Tf'X»E(X). Thus the 
first norm in (5.5) is bounded by cN(za) - N, for any N. The 
second and third norms in (5.5) are bounded uniformly in 
za' Moreover, 

II (x)A/za·Da(x) -A II";CA (Za )IA I. 

Thus the integral in (5.4) is absolutely convergent. This 
ends the proof of the lemma. Q.E.D. 

Proof of Proposition 5.4: Take FEeD (R) such that 
F= 1 on 6.. Put 

B = (X) (1 +1"/2) i[ V,ua (x,Da) ]F(H) (X) (1 +1"/2). 

The identity 

B = (X) (1 +p,/2)i[ V,ua (x,Da)] (Ho + 1)-1 

X (X) (1 +1"/2) (X) - (1 + 1"/2) (Ho + 1)F(H) (X) (1 +1"/2) 

and an application of Lemmas 5.6 and 4.4 (b) show that B is 
bounded. Clearly, B satisfies (5.3). Q.E.D. 

Proofof Proposition 5.5: Let F, 6,Pa' andja be as in the 
proof of Theorem 4.1. Set 

k 

z(x,k) = {m,u}(x,k) - IwI 2(x,k) - L wiw;(x,k). 
i= I 

Clearly zES - I (m + 1). Propositions A 1 and A2 imply that 

i[m(D),u(x,D)] - w(x,D)*w(x,D) 
k 

- L Wi (x,D) *w; (x,D) = z(x,D) + r(x,D), 
i=1 

where rES -2(m + 1). By Proposition A3, 

(x)r(x,D)(Ho + 1)-I(X) 

is bounded. Lemma 4.5 shows that 

(X)[I + min(6p,.l- 6)/2]F(H) 

X [Z(X,D) - 1;ia (x)z( 1Tax,D)Pa (Da) ] 

X (Ho + 1)-I(X)[1 +min(6p,.I-6)/2] 

is bounded. Furthermore, since 

L ja (x)z( 1Tax,k)Pa (1Tak ) 
aed 

(5.6) 

(5.7) 

is non-negative and belongs to S 6- I (m + 1), we can write, 
by proposition A4, 

(Ho + 1)-V2L~/a (x)z(1Tax,D)Pa (Da) + hC] 

X(Ho+ 1)-1/2> _C(X)-t-6. (5.8) 

Now our proposition follows from (5.8) and the bounded
ness of (5.6) and (5.7) by an argument similar to that con
tained in the proof of Proposition 5.4. Q.E.D. 
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VI. CLASSICALLY ALLOWED TRAJECTORIES 

Suppose that (y,p) E <g Y (6.0 ), Does there exist an easy 
method to determine if a conical neighborhood of (y,p) be-
10ngsff.9 t. for Xe6.o? This section is devoted to present
ing a method that in many cases can serve this purpose. 

This method is based on quite suggestive intuition taken 
from classical physics. First let us give a rather loose descrip
tion ofthe intuitive picture hidden here. 

Imagine that the quantum evolution eiHt has some com
mon features with the motion of classical particles in the 
configuration space X. We suppose that they may scatter 
against the planes X a , or actually against their neighbor
hoods X!. More precisely, we assume that the component of 
the momentum parallel toXa is conserved while the particles 
travel through X: but the transversal component may 
change (even in a discontinuous fashion). Moreover, we 
suppose that the velocity of particles with momentum k 
equals approximately V m (k) and their motion is confined to 
<g Y(6.0)E.k. We will show that if all the above described 
trajectories leave a given conical a-fibered neighborhood of 
(y,p) within the phase space and do not return to it then a 
certain (maybe smaller) conical neighborhood of (y,p) be
longs to ff.9 t. • 

Now we want to make our intuition precise. Let E, K, a, 
p, 1).0. If KEK, we define 

Vel a/3(k) = {WEX: there exists k'El( such 

that Ik - k'l..;a 

and Iw - Vm(k') I..;P IVm(k') I}· 

We say that 
[O,T ]3t-+(X, (t),k(t»)E<g Y (6.0 )E.k 

is an a, p-classically allowed trajectory (abbreviated as an a, 
P-CAT) if and only if the following two conditions are true. 

(i) t-+x(t) is continuous and differentiable a.e.; more
over if (dx/dt)(t) exists, then (dx/dt)(t) EVeF/3 (k(t». 

(ii) Let [tt,t2] e [O,T] and aEd. Suppose that if 
tE[t 1,t2], then x(t)EX!. Then 1Tak(t) is constant for 
tE[tt,t2] . 

Now let !le <g Y(6.o)Ek. We denote by r a ./3(!l). The 
set of all (x,k) E<g Y(6.o)Ek such that there exist 1).0 

and an a, P-CAT [0,T]3t-+(x(t),k(t»E<g Y(6.0 )E.\ with 
(x(O),k(O»)E!l and (x(n, k(n) = (x,k). 

If kaE K a , then we define Ve/~/3(ka) to be equal to the 
convex cone spanned by U 1T k' = k Vel a/3( k '). It is easy to 

a a 

show the following properties of the operation ra/3. 
Lemma 6.1: Let!le <g Y(6.0 )E.K. Then we have the fol-

lowing. 
(a) ra /3 (ra /3(!l» = r a /3(!l). 
(b) If!l is conical then ra /3 (!l) is conical. 
(c) r af3 (!l) nx: XK is a fibered. 
(d) Suppose that KEK, WEVe/~/3( 1TaK), and, for O..;t..; 1, 

we have x + wt~ X!. Then (x,k) E r a /3(!l) implies 
(x + w,k) E r a /3(!l). 

The main result of this section is the following theorem. 
Theorem 6.2: Suppose that a, p, K>O, EO>E> 0, aEd, 

and Xe6.o. Let (y,p) E Za X1T; IESa (6.oyand let E> be an 
open conical a-fibered set such that (y,p)EE> 
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Cz ~E) X 1Ta- IE Sa (AO)K. Assume, moreover, the following 
two conditions. 

(i) There exists qeK such that q'Y = 0, q·Vm(p) >0, 
and, ifweVepafJ(1TaP), then q·w;;,O. 

(ii) If [O,T] 3 t-(x(t),k(t») is an a,/3-CAT such that 
(x(O),k(O») eO and (x( n,k( n) eO, then (x(t),k(t») e 
Z ~E) X 1Ta- I E Sa (AoY' for all te[O,T]. 

Then there exists an open conical set n in X X K such 
that (y,p)en and nEJ1f9 A' 

Let us say a few words about the meaning of this 
theorem. Define 

M = {(x,k)eX XK: X'q = O} 

and 

M + = {(x,k)eX XK: x·q;;.O}. 

Clearly condition (i) implies that all the a, P-CA T's starting 
in a conical a-fibered neighborhood of (y,p) inside M move 
initially within M +. Having left Z ~E) X 1T;; IESa (AoY those 
trajectories may scatter a number of times. Condition (ii) 

guarantees that they never "come back" into a vicinity of 
(y,p) after leaving Z~E)X1T;; IESa (AO)K. 

The following lemma is based on the above intuition. 
Lemma 6.3: Suppose that the hypotheses of Theorem 

6.2 are true. Then there exist an open conical a-fibered set e 
cz ~E) X 1T;; IESa (AO)K containing (y,p) and a set '11 
C ~ Y (AO)€·K such that raP ('11) = '11 and enM+. 

Proof: Set 

Ayp = {(x,k)eM: I~_LI <p,l1TaK-1Tapl <r} 
. Ixl Iyl 

and 

0 y.p.u = {(x + tVm(p),k): (x,k)eAy.p' It I <oJ. 

We set e = 0 y.p•u and '11 = raP (A y.p ) for sufficiently small 
r, p, 0', to be determined later. We may assume that r<a and 
ec®. Clearly enM+ C'l1. 

Now suppose that (x,k)e'l1ne. Then there exists an a, 
P-CAT [O,T] 3ti---+(x(t),k(t» such that (x(O),k(O»)eAy.p 
and (x(n, ken) = (x,k). Condition (ii) implies that 
(x (t),k(t»eZ ~€) X 1T:; IESa (AoY, for all te[O,T]. Conse
quently, x(n - x(O)eVel~,p(1Tak). But if a is small 
enough, then Vel~,p(1Tak) CVel~a,p(1TaP). Condition (i) 
implies now that (x( n-x(O»·q;;.O. Thus x( neM +. Con
sequently 'I1neCM+, which ends the proof of the lem
ma QRU 

The proof of Theorem 6.2 is based on Corollary 5.3. The 
characteristic function of '11 would be a good candidate for 
the function u from this corollary except that it is discontin
uous. Thus our strategy is to approximate this characteristic 
function by an SO function. 

Proolol Theorem 6.2: Let X be the characteristic func
tion of '11 and X a be the characteristic functions of 
'I1nz ~€) XK. Note that ra

•
p ('I1) = '11 implies thatthedistri

butional derivative of X has the following property: if 
(x,k)eInt X~ X 1Ta-

IESa (AoY and weVel~'p( 1Tak), then 

(6.1 ) 

Now let p, r > 0. Let S denote the unit sphere inX and ds 
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the invariant measure on S. Choose feC 0 (R) such that 
1;;.0,/>0 on a neighborhood of ° and supp I C [ - 1,1]. 
Define.t;,eC 00 (S XS) such that 

.t;, (s,s') = c"f( Is,s'1 2I p2), 

where cp is defined by the condition 

i.t;, (s,s')ds' = 1. 

Next choose gyeC 0 (K) such that gy;;'O, 
Sgy(k)dk = 1, and suppgyCB(O,r). We put 

Y"Y(x,k) = iXKX(S',k ').t;,( 1:1 ,s')gy(k - k ')ds' dk' 

and 

,t.:'Y(x,k) = r Xa(S"k').t;,(~1 ,S')gy(k-k')dS'dk', 
JSXK Ix 

Lemma 6.4: The ,t.:.y are non-negative bounded func
tions differentiable for Ixl #0 and homogeneous of degree 
zero with respect to x. Moreover, 

(a) I,t.:·y = Y"y; 
Qe.of 

(b),t.:·Y(x,k), if 1Tak = 1Tak'; 

(c)ifp<E, then 

supp ,t.:'YC(X:+P\ U X~-p)X1Ta-IESa (AoY+ y; 
b<ta 

and (d) if P is small enough and r<min (a,K), then 
Vm(k)·VxY'·Y(x,k);;.O, on ~ Y(AO)€-P.K-Y. 

Proof: All . the statements of the above lemma are 
straightforward except for (d). To prove (d), we need the 
following definition. Let seS, zeX, and s'z = 0. Let 
R 3 tl---+O :.z denote the one-parameter group of rotations of X 
such that (d Idt) O:,Z(s) t= 0 = z and the subspace orthogo
nal to sand z is left invariant. Clearly, 

.t;, (0 :,Z(s 1),0 :,Z(S2» =.t;, (SI,S2); 

moreover, the measure ds is invariant with respect to 0 :.z. 
Consequently, 

Y'·y(O:·Z(s),k) 

= f ds' dk' X(O:,Z(s'),k ')/p (s,s')gy(k - k '). (6.2) 

Now if seS and keK, define 

z(s,k) = Vm(k) - s(s-Vm(k»). 

Fix (x,k)eX' K and set s = x/lxl. Then by the homogeneity 
of X and by (6.2), we can write 

Vm(k)·V xY'·Y(x,k) 

= (lIlxl )z(s,k)·V xY'·Y(s,k) 

= _1_ d_yP.r(o s.z(s,k) (s) k)1 _ 
Ixl d(' t "-0 

= _1_ f ds' dk '[~OS'Z(S.k) (s') I _ + S'(s'.Vm(k»)] 
Ixl dt ' '-0 

XVxX(s',k ')Ip(s,s')gy(k - k '). (6.3) 
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We can choose p> 0 such that if SI,S2eS, zeX, and 
lSI - s21 <p, then 

Iz - :t 0;"Z(S2) It= 0 I < (,8 - 2p) Izl· (6.4) 

From now on, let us assume that (X,k)E~ Y (aO)E-P,K-Y. 
Let (s',k') ES XKbe such thatfp (s,s')gy(k - k 'h~O (re
call that s = x/lxl). Then 

Is-s'l<p (6.5) 

and 

Ik - k'i <r<min(a,K). (6.6) 

Consequently 

(s',k ')E U Int X~ X1T; IESa (aO)K. 
aE.~ 

Formulas (6.4) and (6,5) imply the following inequality: 

I VW(K} -.!!.. O;,z(s,k) (s') I - s'(S'oVW(K» I 
dt t=O 

< Is(soVw(k» - s'(s'oVw(k})1 

+ (,8 - 2p}1 Vw(k) - s(s-Vw(k})1 

<,81 Vw(k) I. (6.7) 

Thus the expression in the square brackets in (6.3) belongs 
to VelaP(k'} on the support of f(s,s'}g(k - k '}. Conse
quently, by (6.1), expression (6.3) is non-negative. This 
ends the proof of our lemma. Q.E.D. 

Now we continue with the proof of Theorem 6.2. We 
set Ua = ~'y and u = X"Y. Clearly, {w,u};;;.O on 
~ Y ( ao) K - P,E - P • In order to finish the proof of the theorem 
it remains to check (5.2), 

Let no be an open conical a-fibered set containing (y,p) 
and PI, rl >0 be such that ng"Y'ce. We can assume addi
tionally that the numbers p, r from the previous lemma satis
fy O<P<PI and O<r<rl' Let XM+ be the characteristic 
function of M +. Then, by Lemma 6.3, we have X = XM+ on 
n;;"y,. Thus if (x,k) Eno, then 

X"Y(x,k) = LXM+ (S)1;,( 1:1 ,S)dS. 

Clearly 

VW(P}oVXM+ = Vw(P)oq/)M' (6.8) 

where /) M is a translation invariant measure concentrated on 
M. Next we mimic the arguments contained in the proof of 
Lemma 6.4 using additionally (6.8) and the positivity of 
Vw(p}oq. For sufficiently smallp, we obtain 

Vw(p}oVxX',Y(y,p} >0. 

Now our theorem follows from Corollary 5.3. Q.E.D. 
Let us say a few words on the advantages and disadvan

tages of Theorem 6.2. The theorem can be nontrivial only if 
the cone Vel ~(1TaP) is not equal to X. Only then will there 
exist a vector q such that condition (i) can be satisfied. This 
always happens if V w (p) ¥- 0, a = amin , and a, ,8 are small 
enough. Of course, in this case it remains to verify condition 
(ii). Thus the theorem seems quite interesting and nontrivial 
in the case )'EZamin • 
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Unfortunately, in the case a ¥-amin it often happens that 
Vel~,P(ka) = X, for any a,,8> O. This takes place, in partic
ular, if w(k) = k 2. Thus if w(k) = k 2 and a¥-amin , then 
Theorem 6.2 is worthless. Note, however, that in the case 
Vel~,O(ka) is not equaltoX forka ¥-Oandsmallenougha (it 
is equal to 

In fact, we think that it may be possible to prove a modified 
version of Theorem 6.2 with ,8 = 0 (and maybe E = 0), 
which would be more interesting. 

Still we think that the general intuition Theorem 6.2 is 
based on is the right one. Moreover, there are a lot of exam
ples where this theorem is nontrivial if yq:Za .. For in
stance, if w(k} = (k 2 + 1) m, with m > 1, then V;hp(ka ) is 
not equal to X, for small enough a,,8 and nonzero ka • Thus, 
in this case, condition (i) of our theorem can be easily satis
fied-one needs to check condition (ii), which involves a 
more detailed investigation of the geometry of the phase 
space. 
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APPENDIX: PSEUDODIFFERENTIAL OPERATORS 

In this appendix we describe the properties of the pseu
dodifferential operators with symbols in S '; ( 11) (see the de
finition below). 

Most of the time, the pseudodifferential operators that 
we use in this paper have the symbols in S ';. Their properties 
are well known.31

,32 Occasionally, however, we need to use 
slightly more general classes, namely S '; (w + I). The cal
culus of the pseudodifferential operators with symbols in 
very general classes that include S '; ( 11) is studied in Ref. 31. 
The results that we present below are essentially contained in 
Ref. 31. and therefore we omit their proofs. 

We say that a strictly positive function of K is slowly 
varying if and only if there exist c and N such that 
11(k} <c(k - k '}N 11(k '), for every k,k 'EK. Clearly if 11 is 
slowly varying, then so is 11m

, for any mER. Moreover, w + 1 
is slowly varying on K. Now if 11 is slowly varying on K, then 
we define 

S';(11) = {UECOO(XXK}:la~a~ul 

<caP (x)m -la10511(k)}. 

If ueS '; ( 11) and rpEY (the space of Schwartz test func
tions), then we define u(x,D}tp by the formula 

u(x,D)tp(x} = 1. x f u(x,k)eixk$(k}dk. 
(21T)dlm 

It is easy to show that u(x,D) is a bounded operator on Y. 
The next two propositions describe the properties of the su
perposition and of the ad joints of pseudodifferential opera
tors with symbols in S '; ( 11 ). 
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Proposition AI: Let TII and 1/2 be slowly varying. Let 
uES't( 1/1)' v E S't'(1/2)' and 1= 0,1,00' . Define 

wj(x,k) = (l/j !)(iDk 'Dy)ju(x,k)v(y,p) X=Y' 

k=p 

Then wjES't' + m, -j6 (1/1'1/2) and there exists rIES't' + m, -16 
X (1/1'1/2) such that 

!J(x,D)v(x,D) = wo(x,D) + .. , 
+ WI_I (x,D) + rl(x,D). 

In all the propositions below 1/ is a slowly varying func
tion. 

Proposition A2: Let uES 't( 1/) and 1= 0.1,00 .. Define 
wj(x,k) = (lIj!)(iDx D k )ru(x,k). Thenwj ES't- j6(1/) and 
there exists rlES't - 16( 1/) such that 

u(x,D)* = wo(x,D) + ... + WI_I (x,D) + rl(x,D). 

The following proposition is a consequence of the Cal
deron-Vaillancourt theorem.31

-
33 

Proposition A3: Let uESg ( 1/). Then u (x,D) 1/(D) -I and 
1/(D)-IU(x,D) extend to bounded operators on L 2(X). 

Finally we state an easy consequence of the sharp Gard
ing inequality. 3 1,32,34 

Proposition A4: Let uES't(1/) and Re u;>O. Then there 
exists c such that 

1/(D) -1/2(U(x,D) + u(x,D)*)1/(D) -1/2;> _ c(x)m - 6. 
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A theoretical framework for quantization, defined by the normalized positive-definite 
probability operator establishing dynamical correspondence between classical and quantum 
Poisson brackets, is presented. The resulting quantum theory, unlike the conventional one, 
admits consistent probabilistic interpretation. It is shown that, in the nonrelativistic case, 
quantization based on the probability operator leads to the theory known as "quantum 
mechanics with a non-negative quantum distribution function." A generalization of the 
proposed framework to the case of the relativistic theory of fields is attempted. Four auxiliary 
problems of constructing probability operators of one-dimensional field oscillators in Bose and 
Fermi algebras are formulated and solved. On the basis of these solutions it is concluded that 
spinor fields are not quantizable in the Bose algebra with the help of the probability operator 
(the analog of Pauli's theorem). An equation for the probability operator of a system of free 
fields is derived from the principles of dynamical correspondence and translational invariance. 
The physical meaning of the operators corresponding to classical field amplitudes, such as 
annihilation and creation operators of field quanta with definite energy-momentum, is shown 
to emerge as a consequence of this equation. It is shown that the quantization of a system 
consisting only of tensor fields or only of spinor fields in the formalism of the probability 
operator leads to difficulties. It is shown further that these difficulties can be removed by 
considering quantization of a system containing both tensor and spinor fields. As an 
illustration, quantization of a system consisting of a massive vector field and a massive spinor 
field is considered and it is found that a noncontradictory quantization requires the mass of the 
vector particle to be less than that of the spinor particle. The probability operator thus acts as a 
mechanism of selection of the fields to be quantized already at the level of free fields. 

I. INTRODUCTION 

It is quite well known that quantization of a physical 
system viewed as a transition from the known classical de
scription to the corresponding quantum one requires the so
lution of the following four basic problems: (i) determina
tion of a linear space !/ of the vector states I t/J) of the system, 
(ii) choice of an algebra .sf of operators, linear in !/, (iii) 
determination of the operators (belonging to.sf) of physical 
quantities characterizing the system, and (iv) postulation of 
the evolution operator of the system. 

The first two of these problems are solved by defining a 
set of generators satisfying specific commutation relations. 
Thus, in a nonrelativistic quantum description of a system 
with N degrees of freedom, one takes as generators N pairs of 
Hermitian operators satisfying standard Heisenberg com
mutation relations. In the case of relativistic fields modem 
quantum theory postulates the existence of only two kinds of 
algebras: Bose-Einstein and Fermi-Dirac. The selection of a 
specific one from these two is decided by Pauli's spin-statis
tics theorem connecting the transformation properties of a 
field with commutation relations of the generators. 

The t!!.ird problem, i.e., the problem of assigning a linear 
operator A to each physical quantity A [represented by a 

a) Present address: Meteorology and Oceanography Division, Space Appli
cations Centre, Ahmedabad 380053, India. 

phase-space function A (q,p,t) in the nonrelativistic classical 
theory of a finite-dimensional system], generally known as 
the problem of the correspondence rule, is yet to achieve a 
complete and undisputed final solution, as noted by many 
authors,l-6 notwithstanding the fact that a wide variety of 
correspondence rules have been proposed7-15 since the birth 
of quantum mechanics. 

Specifically, Neumann's rule/lying at the root of con
ventional quantum mechanics, is non unique and any at
tempt to eliminate nonuniqueness leads to inner contradic
tion (all quantum operators commute with one another l). 
The possibility of a noncontradictory and unique formula
tion at the expense of weakening one of Neumann's require
ments was studied in Ref. 4, resulting in a wide class of 
unique rules, the so-called non-Neumann rules. However, 
there does not seem to be any guiding physical principle for 
selecting a particular rule from this wide class. 

Dirac's correspondence8 between classical and quan
tum Poisson brackets has also been studied fairly thorough
ly2.3.5.6.16.17 and the nonuniqueness of this rule has been 
shown explicitly. Here, again, attempts to liquidate nonuni
queness inevitably lead to contradictions.2.3 

The majority of the unique rules proposed (e.g., Weyl,9 
Bom-Jordan,1O Rivier, II standard,12 normal,12 generalized 
correspondence rule of Cohen 14) do not guarantee positive
definiteness of the quantum average values of non-negative 
physical quantities such as dispersion,2.3.15 thus presenting 
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serious interpretational difficulty. The antinormal rule of 
Kano,13 free from this drawback, belongs 18 to the class of 
unique rules proposed by one of the present authors. 15 How
ever, quantum theory based on such correspondence differs 
significantly 19-23 from conventional quantum mechanics, al
though it contains several interesting results. 

One can also approach the problem of the correspon
dence rule from a seemingly different point of view, that of 
quantum distribution functions (QDF's). The essence of the 
problem of QDF's lies in an attempt to assign a function 
F", (q,p,t) to each normalized state It/!> with the condition 

f F", (q,p,t)dq dp = 1, (1.1) 

and the distributive property 

(A> '" = (t/!IA It/!> = f A (q,p,t)F", (q,p,t)dq dp (1.2) 

simultaneously for all physical quantities A. If, in addition, 
F", is real and non-negative, then it can be interpreted as a 
joint probability density of coordinates and momenta. How
ever, attempts to introduce such a non-negative QDF in 
quantum mechanics met with failures. Thus the QDF's pro
posed and studied by different authors24-29 turned out to be 
either complex or real, but sign variable. Non-negative func
tions constructed by Bopp30 and Kan031 also cannot be in
terpreted strictly as QDF's since they do not yield "correct" 
(from the standpoint of conventional quantum mechanics) 
marginal distributions. Later investigations showedI2.14.15 
that the possibility of introducing a QDF is uniquely con
nected with the correspondence rule used for constructing 
quantum operators from their classical counterparts. In par
ticular, no QDF (even a sign-variable or a complex one) 
exists32 in conventional quantum mechanics based on Neu
mann's rule. 

Further investigations l5.21 showed that it is possible to 
alter quantum mechanics so as to introduce non-negative 
QDF's. Such an alteration was achieved by means of the 
correspondence rule formulated in Ref. 15. The resulting 
theory, named "quantum mechanics with a non-negative 
QDF"I9-23 is closed and self-consistent. Besides, it contains 
the essential parts of conventional quantum mechanics and 
classical statistical theory as particular limiting cases. 19 As 
the name implies, in this theory there exists a non-negative 
QDF for each state and as such the theory has a built-in 
statistical interpretation. Here we want to note that the non
negative QDF's recently considered in the literature33-36 are 
just special cases of the class of non-negative QDF's con
tained in this theory. In fact, from the point of view of the 
correspondence rules, this class is the only admissible one, as 
has been shown quite recently by one of the current au
thors.37 

Before coming to the purpose of the present paper, we 
present briefly some concrete results of this theory. Energy 
levels of a harmonic oscillator,21 and a hydrogenlike 
atom20.22 have been calculated in its framework. In both 
cases they are shifted in comparison with the results of con
ventional quantum mechanics. In the case of an oscillator all 
levels are shifted equally and thus such a shift is nonobserva-

852 J. Math. Phys .• Vol. 31, No.4. April 1990 

ble experimentally. The shift of the energy levels of the hy
drogenlike atom is analogous to the Lamb shift. The magnet
ic moment of a hydrogenlike atom in the state I nlm >, 
contrary to the results of conventional quantum mechanics, 
depends38 on all the quantum numbers n,/,m. If the shift of 
the S levels is identified with the experimentally observed 
value of the Lamb shift then the magnetic moment is in
creased by 10-6 (in the Bohr magneton), constituting a 
thousandth part of the anomalous magnetic moment of the 
electron. Such a result may, in principle, be checked experi
mentally by measuring magnetic moments of hydrogenlike 
atoms. 

However, the above-mentioned differences of the results 
from those of conventional quantum mechanics, strictly 
speaking, are at best of a qualitative character, since they 
were obtained in a nonrelativistic framework. Strict quanti
tative comparison apparently requires proper relativistic 
generalization of the theory, inclusion of spin, etc. It seems 
to us that a proper generalization is possible only in the case 
of relativistic field theory, where the classical theory already 
contains such significantly relativistic concepts as spin (see, 
however, the recent interesting approach of such a general
ization to the case of relativistic quantum mechanics in Ref. 
39). 

Thus the main purpose of our paper is a mathematically 
consistent generalization of the formalism of "quantum me
chanics with a non-negative QDF" to the case of relativistic 
fields. The principal mathematical tool of our investigation 
will be the probability operator.40 It is well known that a 
linear unique correspondence rule can be conveniently for
mulated with the help of a universal basis operator (see, for 
details, Refs. 23 and 40-44), parametrically depending on 
coordinates, momenta, and time and simultaneously defin
ing the form and properties of a QDF. This operator has 
been given various names [the mapping operator,42 the rep
resentation operator,44 the (quasi) probability operator40 ]. 
We adopt the last terminology and drop the prefix "quasi," 
since in our case this operator is positive definite (for details, 
see Ref. 40). Not only does such an operator explicitly dem
onstrate the connection of the correspondence rule to the 
existence ofQDF's, but it also provides us with a method of 
relating the correspondence rule to the fourth aspect of 
quantization-the temporal evolution of the quantized sys
tem. Mutual connection of the third and fourth aspects of 
quantization along with suitable assumptions leads to an 
equation45 for the probability operator, the solution of which 
(with proper normalization) completely determines the 
quantization procedure, provided the first two problems 
(determination of state space and algebra) are solved before
hand. Thus the formalism of a probability operator deals 
with all the aspects of quantization, dealt with separately 
earlier, in a unified manner. 

The structure of our paper is as follows. Sections II and 
III are basically of an introductory nature. In Sec. II we 
introduce formally the concept of the probability operator, 
and show its role as a universal basis operator in the quanti
zation of finite-dimensional systems. We also present the 
derivation of the equation obeyed by such an operator fol
lowing from the principle of dynamical correspondence.45 In 
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Sec. III we investigate the problem of the probability opera
tor in nonrelativistic quantum mechanics and show how the 
property of positive-definiteness and a reasonable demand 
on the correspondence rule leads to the previously men
tioned "quantum mechanics with a non-negative QDF." 
The remaining sections (IV-VII) are devoted to the gener
alization to the case of relativistic field theory. Bearing in 
mind the well-known fact that free classical fields (and we 
consider only such cases) can be represented as a system of 
noninteracting one-dimensional oscillators, in Sec. IV we de
vote our attention to the quantization of such oscillators, 
which are oftwo types: those with a positive contribution to 
the field energy and those with a negative contribution (aris
ing in the case of classical spinor fields). The postulation of 
the existence of only two types of algebra (Bose-Einstein 
and Fermi-Dirac) leads us to the consideration of four typi
cal problems concerning one-dimensional field oscillators 
( two types of oscillators X two types of algebra). Sections V 
and VI contain the general aspects of quantization of fields 
on the basis of the probability operator and the derivation of 
the equation for such an operator from general principles of 
dynamical correspondence and translational invariance. In 
Sec. VII we study the quantization of free fields and the 
consequences of such a quantization. Specifically it is shown 
that the difficulties of infinite vacuum energy and infinite 
vacuum charge can be liquidated by quantizing a system 
comprising both tensor and spinor fields, although such a 
difficulty persists in the quantization of isolated tensor and 
spinor fields. At the end of this section we summarize the 
main conclusions. 

II. NONSTANDARD QUANTIZATION BASED 
ON THE PROBABILITY OPERATOR 

The transition from classical theory to the correspond
ing quantum theory assumes, as one of its necessary proce
dures, the mapping of a set of physical quantities {A}, repre
sented in the classical theory by the functions {A(q,p,t)} 
of generalized coordinates q = (ql, ... ,qN)' momenta 
p = (PI, ... ,PN)' and time tonto the set of quantum operators 
{A} representing the same quantities in quantum theory. 
Also, in accordance with the basic postulates of quantum 
theory, the set {A} belongs to some algebra .If oflinear oper
ators acting in a linear complex space .Y of state vectors I t/I) . 

From among the numerous proposed mappings 
A = O(A(q,p,t», known also as correspondence rules, we 
adopt a linear mapping23

,40 satisfactory from the interpreta
tional point of view and formulated as 

A = O(A(q,p,t» = A(q,p,t)F(q,p,t)dqdp, A f A (2.1 ) 

where the operator F(q,p,t)e.If, termed as the probability 
operator, satisfies the conditions of normalization and posi
tive-definiteness: 

f F(q,p,t)dq dp = i, 
A 

F",(q,p,t) = (t/lIF(q,p,t) It/I»o, Vlt/I)e.Y. 

(2.2a) 

(2.2b) 

In the quantization defined by (2.1) the quantum aver
age values {(A )} of the whole set of physical quantities in 
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any normalized state I t/I) evidently can be written by means 
offormula (1.2) of Sec. I and the function F",j.J,p,t) , being 
the quantum average (2.2b) of the operator F in the state 
I t/I), by virtue of its normalization (1.1) [following from 
(2.2a)] and positive-definiteness, can be considered as the 
joint probability density of coordinates and momenta of the 
physical system in the state It/I). 

For establishing the concrete form of the probability 
operator it is only natural to extend the correspondence rule 
(2.1) so as to include the evolutionary aspect of the quanti
zation procedure.45 Such an extension is based on the follow
ing reasoning. 

In classical theory the time evolutions of coordinates 
(q) cl = q (t) and (P) cl = p ( t) are determined by the follow
ing Hamiltonian equations: 

d,q(t) = apH(q(t),p(t),t), d,P(t) = - aqH(q(t),p(t),t), 
(2.3a) 

where H(q,p,t) is the classical Hamiltonian of the system. 
Hence the physical quantities and their time derivatives are 
determined as 

(A ) cI = A (q,p,t) Iq(t),p(I) ' 

d, (A ) cI = (a,A + {H,A} )(q,p,t) Iq(I),p(l» 
(2.3b) 

where { , } denotes the classical Poisson bracket. 
In quantum theory with the correspondence rule (2.1), 

the time evolution of the state It/I) is determined by the 
SchrOdinger equation 

iii a, It/I(t» =Hlt/I(t», H= f H(q,p,t)F(q,p,t)dqdp. 

(2,4a) 

Thus the average value (A ) and its time derivative are given 
by 

A A AA 

(A) Q = (t/lIA It/I), d, (A) Q = (t/lla,A + (i/Ii)[H,A ] It/I), 
(2.4b) 

[ , ] being the commutator. 
Suppose that the correspondence (2.1) can be extended 

to the evolutionary part of the relations (2.3b) and (2.4b). 
We can write 

f AA i AA 

(a,A + {H,A})Fdqdp = a,A + -,; [H,A ]. (2.5) 

Thus the quantization scheme based on the probability 
operator is reduced to a solution of the set ofintegrodifferen
tial equations (2.5) (the equation for each Ae{A}), with the 
conditions (2.2) and the subsequent determination of the 
quantum operators via the recipe (2.1). 

While searching for the probability operator, we can, in 
principle, demand the fulfillment of (2.5) not only for the 
quantities Ae{A}, but for all possible phase-space functions. 
Then, because of the arbitrariness of the function A (q,p,t) , 
from (2.5) we obtain the equation for the probability opera
tor, 

a,F(q,p,t) + {H(q,p,t),F(q,p,t)} 

= ~ f H(q',p',t) [F(q,p,t),F(q',p',t) ]dq' dp'. (2.6) 

The solution of (2.6) must satisfy conditions (2.2). 
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The concrete solution of (2.6) [or, of the set of equa
tions (2.5), if (2.6) does not possess a solution with the 
required properties] depends not only on the predetermined 
algebra .s;f but also on the classical Hamiltonian H(q,p,t). 
Besides, in the theory obtained subsequently, to any state I t/J) 
there corresponds a distribution function F", (q,p,t) ;;;.0. Both 
these observations shC'w that the proposed quantization is 
not a conventional or standard one. 

III. THE PROBABILITY OPERATOR IN 
NONRELATIVISTIC QUANTUM MECHANICS 

A 

To obtain an explicit form of the operator Fin terms of 
the generators of the quantum algebra, we start with the 
following basic assumptions, also valid in the conventional 
version of nonrelativistic quantum mechanics" 

(i) Generators of the algebra to which F (and subse
quently any quantum operator A) belongs are N (denoting 
the number of degrees offreedom) pairs of Hermitian opera
tors qj = O( q), Pj = O(Pj ), with the commutation rela
tions 

(3.la) 

wherej,k = 1, ... ,N and i denotes the identity operator of the 
algebra. The algebra defined by (3.1a) is the standard Hei
senberg one and is isomorphic to the Bose algebra. 

(ii) Between the pairs of variables (qj>Pj) and the opera
tors (qj,Pj) there is a one-to-one correspondence 

qj+2qj' Pj+2Pj, j= 1, ... ,N, (3.1b) 

understood in the sense that A explicitly involves the opera
tor qj (operator Pj ), when and only when the corresponding 
classical function A (q,p,t) explicitly depends on the coordi
nate qj (momentum Pj). 

By virtue of the commutation relations (3.1a), one can 
always express any operator in some particular ordered 
form. We take the probability operator in such an ordered 
form, defined by the following operator Fourier integral42

: 

F(q,p,t) = J l(q,p,S,7J,t) exp{ ~ (7Jq + sP)} ds d7J, 

(3.2) 

where 7Jq and SP are the usual scalar products of the N
vectors. 

From (3.2) it is evident that the requirements (3.1b), in 
the sense explained above, can be satisfied only if the func
tion l(q,p,s,7J,t) is ofthe form 

l(q,p,s,7J,t) = II (s,7J,t)exp{ - ~ j~1 (7Jjqj + Sjpj)} . 

Thus we have the following general expression for the proba
bility operator: 

F(q,p,t) = (21rli) - 2N J u(s,7J,t) 

xexp{ ~ [7J(q - q) + s(p - P)]} ds d7J. 

(3.3 ) 

The factor (21rli) - 2N has been introduced for the sake of 
future convenience. Normalization, Hermiticity, and posi-
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tive-definiteness of F put the following restrictions on the 
kernel: 

u(O,O,t) = 1, u*( - 5, - 7J,t) = u(s,7J,t), 

J U(s'7J,t)<t/Jlexp{~ [7J(q-q) 

+ s(p - P)]} It/J)ds d7J;;;'O, Vlt/J)· 

(3.4a) 

(3.4b) 

Thus the assumptions (3.1) determine the probability 
operator in the form (3.3) with the kernel u(s,7J,t) having 
the properties (3.4). An interesting thing to be noted in this 
connection is that the form (3.3) of the probability operator 
automatically satisfies the reasonable requirements ofinvar
iance of phase-space description under a Galilean transfor
mation (for details, see the paper by Ruggeri43

). 
A 

In order to restrict further the choice of F in the corre-
spondence (2.1) we may impose other specific demands. 
One of such demands may be, for example, Dirac's corre
spondence between classical and quantum Poisson brackets: 

O({A(q,p,t),B(q,p,t)}) = (i/fi) [O(A),O(B)]. (3.5) 

Assuming global validity of Dirac's principle (A and B arbi
trary) it is easy to obtain 

{F(q,p,t),~(q - q')~(p - p')} 

= (i/fi) [F(q,p,t),F(q',p',t)], (3.6) 

A 

from which we observe that the operators F at two different 
phase-space points commute. Thus the global principle of 
Dirac reduces the quantum theory based on rule (2.1) to a 
classical-like theory with commuting observables. 

Since the correspondence rule (2.1) is simply a conse
quence of the linearity of the mapping A -+A, we conclude 
that a global Dirac principle is, in fact, incompatible with 
any quantum theory with a linear mapping. However, we 
note irom Eq. (2.5) of Sec. II that, for time-independent A 
and F, it reduces to the form (3.5) with the Hamiltonian H 
in place of B. Thus (2.5) may be considered as a weakened 
version of Dirac's principle ~nd may, in principle, be satis
fied for suitable choices of F and the set {A} of physical 
quantities. 

As regards Eq. (2.6), the question of solving it with a 
predetermined algebra can be investigated only for specific 
physical systems, since it explicitly involves the classical 
Hamiltonian. Substitution of the operator F in the form 
( 3.3) , in (2.6) evidently leads to an equation for the function 
u(s,7J,t), different, in general, for different systems. The so
lution of such an equation must also satisfy conditions (3.4), 
irrespective of the system considered. Hence, without going 
into the details of the equation for u and the process of solv
ing it for specific systems, we will write down the general 
structure of the function u, valid for any physical system, 
simply from the conditions (3.4). It has been shown37 that 
these conditions can be satisfied if and only if the function 
u(s,7J,t) has the structure (the result was obtained for the 
one-dimensional case, but the generalization to N dimen
sions is trivial) 
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xexp( ~ 'T/x) dx, (3.7a) 

where the q;k are a set of square-integrable functions of the 
configuration space, satisfying the single condition 

(3.7b) 

The non-negative QDF, corresponding to this structure, is 
given by37 

F",(q,p,t) = (21rli)-N~lf ",(x,t)q;t(q-x,t) 

x exp( _ i~X) dx 12 ;;;.0. (3.8) 

The function (3.8) [or rather a set of such functions for 
various possible choices of the set {q;k}' compatible with 
(3.7b)] coincides with the one proposed by Kuryshkin l5 

long ago. Actually the function (3.8) was obtained as a di
rect consequence of the correspondence rule proposed by 
him. As stated in Sec. I, the theory with such a correspon
dence rule was given the quite natural sounding name of 
"quantum mechanics with a non-negative QDF." What has 
been achieved by us in this section is thus a reformulation of 
this theory in terms of the probability operator. We hope to 
show in the following sections that such a reformulation is an 
essential and vital step toward extending the scope of this 
theory to the case of relativistic fields. 

IV. PROBABILITY OPERATORS OF ONE-DIMENSIONAL 
FIELD OSCILLATORS 

It will be shown in later sections that a generalization of 
the quantization scheme developed so far in this paper to the 
case of a field without interaction requires the field to be 
represented as a system of noninteracting one-dimensional 
oscillators. It is widely known46,47 that such a representation 
is possible. The probability operator of such a system of os
cillators will be obtained from those of the one-dimensional 
ones comprising the system in a constructive manner. 
Hence, with a view towards future applications, we consider 
in this section the problem of constructing the probability 
operators of such one-dimensional "field oscillators," which 
may be of two types: those having positive and those having 
negative contributions, respectively, to the classical field en
ergy. Besides, in conformity with standard practice, we pos
tulate the existence of only two types of algebra-Bose-Ein
stein and Fermi-Dirac. It thus follows that we have to 
investigate four individual problems (two types of oscilla
tors X two types of algebra). We will deal with all four cases 
in this section. 

Case 1: We consider the case of an ordinary one-dimen
sional harmonic oscillator of unit mass with the classical 
Hamiltonian 

(4.1 ) 

and assume that the generators q,p satisfy Heisenberg com
mutation relations (3.1a) withN = 1. For application in the 
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theory of fields we have to seek a representation ofthe proba
bility operator in terms of the annihilation and creation op
erators of the oscillator. For this we introduce a pair of com
plex conjugate variables z, z* and the familiar annihilation 
and creation operators (hereafter we adopt the convention 
Ii = 1) 

Z= (2w)-1/2(wq+zp), 0= (2w)-1/2(wq+;p), 

z* = (2W)-1/2(wq - ip), 0+ = (2W)-1/2(wq - ip). 
(4.2) 

The operators 0 and a+ satisfy the commutation relation 

[0,0+] = i, (4.3) 

defining the Bose algebra. 
Physical quantities A (q,p,t) relating to the oscillator 

( 4.1 ) can now be expressed as functions of the variables z, Z* , 

and t. We retain the same notation for them although the 
functional forms will, in general, be quite different. Now 
introducing the probability operator F(z,z*,t) such that 

A f A 2 A = O(A(z,z*,t» = A(z,z*,t)F(z,z*,t)d z, (4.4 ) 

where d 2z=d(Rez)d(lmz), and comparing with (2.1) 
(for N = 1), it is readily seen that 

A A 

F(z,z*,t) = 2F(q,p,t) Iq = q(z.z*),p = p(Z,ZO) • (4.5) 

Conditions (2.2) and Eq. (2.6) are now transformed as 

f F(z,z*,t)d 2z = 1, 

F",(z,z*,t) = ("'IF(z,z*,t) 1",);;;'0, VI"'), 
(4.6) 

_i
aF 

+w(z* aF -zaF)=wf z'z'*[F,F']d 2z', 
at az* az 

(4.7) 

A A 

whereF' = F(z',z'*,t). In obtaining (4.7), we have used the 
explicit form of the Hamiltonian in new variables: 

H(z,z*) = wzz*. (4.8) 

We will further take a,F= 0 to guarantee that operators of 
time-independent quantities such as Hamiltonians do not 
have explicit time dependence. Thus the first term in the lhs 
of (4.7) drops out. 

Time-independent solutions of ( 4. 7) with the properties 
(4.6) can be found from the analogous solution in the equiv
alent (q,p) representation obtained earlier,48 simply by ap
plying the transformation (4.5). This has been done. The 

A 

properties of the operator F(z,z*) thus found and the related 
quantization has been studied in great detail. 49,50 We simply 
mention the solution here: 

F+- (z,z*) = rr- 2 O(a,a*)D(a)exp(a*z - az*)d 2a, A f A 

(4.9a) 

where 

D(a) = exp(ao+ - a*o) (4.9b) 

is the unitary displacement operator42,51 and the kernel 
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O(a,a*) = f ICn 12 exp( - ~ aa*)Ln (aa*), 
n=O 2 

(4.9c) 

is the analog of the kemel u of Sec. III. In formula (4.9c),Ln 

denotes the Laguerre polynomial and the ICn 12 are a set of 
non-negative coefficients, arbitrary except for satisfying the 

A 

second relation in (4. 9c ). The notation F + - has the follow-
ing meaning. The plus sign signifies the fact that the proba
bility operator relates to an oscillator with positive-definite 
energy (4.8) and the minus sign is related to the type of 
algebra (Bose, in this case). The corresponding operator for 
the same oscillator but in the Fermi algebra (case 2 of our 

A 

study) thus will be denoted by F + + . 
We also mention that, with the help of operator (4.9) 

and the correspondence (4.4), one can construct the opera
tors (for details, see Refs. 49 and 50) 

O(z) = a, O(z*) = a+, (4.10) 
A 

H = O(H(z,z*» = (J)a+a + (J)c+-, (4.11a) 

where 

(4.11b) 

By exploiting the properties of the displacement opera
tor,42.51 one can recast the probability operator in the equiva
lent form49 

A A A A 

F+-(z,Z*) = D(z)F+-(O,O)D + (z), 

A 1 
F+-(O,O) = - L ICn 12 In)(nl, 

11' n 

(4.12a) 

(4.12b) 

where In) are the usual normalized eigenstates ofthe num
ber operator a+ a. From representation (4.12) the positive-

A 

definiteness of F + - is quite obvious. It can also be checked 
easily that the operator ( 4.12) is normalized. It thus re~ains 
to be shown, for self-consistency of this paper, that F +

satisfies Eq. (4.7) as well. With this aim in mind we first 
express the displacement operator ( 4. 9b) in its normally and 
antinormally ordered forms 

D(a) = e - (I/2)aa· e aa+ e - a·a = e( 112)aa·e -a·oeao+ 

(4.13) 

by the use of the Baker-Hausdorffidentity.52 Differentiating 
these expressions separately with respect to a and a* (with 
the convention aa/ aa* = aa* / aa = 0 to be observed 
throughout) we obtain 

a~~) = ( _ ~ a* +a+ )D(a) =D(a)(a+ + ~ a*), 

(4.14a) 

aD(a) = _ D(a)(a + ~ a) = - (a - ~ a) D(a). 
aa* 2 2 

(4. 14b) 

From the relations (4.14) and their ad joints, it follows that 
A A A A 

[a,D(a)] = aD(a), [a+,D(a)] = a*D(a), 
A A 

[a,D +(a)] = - aD +(a), ( 4.15) 
A A 

[a+,D+(a)] = -a*D+(a). 
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We now observe that the rhs of ( 4. 7) is nothing but the 
A A 

commutator of F(z,z*) with H. Using the expressions (4.9) 
and (4.11), respectively, for these operators we obtain the 
commutator as 

[FA +-( *) HA ] _ (A+ a'F+- A a'F+-) zz -(J) Q ----Q--- . 
, , az* az 

(4.16) 

To evaluate the derivatives in the right-hand side we use the 
A 

equivalent expression (4.12) for the operator F+ -, the ex-
pressions (4.14) with their adjoints. After straightforward 
but somewhat lengthy calculations we have the result 

A A (a'F+- a'F+-) [F+-(z,z*),H] =(J) z*---z--
az* az 

A A A 

+ (J)D(z) [F+ - (O,O),a+ a]D + (z). 

The commutator occurring in the right-hand side is evident
ly zero because of (4.12b) and the faXt that In) are eigen
states of a+ a. With the observation a,F + - = 0 we find that 
our proof is complete. 

Case 2: Let us now come to the second problem-the 
quantization of the oscillator (4.8) in the Fermi algebra. The 
generators of the algebra satisfy 

A 

[a,a] + = [a+,a+]+ =0, [o,a+]+ = 1, (4.17) 

where [ , ] + denotes an anticommutator. The required op
erator 'F + + (z,z*) must satisfy the conditions (4.6) and the 
equation 

( 
a'F a'F) A A (J) z*--z- = [F(z,z*),H], 
az* az 

where 

H = H(z,z*)F(z,z*)d 2z. A f A 

We also demand that in such a quantization 

O(z) = a, O(z*) = a+ 

and 

(4.18a) 

( 4.18b) 

( 4.19) 

(4.20) 

where c+ + is a finite real constant. These demands are con
sistent with the physical meaning of the generators and the 
Hamiltonian operator. 

The required solution, as can be checked by direct sub
stitution, is the operator 

F++(z,z*) =/1 +J;a+a+z*ha+z/ta+, (4.21a) 

where the functions /; (i = 1,2,3) are all functions of the 
argument zz* and satisfy 

It =/1>0, f II d 2z = 1 (4.21b) 

IT=J;, f J;d 2z=0, f IzI2J;d 2z= 1, (4.21c) 

f Izl% d 2Z = 1, II (II + J;) > Izhl2. (4.21d) 

The constant c+ + in (4.20) can now be written as 

c++ = f IzI 2/1(lzI 2)d 2z>0. 
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The solution (4.21) is the most general solution of 
(4.18) consistent with the requirements (4.19) and (4.20). 
Of course. the restrictions (4.21b)-(4.21d) are not suffi
cient for a unique determination of the functions /;. Many 
such choices are possible. and are discussed in detail else
where.53 Just to illustrate that the set {/;} with the proper
ties (4.21b)-( 4.21d) is nonempty we mention here the one
parameter family 

II = _1_ e - Izl'lo-. Iz = _1_ (lzl2 _ O')e - Izl'lo-. 
1T0' 1T~ 

f - 1 -lzl'lo-
3 - 1Tdl e • 

where 0' is a real non-negative parameter ;;.1. It can be 
checked by direct calculation that all conditions are satis
fied. 

Case 3: The third problem to be investigated is the quan
tization of a "negative-energy oscillator" (NEO). a system 
with "classical" Hamiltonian 

H(z.z*) = - wzz* (4.23) 

in the Bose algebra (4.3). As we will see later such a system 
~ccurs in the study of spinor fields. The required operator 
F - - must satisfy the conditions (4.6). As regards the equa
tion for the operator one has to make a choice between 
( 4.18) and the following: 

aH aF _ aH aF = [F(z.z*).R]. 
az az* az* az 

R = f H(z.z*)F(z.z*)d 2z. 

( 4.24a) 

(4.24b) 

For an oscillator with positive energy. Eqs. (4.24). reflecting 
the principle of dynamical correspondence in terms of the 
variables z.z*. simply reduce to Eqs. (4.18). But for the 
NEO (4.23) they differ [meaning Eqs. (4.18a) and 
(4.24a)] by the sign ofthe left-hand side. 

However. the question of making a choice is quite irrele
vant in the present case. since it will be shown presently that 
~respective of such a choice. no probability operator 
F - - (z.z*) exists such that the Hamiltonian possesses the 
required physical meaning and thus can be written as 

(4.25) 

where c- - as usual is a finite rea!..constant. To show this. let 
us assume that such an operator {. - - has been found. Since 
the energy ( 4.23) is negative and F - - is positive-definite. by 

A 

( 4.24b) it is obvious that the average value of H in any arbi-
trary state I t/J) must be negative. But in the eigenstate In). we 
obtain 

(H)n = nw + wc--. n = 0.1.2 •.... 

Since n may be arbitrarily large and c- - is finite. the above 
average must become positive at sufficiently large n. We thus 
arrive at a contradiction. Hence for a NEO there does not 

A 

exist any operator F - - in the Bose algebra compatible with 
the physical meaning of the Hamiltonian operator. 

Case 4: We now consider the fourth and last problem of 
this section. the quantization of the NEO (4.23) in the Fer
mi algebra (4.17). As usual. the required operator F - + 

must satisfy (4.6) and the Hamiltonian must be of the form 
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A 

H=w(a+a+c-+). c-+ = (c-+)*. (4.26) 
A 

Assuming that the operator F - + satisfies (4.24) we can 
write down the solution in the form of the operator (4.21a) 
(see case 2) by interchanging z and z*. with the correspond
ing restrictions on the functions /;. However. the equalities 
O(z) = tz. O(z*) = tz+ cannot now be satisfied for any 
choice of the set {/;}. These violations. as will be shown 
later. come into conflict with translational invariance. 
Hence we discard the solution as physically inadmissible. 
However. this is the most general solution of (4.24) consis
tent with (4.26). The inevitable conclusion is that Eq. 
( 4.24) itself is physically inadmissible for a NEO and has to 
be discarded. To save the situation. we now turn to Eq. 
( 4.18). which produces a solution. compatible with all re
quirements. as 

A _ _ __ 

F-+(z.z*) =/1 +/2tz+tz+z*Aa+zlttz+. (4.27a) 

where the functions J; are again functions of the argument 
zz* and satisfy the conditions 

iT =il;;'O. f j; d2z = 1. (4.27b) 

iT =h.. f h. d2z = O. f Iz12h. d2z = - 1. (4.27c) 

f IzI2.t;d 2z= 1. il(j; +h.);;.lz.t;1 2. (4.27d) 

The constant c- + in the expression (4.26) for R is now 
determined by the functionil as 

c-+ = - f Izl2il d 2z<0. (4.28) 

Again it can be shown that there is sufficient freedom in 
the choice of the set {J;}. It is easy to show that the set {J;} 
is nonempty. Suppose we have found a solution for case 2. As 
mentioned earlier. this is always possible. From this solution 
it is possible to generate a solution for the NEO simply by the 
transformation j; = II + Iz. h. = - Iz • .t; = A. since under 
such a transformation the conditions (4.27b )-( 4.27d) for 
the functions J; transform to the conditions (4.21 b)
(4.21d) for the functions /;. 

Before concluding this section we want to make the fol
lowing comments: in order to obtain a physically meaningful 
solution for the probability operator of the NEO. (i) we had 
to discard the Bose algebra and (ii) we had to discard Eq. 
(4.24) and decide in favorofEq. (4.18). which amounts toa 
redefinition of the classical Poisson bracket. 

We thus postulate the equation for the probability oper
ator of an oscillator (either a positive-energy or a negative
energy one) as 

A A A A 

e(aH aF _ aH aF) =w(z* aF -z aF) = [F.R]. 
az az* az* az az* az 

(4.29a) 

H(z.z*) = ewzz*. R = f H(z.z*)F(z.z*)d 2z. 

(4.29b) 

where e = + 1 for a positive-energy oscillator and - 1 for a 
negative-energy one. This means that the Poisson bracket in 
the lhs of (4.29a) must take into account the signature of 
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classical energy. The necessity of such a redefinition can be 
clear only after a consideration of the quantization of fields 
to which we now proceed. 

V. GENERAL ASPECTS OF QUANTIZATION OF FIELDS 
ON THE BASIS OF THE PROBABILITY OPERATOR 

In the theory of classical fields, all physical quantities 
are constructions (functions or functionals) from the field 
function u(x) = (u 1(x), ... ,uN (x» and its derivatives, writ
ten symbolically as A(u(x». Here as usual x = (xo,x) de
notes the coordinates of Minkowski space-time with the 
metric tensor g"'n = diag(l, - 1, - 1, - 1). Hence the cor
respondence rule (2.1) with the probability operator can be 
generalized to the case of fields as 

A = O(A(u(x») = f A(u(x»F [u(x) ]du(x), (5.1) 

A 

where F[u(x)] is an operator-valued functional (probabili-
ty operator) of the field and the integral is taken over all 
admissible field configurations (solutions of the correspond
ing classical Lagrange-Euler equations47

). The conditions 
(2.2) and Eq. (2.6) will be simply generalized to 

f F [u(x) ]du(x) = i, (5.2a) 

~F[u(x)]<I>=F<I>[u(x)];;;,O, (5.2b) 

ax',F [u(x)] + {PO(u(x»,F [u(x)]} 

= i pO(u'(x»[F[u(x) ],F[u'(x) ]]du'(x). f AA 

(5.3 ) 

Hereafter Ii = c = 1, <I> is the arbitrary state vector, po(u(x» 
is the energy of the classical field of the configuration u(x), 
and { , } in the lhs of ( 5.3) denotes the Poisson bracket, to be 
clarified later. The non-negative functional Ftp, normalized 
by virtue of (5.2a), can be interpreted as the probability 
density of the field configuration u(x) in the state <1>. Specifi
cation of the meaning of the functional integrals (domain of 
integration and measure) appearing in (5.1), (5.2a), and 
(5.3) obviously requires knowledge of the classical field 
equations. 

In the present paper we restrict ourselves to the consi
deration of the linear local relativistic theory of a system of 
fields without interactions, when the Lagrange-Euler equa
tion for each field component is linear and thus in its discrete 
momentum representation each field component admits47 

Lorenz-invariant decomposition into a sum of positive- and 
negative-frequency parts in the following manner: 

" { v .• + + ik"x v .• - - - ik,x} (5 4 ) USj(x) = ~ vsjk zskv.,e + vsjk zskv.,e ,. a 
s,k,vs 

• () "{"'V,. + III + ik,x + ",v,. - III _ - ik.,x} usj X = ~ vsjk zskv,e vsjk zskv.,e . 
S,k'''':f 

(5.4b) 

Here usj is thejth component of the field s, ks = (k~,k), 
k ~ = .Jk2 + m;, ms is the mass of the quantum of field s, 
ksx = k ~xo - k·x, and the index Vs takes care of spin, polar
ization, etc. The quantities v, being solutions of the corre
sponding field equations in the momentum representation 
and reflecting the transformation properties of the fields, can 
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always be suitably normalized to express the classical ener
gy-momentum four-vector P n through the amplitudes z in 
the following manner: 

pn(u(x» = pn({zsiv },{!siv}) 
.f ., 

= L k : (!Jv,z,;v, + E.!';v,ZJv)' (5.5a) 
s.k,v ... 

where Es = + 1 for the tensor field and - 1 for the spinor 
field. The quantities v ± and the amplitUdes z ± obey the 
following rules of complex conjugation47

: 

(vv .• ±)* = ",v.+, (z±)* III+, sjk V sjk' skv., = Z skv, . (5.5b) 

The relations (5.4) and (5.5) show that any admissible 
field configuration satisfying free field equations is uniquely 
represented by the sets of independent amplitu~es {z';v) 

and {! Sky }. Thus the operator-valued functional F can now 
be considered as an operator-valued function of the infinite 
sets of variables {z ± }, {! ± }: 

F[u(x)] =F({zl},{!l}). (5.6) 

Here we have introduced the collective index B = skvs' The 
correspondence (5.1) can now be rewritten as 

A = O(A) = f A(x,{zl},{!I})F({zl},{!I}) 

(5.7) 

where the integration is over the domains of definition (com
plex planes) of the independent variables z ii and! ii . 

The corresponding restatement of (5.3) in terms of zl 
and! 1 requires specification of the Poisson-bracket s~mbol 
{,}. For this we consider the different arguments of Fand 
the terms in (5.3) corresponding to them separately. 

( 1) The time variable xo. As in the case of nonrelativis-
A A 

tic theory, wetakeF to be independent ofxo. Thus ax',F = O. 
(2) The independent variable z- (for simplicity we 

drop the index B). The corresponding contribution kOlz-12 
to the field energy can be reduced to that of a harmonic 
oscillator by the transformations 

z- = (2ko)-1/2(wq+ip), !+ = (2ko)-1/2(wq-ip), 

pO(z-)+) = p2/2 + w2q2/2 = H(q,p), 

d 2z- = (2ko)-lw dqdp, 

F( ... ,z-,!-, ... ) = (2ko/w)F( ... ,q,p, ... ). 

Using now Eq. (2.6) of Sec. II, we obtain 
A A 

w(!+ aF _ z- aF) 
a!+ az-

(5.8) 

(3) The independent variable! - , with the contribution 
EI! -1 2 (E = ± 1) to the field energy. Similar to the previous 
case, we obtain 

~E)(Z+ aF _!- aF) 
az+ a!-

(5.9) 
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Actually, only the equation for £ = + 1 was obtained by 
variable transformation to a harmonic oscillator and thus 
~ I ) > O. For £ = - 1, there is no such transformation and 
the corresponding equation has been written by pure analo
gy (see the comments atthe end of Sec. IV). Thus~ - 1) is 
merely a real constant (following from the Hermiticity of 
A 

F), but not necessarily positive. 
Note that Eqs. (5.8) and (5.9) contain arbitrary sets of 

real constants {Ct)skV)'{%.V, (£s )}. For a unique determina
tion of these constants and thus for a unique specification of 
the Poisson-bracket concept, we have to resort to some gen
eral physical principle. We show in Sec. VI that the require
ment of translational invariance of the theory provides us 
with such a principle. 

VI. TRANSLATI,ONAL INVARIANCE AND THE EXPLICIT 
FORM OF THE EQUATION FOR THE PROBABILITY 
OPERATOR OF A SYSTEM OF FREE FIELDS 

The well known condition of compatibility of the trans
formational properties of the field operators U sj (x) and the 
state vector ct> with respect to translation47 is 

au .(x) A 
• SJ _[A ()pn] I - u· x , . :J SJ 

clXn 

(6.1 ) 

Substituting in this, f~r n = 0, the field operators USj (x) and 
the energy operator pO, constructed by the general recipe 
(5.7) from the classical expressions (5.4a) and (5.5a), re
spectively, we obtain 

± k ~ I z I P({z f }, {! f }) IJ d 2Z ii d 2! ii 

= I zl pO( {z1' },{! 1'}) 

X [P({zf },{! B} ),P({z1' },{! f·})] 

xII d2Zii d 2!ii II d 2z;;. d 2!;;.. 
B B' 

Transforming the rhs by means of the relations (5.8) and 
(5.9) of the previous section, we can write 

c 

The above expression can be integrated by using the follow
ing integral identities: 

I A II A IA zz* a .. Fd 2z = 1: z2 az Fd 2z = - zFd 2z, 

I zz*az Pd 2z = ~ I (z*)2a .. Pd 2z= - I z*Pd 2z, 

I z*a .. Pd 2z= I zaz Pd 2z= - f Pd2Z, (6.3) 

where P = P(. .. ,z,!, ... ) and P -0 as Izl- 00. The identities 
(6.3) can be readily checked by changing to the polar co-
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ordinatesz = rexp(iO),d 2z = rdrdO. Now considering the 
expression (6.2) for different independent z ii and! ii , inte
grating and equating to the Ihs, we obtain the unique result 

(t)sk1', = k?, %.1', (£s) = k?, 

both for £S = + 1 and £S = - 1. 
Finally, summing up the relations (5.8) and (5.9), writ

ten separately for each independent variable, we obtain the 
equation for the probability operator of a system of free 
fields: 

Lk~{(!: ~-zii~) 
B a!B aZB 

+ (Z: a+ -!ii ,:_)}P({zf},{!f}) 
aZB aZ B 

= I [F'({zf},{!f}),P({z1'},{z*1'})] 

XpO({z1'},{!1'}) II d 2z;;. d 2!;;., (6.4) 
B' 

where k ~ = k?, B, and B ' are collective indices. 
Comparison of Eq. (6.4) with the same equation writ

ten in the form (5.3) of the previous section, taking into 
account the relations (5.5a) and (5.7) and the fact that 
ax'p = 0, leads to an explicit definition of the classical Pois
son bracket which automatically takes into account the sig
natures £S appearing in the classical expression (5.5a) for 
the field energy (see the comment at the end of Sec. IV). 

Thus the problem of quantizing a system of free fields in 
the formalism of the probability operator is reduced to that 
of finding a solution of Eq. (6.4), restricted further by the 
conditions 

I P({zf},{!f}) IJ d2Zii d 2!ii = t, 

$P({zf },{!f })ct> = F¢> ({zf },{!f });;;.o. 

(6.5a) 

(6.5b) 

It is to be noted that the quantization scheme considered 
here depends both on the structure of the system of fields to 
be quantized [classical energy pO explicitly enters Eq. (6.4) ] 
and the predetermined algebra of operators. It is thus re
markable that irrespective of these dependences, for the op
erators O(zl1')' O(!l1')' and pO determined by the rule 
(5.7) we have the relations 

+ k?O(zl1') = [O(zl1'),PO] 

+ k?O(!l1') = [O(!l1'),PO] 
(6.6) 

as direct consequences ofEq. (6.4). This can be readily seen 
by mUltiplying both sides of (6.4) by z..k1" zst1" !..k1" and 
!st1', (separately each time) and integrating o~er ali vari
ables with the use of identities (6.3). These relations lead to 
the physical meaning of the operators O(Z..k1' ), O(!..k1' ) as 
the annihilation operators and O(! .tv), O(zl,,) as the' cre-

ation operators of the quantum of energy k? = ~k2 + m; of 
the fields s. Relations similar to (6.6) with k and P replacing 
k? and po can also be easily established, since along with Eq. 
(5.3), with a x, = 0, the probability operator also satisfies the 
equations 
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A A A 

{P,F} = i[F[u(x) ],P]. (6.7) 

This can be seen by starting from (6.1), for n = 1,2,3, and 
following the same procedures. Hence we can write 

(O(ztv,»+ = O(liv,)' 
(6.8) 

[pn,o(ztv)] = ± k ;O(ztv)' 

leading to the complete identification of the operators 
O(z';v ), o(l,;v ) as annihilation operators and of 0(1 tv ), 

s s s 

o (ztv, ) as creation operators of the quantum of energy-mo-

mentum k; = (~k2 + m; ,k), whereby ms can now strictly 
be identified as the mass of the quantum of field s. 

VII. QUANTIZATION OF A SYSTEM OF FREE FIELDS 
IN THE FORMALISM OF THE PROBABILITY OPERATOR 

For the sake of convenience we introduce the "partial" 
operators F ~kV, and Fiv" connected with the probability 
operator by the integral relations 

F1(zi ,1:) = F({zf.},{1f.}) A JA 

(7.1a) 

xII d 2zi' II d 21i" (7.1b) 
B' B'#B 

It immediately follows that the energy-momentum operator 
can be written as 

N1 = J IZl2F1 (z,z*)d 2Z, 

N~ = EB J IzI2F~(z,z*)d2Z. 

(7.2a) 

(7.2b) 

Carrying out the integrations over all but one variable in the 
relations (6.4) and (6.5), we further obtain 

(
a a)A. A. A 

k~ z*--z- F~(z,z*) = [F~(z,z*),PO], 
az* az 

JA. 2 A 

F~(z,z*)d Z= 1, 

~F~ (z,z*)ct> = F~ (z,z*) >0. 

(7.3a) 

(7.3b) 

(7.3c) 

Let us now go over to the construction of the probability 
operator of a system of free fields as the solution ofEq. (6.4) 
with the properties (6.5). We will make the following as
sumptions (by analogy with the standard theory of quan
tized fields47

). 

(a) The algebra d, to which the probability operator 
and consequently operators of all physical quantities belong, 
is the standard47 product of Bose and Fermi algebras. 

(b) The generators of d are the creation operators a: , 
J: and annihilation operators ;; i , J i of the quanta of the 
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field, corresponding by rule (5.7) to the classical amplitudes 
z:, 1:, zi, Ii, res~tively. 

A 

(c) The operators N ~ in the expression for the energy-
momentum operator, determined by the relations (7.2b) 
and (7.1), coincide with (apart from additive c numbers) 
the number operators of the corresponding quanta: 

(7.4) 

where the c~ are finite c-number constants. 
Assumptions (a)-(c), regarding the nature of the alge

bra, the physical meaning of the generators, and the physical 
meaning of the energy-momentum operator (7 .2a), allow us 
to solve the problem formulated above in a constructive 
manner. 

A 

Thus from (a) and (c) it follows that the operators N ~ 
commute with any operator of the subalgebra djBed, not 

A. 

containing the generators entering N ~. Hence 
A A A. A. 

[F~(z,z*),PO] =kHF~(z,z*),N~], (7.5) 

and from (7.2a), (7.4), and (7.5), we obtain the equation 
A. 

for F~: 

(z* ~ - Z~)F(Z,z*) = [F(z,z*),a+a-]. (7.6a) 
az* az 

Here and from now on indices are dropped whenever possi
ble without invoking confusion. 

A 

ConditionsonF(z,z*) in (7.6a),followingfrom (7.2b), 
(7.3b), and (7.3c) and the assumptions (b) and (c) are 

J F(z,z*)d 2z = i, 4>Fct»O, (7.6b) 

JZF(Z,Z*)d 2z = a-, J z*F(z,z*)d 2z = a+, (7.6c) 

± J IzI 2F(z,z*)d 2z=a+a+c, Icl<oo. (7.6d) 

A 

Here the ~us in (7.~) relates to the operator F1 and to the 
operator F~ for EB = + 1 while the minus relates to the 

A2 
operator F B for EB = - 1. 

Besides, according to assumption (a), the operators a
and a+ satisfy one of the following two types of commuta
tion relations: 

[a-,a+] ± = 1, [a-,a-] ± =0. (7.7) 
A 

Thus the problem of finding all the operators F~ is re-
duced to solving four typical problems (7.6) [two types of 
conditions (7.6d) X two types of algebra (7.7)]; All of these 
four one-dimensional problems were studied in Sec. IV. We 

A A A 

obtained the result that the operators F + - , F + + , and F - + 

exist while F - - does not exist. Thus we can conclude that 
quantization of the spinor field, in the formalism of probabil
ity operator, cannot be carried out in the Bose algebra. This 
is the analog of the well-known Pauli theorem in the formal
ism of the probability operator. 

We now construct the probability operator of a system 
offree fields [solution of (6.4) with p!.opert~s (6.~] as a 
symmetrized product of the operators F + - , F + + , F - + of 
the one-dimensional problems, with the following observa
tions. 

(i) To each tensor degree offreedom, in the probability 
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A 

operator there corresponds an operator F + - , to each spinor 
degree offreedom with E. = + 1 there corresponds an oper-

A 

ator F + + and to ea~h spinor degree of freedom with 
E. = - 1 an operator F - +. The operators enter with corre-
sponding indices. A 

(ii) The probability operator F, as a symmetrized prod-
A A A 

uctofF+-,F++ ,andF- + ,automaticallysatifiesEq. (6.4), 
normalization (6. Sa), and relations (7.1). 

(iii) The condition of positive-definitenes~ (6.5b) is 
trivially satisfied for the product of the operators F + - (gen
erators commute), but imposes additional limitations on the 
parameter fuqetions u;J;) for the symmetrized product of 
the operators F + + and F - + (the corresponding generators 
of the Fermi algebra anticommute). For details, see Ref. 53. 

However, it is to be emphasized that the explicit math-
A 

ematical expression for the probability operator F of a sys-
tem of free fields is only of academic interest, the most im
portant fact being it~ exist~nce. In pr~ctice one only needs to 
know the operators F + -, F + + , and F - + and their different 
paired symmetrized products. This is explained by the fact 
that all the physical quantities for such a system are either 
linear in amplitudes ztvs' ltv, (e.g., field components and 
their positive- and negative-frequency parts), or quadratic in 
them [energy-momentum four-vector, charge 

Q(u(x» = L (lz';v,1 2 -E.ll';vl), (7.8) 
s,k,vs 

and others], or bilinear (Lagrangian, tensor of energy-mo
mentum, current, etc.). To find the corresponding operators 
it is sufficient to know the "partial" operators (7.1) and the 
integral of F over all variables except two. These latter ones 

A 

are, because of the established structure of F, given by a 
typical symmetrized product 

A.. 1 A. A. 

F~:'B, (ZI.zT ,z2'z!) ="2 [F~, (zl.zT),F'j" (Z2.z!)] +, 

(7.9) 

where each F~ (z,z*) is one of the operators F + -, F + +, or 
A 

F-+. 
We will now study the simple consequences of quantiza

tion based on the probability operator. By the general rule 
(5.7) of Sec. V we find the operators of energy and charge 
from the corresponding classical expressions as 

po= Lk~(ll:ail +a:oil) +P~O» (7.10) 
B 

Q= L (a:ail - a: ail ) + Q(o» • (7.11) 
B 

where the "vacuum" contributions p~O) ,Q(O) can be written 
as 

p~O) = L (k2 + m~)1/2p(0) (B,EB ), 
B 

Q(O) = L q(O) (B,EB )· 
B 

(7.12) 

The quantities p(O) (B,EB ), q(O) (B,EB ) are the constants 
c+ - ,c+ + ,c- + of Sec. IV and are expressible through the 
quantization parameters [{cn },{/;}, {j;}] sky of the 

'" A. A .r 

individual operators F + -, F + +, and F - +. Nullification of 
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p~O) and Q(O) , ifpossible, is to be attained only through the 
choices of the quantization parameters. Such formal nullifi
cation attained in the standard theory of the quantized 
fields47 by writing the operators in a normal form is not ap
plicable in our case, since such a procedure is incompatible 
with the rule (5.7) of construction of operators and the 
properties (6.5) of the probability operator. Below we con
sider concrete examples. 

System of tensor fields: Here all p(O) (B,I) = c: - > 0 
[see formula (4.11b) of Sec. IV], and thus p~O) = 00. 

Hence a system comprising only tensor fields is not quantiz
able in the formalism of the probability operator. 

System of spinor fields: Here all q (0) (B,I) = c: + > 0 
[see formula (4.22) of Sec. IV], and all q(o)(B,-I) 
= - cil + >0 [see formula (4.28) of Sec. IV]. As a result, 

Q(O) = 00. Thus, again, a system consisting only of spinor 
fields is not quantizable. 

System of tensor and spinor fields: Here it is possible, in 
principle, to attain simultaneously both the equalities 
p~O) = 0, Q(O) = 0 by a proper choice of quantization pa
rameters, not, however, for any arbitrary system configura
tion. We illustrate this by the example ofthe quantization of 
a system consisting of a complex vector field vn(x) and a 
Dirac spinor field 'II(x). Denoting the polarization index of 
the vector field 'III' by a and the spin index 'lis of the spinor 
field by u, we can write the conditions of zero vacuum energy 
and zero vacuum charge as 

a 

a u 

u 

(7.13) 

(7.14 ) 

Expressing the quantities p(O) and q(O) through the param
eters {cn}, {/;}, and {j;} of the quantization we obtain 

~k2 + m'l,... L (2 + III (k,a) + 1l2(k,a» 
a 

+ ~k2 + m~ ~ [f Iz12( t.ku - i.ku)d 2Z] = 0, 

L (,ul(k,a) - 1l2(k,a» 
a 

+ f,; [f IzI2(t.kU + i.ku)d 2z] = 0, 

where 
~ ~ 

III (k,a) = L nlC!ka 12, 1l2(k,a) = L nl~ka 12. 
n=O n=O 

From the above two equations it is easy to derive 

2 ~ f Izl2t.ku d
2
z 

= [~1l2(k,a) - III (k,a) 

k
2 + m2 

] 
2 : (2 + III (k,a) + 1l2(k,a» . 

k +ms 
(7.15) 
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This last relation cannot be satisfied if mv>ms, by any 
choices of the non-negative parameters p, l' P,2' since in that 
case the rhs is negative while the Ihs is positive. Thus for a 
noncontradictory quantization (in the sense of null vacuum 
energy and null vacuum charge) mv must be less than ms. 
Such a limitation can be lifted by adding another tensor field 
to the system. 

Thus in this paper we have presented a general theoreti
cal framework for the quantization of physical systems on 
the basis of the probability operator. It has been shown that 
the resulting quantum theory, contrary to the conventional 
one, has a consistent probabilistic interpretation. In the non
relativistic case, such quantization leads to the theory, pre
viously developed under the name of "quantum mechanics 
with a non-negative QDF." We have shown further that a 
logical and mathematically consistent generalization of this 
framework to the case of relativistic theory of fields is possi
ble, at least in the case offree fields. Such a scheme of quanti
zation, based on the probability operator, puts forward defi
nite limitations not only on the parameters of quantization, 
but also on the structure of the field to be quantized (only a 
system comprising tensor and spinor fields simultaneously is 
quantizable with definite restrictions on the masses of quan
ta), already at the level offree fields. The probability opera
tor thus can be said to act as a selection criterion. A distinct 
advantage of this quantization scheme is that the average 
values of relevant physical quantities (and matrix elements 
between two states) can be calculated in a classical manner 
(by phase-space integration in nonrelativistic theory and by 
functional integration in the case of fields). To calculate the 
average value (or matrix elements) of any quantity it is suffi
cient to know only the average (or matrix elements) of the 
single probability operator. This might be of great advantage 
in calculating matrix elements of the scattering matrix in the 
theory of fields. Thus, in our opinion, it might be interesting 
and promising to study further implications of such quanti
zation by extending the framework proposed in this paper to 
include the case of interacting fields. Needless to say, there 
remain many obstacles, primarily of a mathematical nature, 
to be overcome before such an extension is possible, which 
thus remains a study for the future. 
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The problem of classifying the nature of the vector connecting a pair of points in Minkowski 
space is examined within the twistor theoretic framework. Two approaches are considered, 
one algebraic and the other geometric. The latter of the two is studied in some detail, 
providing some insight into the relation between the causal structure of Minkowski space and 
the geometry of projective twistor space. 

I. INTRODUCTION 

The question of whether a pair of points in Minkowski 
space are separated by a timelike interval or a spacelike (or 
null) one is of fundamental importance; its answer deter
mines whether fields at one point can be affected by data at 
the other. In Minkowski space with the standard coordi
nates the answer is simple to find, for two points x and y 
with position vectors xa and ]P are connected by a timelike 
vector if II~ - ]P1I2 is positive, and so on. The point whose 
t coordinate is greater is the one to the future of the other. 

However, if one takes the point of view that twistor 
space is fundamental and space-time is a derived structure, 
then the problem becomes rather murkier. Hitherto, the 
study of causal relations via twistor theory has received 
little attention. Presumably, this is at least partly because 
from the twistor point of view it is complexified compac
tified Minkowski space that arises naturally, and in this 
case the notion of a causal structure is not naturally well 
defined, although that of a conformal one is. Below, in Sec. 
II, we will see how the nature of the causal separation of a 
point from the origin of Minkowski space may be ascer
tained using twistor algebra. Although this algebraic ap
proach may be extended to arbitrary pairs of points, it also 
suggests a geometric approach to the problem that extends 
more naturally, and that is examined in Sec. III. In Sec. IV 
we consider briefly the points at infinity in compactified 
Minkowski space, and finally in Sec. V the point of view is 
applied to the consideration of worldlines in M. 

The terminology of Hawking and Ellis' will be used 
regarding causality theory; for an introduction to twistor 
theory, see the texts of Huggett and Tod2 or Penrose and 
Rindler.3 We will follow these references for "twistorial" 
notation and terminology, but for convenience a list of 
appropriate notation is appended: 

M is Minkowski space, 
M# is compactified Minkowski space, 
M# is compactified but not identified Minkowski 

space, 
I is the null cone at infinity in M#, 
CM is complexified Minkowski space, 
CM# is complexified compactified Minkowski space, 
CI is the null cone at infinity in CM#, 
T is twistor space, i.e., C4

\ {O}, with coordinates 
(wA

, 11' A' ) and the Hermitian form <I> defined by 
<I>(wA

, 11'A') = wA 1i' A + mA
'11'A" 

PT is projective twistor space, with homogeneous co
ordinatesza = (wA

, 11'A')' 

PN is projective real twistor space, given by <I>(za) 
=0, 

If 11'A' is a spinor, then Pa is the corresponding null 
vector, so that 11'A' 1i' A = Pa (using the abstract index con
vention). 

The null geodesic in M through x with cotangent Pa is 
given in PN by (ixAA'11'A" 11'A')' where xM' are the spinorial 
coordinates of xeM. 

I, the twistor line corresponding to I is given by 
{(wA,O): wAeC2{0}}, 

PNI and P'P are PN\I and PT\I, respectively. 
Finally, we will use th,e convention that if xeCM#, 

then XC PT is its sky, and if yePT, then r C CM# is the 
corresponding a plane; furthermore, ifyePN, then rCM# 
is the corresponding null geodesic. One exception to this 
convention will be the use of Lo to represent the sky of the 
origin of Minkowski space. 

II. TWISTOR ALGEBRA AND CAUSAL RELATIONS 

In order to study the problem of classifying the causal 
nature of the separation of two points, it is convenient to 
begin with the problem of deciding whether a point in Mis 
separated from the origin of M by a timelike, null, or 
spacelike .interval, and, if the first, whether it is to the past 
or future of the origin. So consider the point xeM, x not 
the origin, with position vector~. We want some way of 
attacking the problem using twistors, so recall that a non
projective twistor (W

A
,11'A') is a future-pointing null geo

desic with the associated tangent spinor 11' A' such that 
Pa = 11'A' 1i' A is the tangent vector to it. The projective 
twistor forgets the actual spinor 11' A' remembering it-and 
hence Pa-only up to scale. 

But now an elementary result from the geometry of 
Minkowski space tells us that 

xel+(O) iff xapa> 0 

for all future pointing (fp) null Pa, 

x61+ (0) iff xapa>O ·for all fp null Pa, 

x61+ (0) \ /+ (0) iff x61+ (0) and xapa=O 

for some Pa unique up to scale, 
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xeM\J(O) iff xapa takes on positive and 

negative values as Pa varies over fp null 

vectors, 

with similar statements for 1 - and J -, but with > re
placed by <, etc. 

Now recall that if za = (;xAA'1TA"1TA') , then zaza 
= - 2 Im(~Pa)' and when xeM, this is automatically 

zero. However, the expression does contain xapao which 
motivates the following idea. Given za = (eoA

, 1T A' ), define 
the twistor W'(za) = ( - jeoA,1TA'); then we obtain 
W'(za) Wa(za) = 2 Re(xapa), and the separation of a 
point from the origin can be classified using this. 

One possible means of proceeding is to define a new 
inner product <I> on T by <l>o(za) = <I>(W'(za». Then in 
just the same way as <I> splits up Tinto T+, T-, and N, we 
can use <1>0 to split it up as follows: 

T I = {zaeT: <l>o(za) > O}, 

Ts={zaeT: <l>o(za) =O}, 

Tp={zaeT: <l>o(za) <O}, 

and since the sign of <l>o(za) (although not the value) 
projects down to PT, we obtain PTI, POP, and P'P' in just 
the same way as PT+ , etc. Again, just as before, POP is the 
common boundary of the two other regions, so that 
PT/UP'P = PTI, and so on. Finally, intersecting with PN 
defines the regions PNI, P~, and PNP. This gives the fol
lowing classification. 

Proposition 2.1: If xeM is not the origin, then 

xEl+ (0) iff XCPNI, 

xei+ (0) iff XCPNI, 

xeM\ J(O) iff X intersects PNI and PNP, 

and similarly for 1 - and J - . 0 
One now faces the natural question of how the families 

PNI, PNs, and PNP are mirrored in Minkowski space. In 
fact, the null geodesics of M are split up into three classes 
by this partition, the class a given geodesic lies in depend
ing on its relationship with N(O), the null cone of the 
origin. 

Proposition 2.2: PNI consists of those null geodesics in 
M which are spacelike separated from 0 for all sufficiently 
large negative values of t, eventually enter 1 + (0), and 
remain there thereafter. P~ consists of those null geode
sics whose intersection with 1(0) is empty (together with 
the null cone at infinity in M#, and PNP consists of the null 
geodesics in 1 - (0) for t sufficiently large which eventually 
leave 1 (0) and never enter again. 

Proof: Any null geodesic r in M is described by a pair 
(xa, pa) where xae{ (x, y, z, 0)eM}, and is parametrically 
given by r = {xa + tpa: teR}. The result follows immedi
ately from the facts that IIxa + tpall2 = 1I~1I2 + 2t~Pa' and 
that rePNI if and only if ~Pa > 0, etc. 0 

An alternative point of view is that PNs is character
ized by the fact that zaePN lies in PNs if for W'eLo we 
have za Wa:;60 except for a single W'eLo, and for that this 
one, zia wPJ intersects I. This point of view then allows us 
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to build the rest of POP by allowing za to lie in PT, and 
finally we can extend the construction to include points of 
M other than the origin in exactly the same way. This has 
the advantage that it is easy to extend to points other than 
the origin, whereas the construction of the form corre
sponding to <I> is rather awkward. 

On the other hand, the mapping za ..... W'(za) given 
by (eoA, 1T A' ) ..... ( - jeoA, 1T A' ) can be regarded as a 
rotation-in a certain sense-and this approach also mo
tivates a natural extension to points other than the origin. 

III. TWISTOR GEOMETRY AND CAUSAL RELATIONS 

So consider the mapping acting on PT by 
(eoA, 1TA') ..... (jeoA, 1TA') where (eoA, 1TA') are the usual homo
geneous coordinates on PT. This is an operation of order 
four, and can be written as (eoA, 1TA') ..... (e i1T12eoA, 1TA')' 
prompting the consideration of (eoA, 1T A' ) ..... (i8 eoA, 1T A') for 
Oe[O, 21T). In other words, there is an action of U ( 1) on PT 
containing this mapping. The question is, how does one 
specify this particular representation of U ( 1) amongst all 
the representations of U ( 1) with PT for a representation 
space? 

If p( 0): PT ..... PT is given by (eoA, 1T A') ..... (ei8eoA, 1TA') 
then we can observe that p( 0) fixes both Lo and I point
wise; moreover, regarding the action on T given by this 
action on the homogeneous coordinates, we observe that I 
is fixed pointwise in T as well, even although Lo is rotated 
about inside itself in such a way as to preserve all the 
complex lines in Lo through the origin. In this sense, p( 0) 
is a rotation in PT induced by a rotation of PT which fixes 
I pointwise and Lo projectively. In fact, it is (almost) the 
unique such representation of UO) on PT which is free 
and preserves Lo and I in the way described just above. 

Let 

[
A(O) B(O)] 

p(O) = C(O) D(O)' 

Since p(O) preserves Lo and I up to proportionality, 
B=C=O; since I is fixed pointwise in T, D(O) = I; and 
since Lo is fixed in PT, A(O) = a(O)l. Finally, by freeness, 
we have a(O) = e±i8. The choice of + iO or - iO is just 
the choice of which timelike direction to call future, and 
which to call past, and we make the choice of + iO. 

Considering the action of p(O) on PT, we note that if 
zO lies in the future tube, i.e., zO = xa - jyO with yO timelike 
and future pointing, then p ( 1T /2)( Z) is the sky of a point 
whose real part is timelike and future pointing. Equiva
lently, p(1T/2): PT+ ..... PT~ and also maps PNto PT s, and 
PT- to PTP. 

Now, letyeM. Then there are only two representations 
of U ( 1) on PT fixing Y and I in the same way as p ( 0) fixes 
Lo and I, and only one of these is compatible with p(O). 
Call this representation py(O). It is now clear that under 
the action of py(O), PT+ is sent to the set of twistors 
PT'; such that if XCPTyl then Re(x)El+ (y) for if x = 
sa - iTt with TJa timelike and future pointing, then the 
action of p y( 1T /2) gives 
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and since 'I1a is timelike and future pointing, it follows that 
Jfl + 'I1a lies inside I + ( y). 

We are now almost in a position in which we can start 
to consider the relationship between the geometry of 
twistor space and the causal geometry of Minkowski space 
in a little more detail. First, though, we make one more 
observation. If yeM, then PT y f consists of those twistors 
(izAA'7TA" 7TA') such that Re{zO - Jfl)Pa > a for all future 
pointing null pa. We thus obtain 

Lemma 3.1: Let x,yeM. Then 

o 

And since x<y iff x <y and X n Y =0, twistorial proofs of 
such statements as 

x <y and y < z implies that x < z, 

etc. become straightforward. For example, we have the 
following. 

Proposition 3.1: Let x, y, and z be points of M such that 
x <y and y<z. Then x<z. 

Proof: The twistorial future of Y lies inside that of X, 
and Z lies inside the twistorial future of Y, therefore it also 
lies inside that of X. 0 

Lemma 3.2: Let x, yeM. Then one of the following 
situations must hold: 

( 1) X lies in the twistorial future of Y, 
(2) all but one point of X lies in the twistorial 

future of Y, and that point lies on Y, 
(3) X intersects the twistorial future and the twist

orial past of Y, and also intersects PN i in a one parameter 
family, 

(4) a situation analogous to (1) or (2) but with 
past replacing future. 

Proof: This follows immediately from the correspond
ing analysis of the way that skies in PT lie relative to 
m4 0 

The set PN x f will be called the twistorial future of X, 
and its closure, the twistorial causal future. Twistorial 
pasts are defined similarly. Note that all this is only defined 
here for skies corresponding to points of real Minkowski 
space. The points at infinity form the topic of the next 
section. 

IV. POINTS AT INFINITY 

Any sky in P~ is unambiguously associated with a 
twistorial future and past set, obtained as described above. 
However, the skies of points on J, and the points i+, i-, 
and ,.(J in compactified (but not identified) Minkowski 
space now appear naturally, although in the usual way of 
considering twistor space it is compactified and identified 
Minkowski space that occurs. 

For if we consider the sky of some point at infinity, 
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there is no unique way to assign a twistorial future or past 
to this sky. The rotation prescription breaks down and no 
longer specifies the twistorial future as it did for the sky of 
a point in M. This can be seen quite clearly from the fact 
that a point on the light cone at infinity in compactified 
identified Minkowski space corresponds to a pair of points 
in M#, and these points have distinct future and past sets. 
More severely, in the case of the point i, the axes of rota
tion degenerate to a single sky, which clearly leaves the 
rotation undefined. 

We avoid this problem by considering the route by 
which the point at infinity is approached. Regarding these 
points as the endpoints in compactified Minkowski space of 
curves with no endpoint in Minkowski space, we can as
sociate twistorial futures in the following way. 

Let z be a point in M#, and let c be a curve in M with 
endpoint z. Define the twistorial future of Z approached in 
this way to be the limit of the future sets of the points on 
c, and similarly the twistorial past. 

The net effect of this is that to. each sky in PN that 
intersects I, we will obtain two possible twistorial future 
and past sets: for one, the twistorial past set will be empty 
(corresponding to the point on J - ), and for the other the 
twistorial future set will be empty (the point on J + ). Also, 
for I itself we will obtain three possibilities, namely an 
empty future set and a past set consisting of all of PNI , 

corresponding to i +, an empty past set and a future set 
consisting of all of PNI , corresponding to i - , and both the 
past and future sets being empty, corresponding to ,.0. 

This enables us to rebuild from PN the whole causal 
structure of compactified, but not identified, Minkowski 
space up from these subsets of twistor space, by using the 
characterization of causal ordering obtained in the previ
ous section. 

V. WORLDLINES 

There are three classes of curves in M from the phys
ical point of view, namely timelike curves, null curves, and 
others. These others may have spacelike sections or always 
be causal, but are in this latter case timelike at some points 
and null at others-in either case can they correspond to 
the worldlines of material particles. The timelike curves 
correspond to massive particles, and the null ones to zero 
rest mass particles. One can also classify those candidates 
for worldlines as being geodesics or not-i.e., correspond
ing to free particles or particles acted upon by some force. 
Here we will only be concerned with the case of curves that 
are everywhere timelike or everywhere null, as a single 
particle cannot change from massive to massless or vice 
versa. For the sake of brevity, all such curves will be un
derstood to be future pointing unless the contrary is explic
itly stated. 

Now, a curve in M gives us a projective ruled surface 
(see Semple and Kneebones for definitions of most of the 
projective geometry terms used here) in PN, which is ruled 
by the skies of the points on the curve in M. A causal curve 
is characterized by the fact that the corresponding ruled 
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surface is such that each generator lies to the twistorial 
causal future of all previous ones, and a timelike curve by 
the fact that each generator lies in the twistorial future of 
all previous ones. Although the distinction between causal 
and timelike curves can be made in twistorial terms, that 
between (non-null) geodesic and nongeodesic worldlines 
cannot, for the simple reason the structure of twistor space 
depends only on the conformal structure of M, and dif
ferent choices of conformal factor correspond to different 
choice on timelike geodesic. 

A null geodesic is characterized by the fact that there 
is a common point on each of the generators of the ruled 
surface-so in this case it is a pencil, whose vertex is the 
point of PN corresponding to the null geodesic. A null 
curve is infinitesimally a null geodesic, with the conse
quence that infinitesimally separated generators of the cor
responding rules surface will intersect. In other words, a 
null curve in M corresponds to a developable in PN. It is 
also clear that any developable corresponds to a null curve. 

To summarize the above, then, curves in M correspond 
to ruled surfaces in PN. A pencil gives a null geodesic, a 
developable gives a null curve, and a scroll (i.e., any ruled 
surface which is not a developable6

) that moves into the 
twistorial future corresponds to a timelike curve. (In fact, 
since two points are timelike separated in M if and only if 
there is a null curve that is not a geodesic joining them, we 
see that two points are timelike separated if and only if 
there is a nonsingular developable in PNI whose boundary 
consists of their skies.) All other ruled surfaces either 
change character by being a scroll at some times and a 
developable others, or are acausal, and in neither case do 
they correspond to physically meaningful curves in M. In 
fact, it is easy to see that scrolls with self-intersections 
(other than pencils) correspond to curves with spacelike 
sections, since they must correspond to curves in M with 
null-separated points. 

We can also use these ideas to give intrinsically twist
orial proofs of results to do with the causal geometry of 
Minkowski space. 

Proposition 5.1: Let c be a future and past endless time
like curve in M, which approachesi - to the past and i + to 
the future, and let x be a point not on c. Then the null cone 
of x intersects c in precisely two points. 

Proof Regard c as a map from R-M, with c(t) ap
proaching j± as t approaches ± 00. Then C(t) starts off at 
I and ends up at I, and for all values of t in ( - 00, 00) is 
travelling into the twistorial future. Initially, C(t) lies in 
the twistorial past of X, and eventually it ends up in its 
twistorial future. We must therefore consider the process 
by which it gets from one to the other. 

As t increases, it takes on some value, say to, at which 
some element of C(to) first intersects PN i-this intersec
tion must be a singleton, and hence lies in X. Also, even
tually a value t\ is reached after which no C(t) intersects 
PNi, and C(t\) intersects it in a singleton, which again 
must lie in X. In between, C( t) always intersects PN i in a 
one-parameter family, for if it did not, then there must be 
some value of t between to and t\ for which C(t) either lies 
in the twistorial future or the twistorial past of X. It cannot 
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lie in the twistorial past, since C(t) is always moving into 
the twistorial future; likewise, it cannot lie in the twistorial 
future, or else we must have t > to. 

It then follows that for t < to. C(t) lies in the twist
orial past of X, for t = to. C(t) intersects X, for to < t 
< t\ C(t) intersects PNi in a one-parameter family, for 
t = t, C(t) intersects X, and for t > t\ C(t) lies in the 
twistorial future of X. 

Translated into Minkowski space terms, this means 
that the timelike curve c starts off in the past of x, crosses 
its light cone, spends some time spacelike separated from 
it, then crosses the light cone one more time, after which it 
remains in the future of x. 0 

Proposition 5.2: Let c be a causal curve in M such that 
x and z lie on c, but xd - (z). Then the curve is a segment 
of a null geodesic between x and z. 

Proof Let y be a point of c between x and z. Then the 
pairs x and y, and y and z must be null separated, else 
zd+ (x). Now consider the skies X, Y, Z. We know that 
each pair must intersect. Now, Y lies in the twistorial fu
ture of X except for the point at which they intersect. 
Furthermore, Z lies in that of Y, except for the point of 
intersection. But the twistorial future of Y contains no 
points of X, and since Z intersects X, we see that the points 
of intersection must coincide, hence x, y, and z lie on a 
common null geodesic. This holds for every point y be
tween x and z on c, and so the result follows. 0 

VI. CONCLUSIONS 

We have observed that the causal structure of 
Minkowski space has a reasonably straightforward inter
pretation in terms oftwistor geometry, from (at least) two 
different points of view. The above notions allow us to give 
a twistor interpretation of compactified but not identified 
Minkowski space, and to discuss the causal structure of 
M-and hence any portion of a space-time conformal to a 
subset of M-in twistorial terms. 

However, as the linear structure of PT was involved in 
this in an essential way, it seems unlikely that the tech
niques will extend to curved space-time in any straightfor
ward way. The study of the causal structure of a general 
space-time in terms of its space of null geodesics is a much 
more difficult problem, although partial answers can be 
found, for example if one restricts attention to causally 
simple regions, or considers only a restricted class of space
times. 7 
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An example is given of a causally simple space-time that may serve as a counterexample for 
various purposes, such as showing that for a general causally simple space-time the 
chronological common past of a terminal indecomposable future set need not be an 
indecomposable set. 

I. INTRODUCTION 

The following "multipurpose counterexample" is one 
result of a more thorough investigation into some technical 
aspects of different kinds of causal boundary constructions 
for general relativistic space-times. 

One of the most convincing candidates for such con
structions is the well-known procedure indicated by Budic 
and Sachs. 1 However, it only yields reasonable results for 
space-times that are at least causally continuous. Thus an 
important part of our investigation had been restricted to 
causally continuous, causally simple, and globally hyper
bolic space-times. 

In this context one often has to do with propositions 
that are trivially true for globally hyperbolic space-times 
and "trivially false" for space-times that are only causally 
continuous, but not causally simple (in that case there is 
most often rather a primitive counterexample obtained 
from some low-dimensional Minkowski space in the usual 
cutting-and-gluing way). However, it is not always easy to 
decide if the proposition in question holds for arbitrary 
causally simple space-times. (Although our experience has 
shown that in most such cases there is either an easy proof 
or not a quite so easy-to-find counterexample, still this 
example remains to be found-and there might once be an 
exception to our empiric "rule.") 

Thus the problem that served as a starting point for 
this part of our investigation was the following: Given a 
terminal indecomposable future set F in a space-time M, 
under which conditions it is necessarily true that the chro
nological common past !F of F is also an indecomposable 
set, if it is not empty? The analog for proper indecompos
able sets is generally true for reflecting space-times [Ref. 2, 
p. 290, Prop. 1.3]. The proposition is also trivially true for 
terminal sets in globally hyperbolic space-times, since in 
that case necessarily !F=rp. There is, however, an example 
of a causally continuous (but not causally simple) open 
submanifold of three-dimensional Minkowski space that 
contains a terminal indecomposable future set F, such that 
!F is neither indecomposable nor empty [Ref. 3, p. 49 f., 
( 1.3.9)]. 

Knowing that the above proposition were also true in 
the causally simple case would provide us with quite a 
strong practical tool for examining causal boundaries of 
such spaces. In fact, it can be shown that the proposition 
holds for a class of causally simply space-times that in
cludes open submanifolds of Minkowski space [Ref. 3, p. 

51 ff., (1.3.11)]. Our example shows, however, that the 
proposition fails for causally simple space-times in general. 

II. DEFINITIONS AND NOTATIONS 

We use the term space-time in the widest sense possible 
in this context, defining it simply as a connected, time
oriented Lorentz manifold of dimension >2. Orientability 
may also be demanded, but will not be needed. Our exam
ple will, of course, be orientable. 

Here, Ri shall denote three-dimensional Minkowski 
space, i.e., Ri is R3 with the standard Minkowski metric 
dx I8i dx + dy I8i dy - dt I8i dt (x, y, and t are Euclidean co
ordinate functions of R3

). 

As usual, 1+,1-, J+, J- shall denote chronological 
(resp. causal) futures (resp. pasts) in a given space-time. 

Consider, on a time-oriented manifold M, the set of all 
Lorentzian metrics that are compatible with the time ori
entation of M (i.e., the vector field that defines the time 
orientation shall be timelike with respect to all of these 
Lorentz metrics). On this set an ordering relation < may 
be defined by gl < g2 if the causal relations induced by gl are 
contained in those induced by g2' 

A subset of space-time is called indecomposable if it is 
either the past or the future of some causal curve in M. 
(See Ref. 4, p. 547 ff. for equivalent descriptions.) An 
indecomposable set is called a terminal indecomposable set 
if it is neither the past nor the future of a single point. 

The chronological common past ! U of an open subset 
U of a space-time M is defined as 

!U: =I-(nI-(x». 
XEU 

The chronological common future ! U is defined dually (cf. 
Ref. 1, p. 1303). 

A space-time M is called causally continuous if M is 
distinguishing and for all xEM 1- (x) = !I+ (x) and 
1+ (x) = tI- (x). There are many equivalent descrip
tions of this important causality condition (cf. e.g., Ref. 2). 

Here, M is called globally hyperbolic if M is strongly 
causal and for all x,yEA! J+(x)nJ-(y) is a compact 
set. There are as well useful equivalent definitions, but they 
have not been needed for this work. 

M is called causally simple if M is distinguishing and 
for all xEM J+ (x) and J- (y) are closed sets. Un
fortunately, no equivalent characterization is known to us 
that would illuminate the significance of this "intermedi
ate" causality condition from some other aspect (e.g., 
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time-functions). In particular, there seems to be no "ele
gant" way of checking causal simplicity of nontrivial ex
amples. 

It is well known that global hyperbolicity implies 
causal simplicity which, in turn, implies causal continuity, 
but that no two of these conditions are equivalent. 

III. THE EXAMPLE 

We now give a precise description of our "prototype." 
For a detailed proof that it does indeed possess the desired 
properties see Ref. 3, p. 55 ff., (1.3.12). 

Here, M, considered as a point set, is roughly speaking 
the first quadrant of an open full cylinder in three
dimensional Minkowski space, the axis of the cylinder co
inciding with the time axis of R~ and the upper part of the 
plane parts of the (topological) boundary of the cylinder 
being rounded off for technical reasons. 

More precisely choose some ae]2, 00 [ and define 

M:={(x,y,z)eR~lx>O, y>O, x 2 + 1< 1, 

- 1 <t<min{a~, a .JYn. 
[The "queer" upper bound for t is necessary for M to serve 
as a counterexample in (2) of Sec. IV; it is not necessary 
for the applications (1) and (3): In these cases - 1 < t < 1 
would also do.] 

We now define on M two Lorentzian metrics g and 
g in the following way: g is the restriction to M of the 
standard Minkowski metric of R~ and g is the pullback of 
the standard Minkowski metric of R~ via 

f: M -+R~, (x,y,t)~..jX2+7, arctan(y/x),t). 

The causal structure of (M;g) is well known, and as 
f:(M, g) -+f(M) C;R~ is an isometry, it is also easy to 
calculate the causal structure of (M, g). In fact, the causal 
cones of (M, g ) are contained in the corresponding causal 
cones of (M;g), the decisive point for our purpose being 
that the converse is not true. 

The idea now is to provide M with a COO-Lorentz met
ric g that coincides with g in the "upper part" U of M and 
with g in the "lower part" W, these two areas being sep
arated by an arbitrarily small "area of transition" V. 

More precisely choose Ee]O,![ arbitrarily small and set 

U:={(x,y,z)eMl t>O}, 

V: = {(x,y,z) eM I - €"x'y-(l- ..jX2+7) <t<O}, 

W:={(x,y,z)eMlt<; - €"x·y-(l- ..jX2+7)}. 
It is easy to indicate explicitly a COO function 1'/: M -+ [0,1] 
with1'/lu=Oand1'/lw=l.g:=1'/·g + (l-1'/)·gis then 
aLorentzmetriconMwithgl u = g andgl w = g.(M,g) 
is the desired example. 

It is easy to verify that F: = { (x,y,z) EM It> 0, 
x 2 + I < r2} is a terminal indecomposable set on (M,g) 
(since it is the chronological future of the causal curve 
r:]O,b[ -+M, ~(T,T,2T), with heR + sufficiently small) 
and that !F = {(x,y,z)eMl t < 0, x 2 + I < r2} is not an 
indecomposable set of (M,g). 
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The proof that (M,g) is, in fact, causally simple is 
rather lengthy, since the only criterion available is the one 
given in the definition (see Sec. II) and one has to check 
explicitly that per= (q) implies per= (q) for all combina
tions of p/qeU/V/W, respectively, using that g (resp. 
g) is an upper (resp. lower) bound for g (with respect to 
the ordering relation indicated in Sec. II) as well as the 
(evident) causal simplicity of (U, gl u) and (W, g I w)· 

It has to be noted, however, that causal simplicity gets 
lost as soon as we modify M by "widening up" the angle at 
the t axis, defining for M something like 

M:={(p'cos( {}),p'sin( {}),t) I pe]O, 1 [,{}e]0,0[, 

te] - l,rp( p,{} )[}, 

with 0> 1T/2 and rp some appropriate real-valued function 
with rp( p,{}) > p. 

Such modifications preserve causal simplicity if 
0e]0,1T/2] and rp such that M remains a convex set. 

IV. APPLICATIONS 

In our work on causal boundaries the example just 
described has been used on three occasions. 

( 1) The first application concerning chronological 
common pasts of indecomposable terminal future sets has 
already been described in the Introduction and in Sec. III 
of this paper. 

The other applications are of a more technical nature 
and concern comparison between different types of causal 
boundary constructions. 

(2) (M,g) as constructed in Sec. III illustrates the fact 
that even for causally simple space-times the Geroch
Kronheimer-Penrose (GKP) identifying relation RH [Ref. 
4, p. 563] need not be contained in the Budic-Sachs (BS) 
"hull-pair" identifying relation [Ref. 1, p. 1303]. (For glo
bally hyperbolic space-times these two relations are, once 
again, trivially identical.) 

Indeed, taking P : = 1-( r) for r:]O, 1 [ -+ M, r:]O, 1 [ -+ M, 
T ~T'cos( {}o), T'Sin( {}o), - T) ({}oe]0,1T/2[ arbitrary, 
but fixed) and F as in Sec. III one sees that the elements of 
the "intermediate space" MI [Ref. 4, p. 563] represented by 
P and F have to be identified in the GKP construction, 
although P and F are terminal sets which do not form a 
"hull-pair" [Ref. 3, p. 91 ff., (2.3.8)]. 

(3) Finally, for comparing different boundary con
structions, one can consider them from the viewpoint of 
"natural mappings" existing between them: Given two pre
scriptions for boundary constructions A and B, under 
which circumstances can we be sure that for any space
time M there is a "natural mapping" from the "A
completion" to the "B-completion" of M! And if there is 
one, is it necessarily continuous? 

Unfortunately, the answers to these questions are 
mostly negative. In general, small variations in the con
structions lead to completely incompatible results. Thus, 
except for the globally hyperbolic case, there need not be 
any "natural mapping" between the standard GKP and BS 
constructions [Ref. 3, p. 110], and although in the globally 
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hyperbolic case the existing "natural mapping" is (trivi
ally) bijective, neither direction has to be continuous [Ref. 
3, pp. 111-116]. 

One can, however, modify the GKP-construction 
maintaining the original procedure, but starting from a 
finer topology of M' [Ref. 3, pp. 102-107]. There is always 
a natural mapping from this modified GKP completion to 
the BS completion, but the example described above shows 
that it need not be continuous. In fact, only a minor and, in 
every other respect harmless, modification in the definition 
of the Budic-Sachs "extended causality relations" [Ref. 3, 
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p. 122 (3.3.4)] is needed to repair this defect [Ref. 3, p. 124 
(3.3.8) and p. 128 (3.3.11)]. 
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The development of a homogeneous Hilbert problem (HHP) approach to the initial value 
problem (IVP) for colliding gravitational plane waves with noncollinear polarization that 
began in two earlier papers [I. Hauser and F. J. Ernst, J. Math. Phys. 30,872 (1989) and 30, 
2322 (1989)] is continued. After formulating the HHP, the description of how one can apply 
it to generate a new family of solutions of the colliding wave problem that generalizes a three
parameter family constructed by Ernst, Garcia, and Hauser [J. Math. Phys. 29, 681 (1988)] 
using a double-Harrison transformation is given. Then the proof that the solution ofthe new 
HHP indeed solves the IVP that is posed is presented. A matrix Fredholm equation of the 
second kind that is equivalent to the HHP is also deduced. This will be used in a sequel to 
complete the proof of existence of solutions of the HHP and the proof that certain assumed 
differentiability hypotheses are in fact valid. 

I. INTRODUCTION 

In the first paperl of our series, we presented a new Abel 
transform method of solution of the initial value problem 
(IVP) for colliding gravitational plane waves, valid when 
the polarizations of the incident plane waves are collinear. 
Subsequently, in the second paper2 of our series, we demon
strated that the Abel transform solution could be derived 
anew using either of two forms of the Hilbert problem and 
we indicated how one of these two Hilbert problems could be 
generalized to a matrix homogeneous Hilbert problem 
(HHP) when the polarizations are noncollinear. 

We should like to emphasize that the new HHP is rather 
different from the matrix HHP that was employed by Ernst, 
Garcia, and Hauser3 (EGH) to derive a three-parameter 
generalization of the Ferrari-Ibanez-Bruni family of collid
ing wave solutions.4 The earlier HHP was, aside from some 
relatively minor details, a direct translation of the HHP used 
in connection with the Geroch group of transformations of 
one stationary axisymmetric space-time into another.5 On 
the other hand, the formulation of the new HHP was moti
vated by a desire to find an effective method of solving the 
IVP for colliding plane-fronted gravitational waves with 
noncollinear polarizations. 

In this paper we shall present the details concerning the 
new matrix HHP and demonstrate one way that we have 
succeeded in employing it to construct a new family of col
liding wave solutions with noncollinear polarizations. We 
shall also present a matrix Fredholm equation of the second 
kind which is equivalent to our new HHP and is especially 
useful in connection with various proofs. 

In a separate paper authored with Li, the new family of 
solutions that we have obtained will be described in detail 
and in the next paper of the present series the Fredholm 
equation will be applied to establish existence of a solution of 
the new HHP, and prove other essential theorems. 

It will be assumed that the reader is familiar with the 

general features of colliding gravitational wave solutions, as 
exemplified by the famous Nutku-Halil solution6 and the 
more recent Chandrasekhar-Xanthopoulos solution.7 We 
shall continue to describe such colliding wave solutions in 
terms of a chart (xl,x2,u,v) that was described in detail in 
Ref. 1 (Sec. II), where we also described the four regions 
into which the chart was divided by the null hypersurfaces 
u = 0 and v = 0, which separate the incident plane-wave re
gions II and III from the Minkowski space region I and the 
region IV in which the waves interact. See Fig. 1. We contin
ue to employ the line element 

d~ =;/i-lIE dxl + i dx212 - (2/,jp)e2r du dv, (Ll) 

where F: = Re E> 0, p > 0, and ~here the real fields p, r, 
and the complex Ernst potential E depend at most upon the 
null coordinates u,v. At the outset we shall select the Killing 
vectors so that at the two-surface of collision U = v = 0 we 
~avep(O,O) = I,E(O,O) = 1 and we shall scale du dvsothat 
r(O,O) = O. The caret symbol will be suppressed whenever 
we desire to consider the restriction of a function to the inter
action region IV of the gravitational waves. 

v 

(O,~~), 

p(O,v)=O ;/ 

, 
, 

, , 
, 

II 

p(u,v)=o u 

__ 1_------, 
- IV "~:~,~) 

(0,0) III 

',-
"'«U,o) = ° 

, , , 

FIG. 1. Region I-IV for sample choices of r(u) and stu) such that 
r(uo) = 1 and s(uo) = - 1. 
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In region II the various fields depend only upon v, while 
in region III they depend only upon u: In region IV they 
depend upon both u and v. In particular, in region IV, we 
express p and its conjugate field z in the form 

p(u,v) = !(s(v) - r(u», 

z(u,v) = !(s(v) + r(u)) , 

where 

( 1.2) 

r(u): = 1- 2p(u,O), s(v): = 2p(O,v) - 1. (1.3) 

With our choice of p(O,O), it follows that 

r(O) = - 1, s(O) = 1. (1.4) 

The formal definition of region IV is 

IV: = {(u,v)ER 2:0<U < uo,O<v< vo,r(u) <s(v)}, 

( 1.5) 

where in this paper we shall assume that 

r(uo) = 1, s(vo) = - 1 , 

in other words, that 

( 1.6) 

p(uo,Q) = p(O,vo) = ° . 
A slightly more general situation was considered in Ref. 1 
(Sec. II). 

As we demonstrated in Ref. 1 (Sec. II), the imposition 
of the vacuum field equations at the u = ° and v = ° hyper
surfaces requires that 

;'(0) = 0; s(O) = 0, (1.7) 

while the "wave front conditions" require that 

;'( u) > 0, for all ° < u < Uo , ( 1. 8 ) 

s(v) <0, forallO<v<vo ' (1.9) 

In our formulation of the IVP for colliding gravitational 
plane waves one regards r(u) and s(v) to be prescribed C2

_ 

differentiable functions and E3(u): = E(u,O) and 
E2(v): = E(O,v) to be prescribed CI-differentiable func
tions, from which E(u,v) and r(u,v) are to be determined 
throughout region IV. It is understood, of course, that r( u ) 
ands(v) satisfy conditions (1.4) and (1.7)-(1.9) and that 
Uo and Vo are defined by Eqs. (1.6). 

After E( u,v) is determined, the field r (u,v) is evaluated 
using Eqs. (2.23), (2.31), (2.40), and (2.41) in Ref. 1. Not 
every choice of r(u), s(v), E3(u), and E2(v) that satisfies 
Eqs. (1.4) and (1. 7) - ( 1. 9) is admissible. The reader should 
be familiar with the "colliding wave conditions" [Ref. 1, 
Eqs. (2.36)-(2.38)]. 

In the earlier papers we employed rand s to designate 
functions of u and v, respectively, and designate alternative 
null coordinates. We shall continue to depend upon context 
to distinguish one meaning of r, s from the other. The map
ping (u,v) --+ (r( u) ,s( v)) is one-to-one, bicontinuous, and 
maps IV as defined by Eq. (1.5) onto the set 

DIV : = {(r,s): - l<r< 1, - 1 <s<l,r<s}. ( 1.10) 

The inverse of this mapping was denoted by ~ in Ref. 2. 
Note: We shall often have occasion to express fields al

ternatively in terms of u, v or r, s. Wherever possible, we 
shall, beginning in this paper, use lightface type to signify the 
field expressed as a function of u,v and the corresponding 
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boldface type to signify the field expressed as a function of r,s 
as, for example, in 

p(r(u),s(v»: =p(u,v), z(r(u),s(v»: = z(u,v) . 

In Sec. II of Ref. 2 we introduced a structure, also de
noted by D IV, which was not a C2 manifold, but to which 
were applicable many of the concepts and results ofC2 mani
fold theory. In particular, we defined the duality operator *, 
the exterior differentiation operator d on zero- and one
forms, and the exterior differentiation operators d 2: = d /\ d 
and d *d: = d /\ (*d) on zero-forms. 

We also introduced the useful function 

x(r,s,r): = X3(r,r)X2(s,r) , 

where 

( 1.11) 

X3(r,r): = (r+ 1)112, X2(s,r): = (r_l)1I2; (1.12) 
r-r r-s 

X3( - l,r) = X2( l,r) = 1; and where for fixed r# - 1 and 
s# 1, we employ those holomorphic branches of X3 (r, r) and 
X2(s,r) that have the cuts [ - l,r] and [s,I], respectively, 
on the real axis of the complex r plane and which satisfy 
X3 (r, 00 ) = X2 (s, 00) = 1. The domain ofthe function X is 

D: = {(r,s,r):(r,s)ED1V,TED(r,s)} , (1.13) 

where 

D(r,s):=C- ([ -1,r]U[s,l]) (1.14 ) 

is the complex plane minus two cuts on the real axis. Finally, 
for any given TEC - { - 1,1} we introduced the r section of 
D, the set 

Dr: = {(r,s)EDlv :TED(r.s)} . (1.15) 

The field X and the various sets that we have recalled 
here are just as useful in connection with the noncollinear 
case as they were in connection with the collinear case treat
ed in Ref. 2. The relation [Ref. 2, Eq. (2.27)] 

(r- z + p*)dX = dzX 

will also be useful. 

II. THE POTENTIALS HAND A(T) 

( 1.16) 

In region IV the line element (1.1) may be expressed in 
the form 

2 2 
d~=p L Sab dxadxb __ e2f dudv, (2.1) 

a.b= 1 ,fji 

where S denotes that 2 X 2 matrix function whose domain is 
IV and whose values are given by 

S( ) . - F( )-1 (E(u,V)E(U,v)* W(U,V») 
u,v . - u,v 1 ' 

w(u,v) 
(2.2) 

where F: = Re E and w: = 1m E In particular, we note that 
det S = 1, S(O,O) = /. The corresponding matrix function S 
has domain D IV and values given by 

S(r(u),s(v»: = S(u,v) , 

where 

det S = 1, S ( - 1,1) = l. 
Aside from the equation that determines r, the relevant 
vacuum field equations are 

I. Hauser and F. J. Ernst 872 



                                                                                                                                    

d*dp =0, 

d(psn*dS) = 0, 

where 

( 
0 i) 

0.: = _ i 0 . 

A. The Kinnersley H potential 

(2.3) 

(2.4) 

(2.5) 

A 2 X 2 matrix generalization H of the Ernst potentials 
1f was introduced by Kinnersley9 in connection with the 
stationary axisymmetric field problem. Because of the field 
equation (2.4), it is clear that one can always introduce a 
2 X 2 matrix function H, with domain IV and values deter
mined by 

dH = d( - pS + zn) - pSn*dS, (2.6) 

where p = !(s - r), z = !(s + r). Moreover, integration 
constants can be selected so that 

Re H = - pS, H - HT = 2zn, 

H(-I,I)= -/. 

B. Examples for the collinear case 

(2.7) 

In the collinear case considered in Ref. 2 one has 
S = e - 2u.,,,,, where CT3 is the usual Pauli matrix and 1\1 is a real 
scalar field. 10 Equation (2.6) and conditions (2.7) immedi
ately yield 

H coll = _ pe - 2",u, + zn + Ul)CTI , 

where l)(r,s) is that integral of dl) = p*d1\l that satisfies 
l)( - 1,1) = O. 

In particular, for the Kasner metric of index n, where 
1\1 = - (n/2)ln p, we have 

HK = _ pI+ nu, + zn - inzCT
I 

• 

c. The Yang-Mills type potential A (1') 

Using Eq. (2.6) it is easy to show that H(r,s) satisfies 
the "self-duality relation" 

(2.8) 

which we derived by another method in an earlier paper,5 
where we also showed that for any given value of the com
plex parameter r, the field 

A ( r): = ! ( r - z + P* ) - I d H 0. (2.9 ) 

is a Yang-Mills type of potential, i.e., it satisfies 

dA-AA=O. (2.10) 

We prefer to think of A ( r) as one-parameter family of "con
nection" one-forms. It should be noted that the concept of 
A( r) is implicit in a paperlJ ofKinnersley and Chitre (KC). 

III. THE SPECTRAL POTENTIAL P(1') 

For the purposes of defining precisely what we mean by 
the P potential it is convenient to introduce the temporary 
notation P ( r) as follows. 

Definitions: For any given rin C - { - 1, 1}, let P( r) be 
that 2 X 2 matrix function whose domain is Dr [Eq. (1.15)] 
and which satisfies 
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d P( r) = A( r)P( r) , 

P(r)( -1,1) =1. 

(3.1 ) 

(3.2) 

Moreover, let P denote that function whose domain is D 
[Eq. (1.13)] and which has the values 
P(r,s,r): = P( r)(r,s). 

Note: Later we shall use P( r) as an abbreviation for 
P(r,s,r). This same dual usage was introduced in Ref. 2 
(Sec. II C) in connection with scalar fields such as \fI ( r) . 

The spectral potential P ( r) is closely related to the spec
tral potential F(t) of Ref. 11. The latter function, with t = 1/ 
2r and expressed in terms of r, s, also satisfies 

dF(t) = A( r)F(t) . 

However, in place of the stringent condition 
P( - 1,I,r) = 1, KC imposed only conditions equivalent to 
the following: (i) thatF(t) bea holomorphicfunction oft in 
a neighborhood of t = 0; (ii) that F(O) = 0.; (iii) that 
F(O) = H; (iv) that det F(t) = - 1/A(t), where 

AU): = ~(1- 2tzf - (2tp)2; and (v) that 

Ft (t) [0. - tn(H + Ht )n]F(t) = n. 

The possibility of imposing further conditions on F( t) so as 
to maximize its domain of holomorphy in the t plane was 
first considered by us in Ref. 5. If F(t), in any gauge, is 
expressed as a function of (r,s) over the domain D IV' then 
one may compute P(r,s,r) using the formula 

P(r,s,r) = F(r,s,1/2r)F( - 1,1,1/2r)-1 . (3.3 ) 

A. Examples for the collinear case 

For the Kasner case, where H = HK , the P potential is 
easily evaluated. In the case of the isotropic Kasner metric 
(n = 0) one obtains the especially simple result 

P~(r) = ~(l + n)X3(r) + !(l- n)X2(r) . (3.4) 

From this result we can easily generate the P potential for 
any other collinear case, including all the other Kasner met
rics. 

Definitions: In the collinear case, where 
S = exp( - 2CT31\1), for any given r in C - { - 1,1}, let 
\fI( r) be that function whose domain is Dr [Eq. (1.15)] and 
which satisfies2 

d\fl(r) =x(r)(r-z- p*)d1\l/(r-l), (3.5) 

\fI(r)(-I,1) =0. (3.6) 

Moreover, let \fI denote that function whose domain is D 
[Eq. (1.13)] and which has the values 
\fI(r,s,r): = \fI(r)(r,s). 

Note: Later we shall use \fI( r) simply as an abbreviation 
for \fI(r,s,r). 

The P potential for the collinear case is then given by 

peoll( r) = e - "'U'P~( r)e(ru, + iu,)'fI(r) . (3.7) 

Specializing to the Kasner case, in which 1\1 = - (n/ 
2) In p, one readily identifies 

\fIK(r) = _ n In[p[r+J.Lo(r)]], (3.8) 
2J.Lo( r) r - z + .... ( r) 

where 
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~(T): = [(T- r)(T - S) jI/2, 

~O(T): = [r - ljI/2. 

(3.9) 

(3.10) 

We employ that branch of '11K (T) for which '11K ( 00) = O. 
Note that for given r,s,'IIK (T) is a holomorphic function ofT 
onC- ([ -1,r]U[s,I]). 

B. An example for the noncolllnear case 

Reference 3 employed a double-Harrison transforma
tion 12 on Kasner metrics in order to construct a three-pa
rameter family of colliding wave solutions with noncollinear 
polarizations. The spectral potential for the resulting solu
tions was given by EGH's Theorem 1, together with Eqs. 
(58)-(61). In EGH (Sec. V) it was further stated that the 
solution for seed solutions other than the Kasner metrics 
was still given by Eqs. (58)-(61) provided that their 
Theorem 1 was replaced by the more general Theorem 2. 

UsingourEq. (3.3) we can infer from theEGHFpoten
tial a corresponding P potential of the form 

pEGH(T) =eBJ1/(T)U3Pseed(T)u3e-B{1/(T), (3.11) 

where J is a real 2 X 2 constant matrix and BJ is a 2 X 2 
matrix function whose domain is D IV and which is given by 

BJ: = [NJ + (NJ)T]O/[NJ _ (NJ)T]O, (3.12) 

NJ:=G( -1)!(l+J)OG(1)T, (3.13) 

2T*(n,v,v')B J = (X - y)T(n,v',v) - (x + y)T*(n,v',v) 
ipl- n[T*(n,v,v') + T*(n - 2,v,v')] 

c. Properties of the spectral potential P 

Using standard theorems on ordinary differential equa
tions, J3 one can show that the solution ofEq. (3.1) with the 
initial value (3.2) has certain properties. First, the function 
P(U,V,T) and the derivatives Pu, Pv, and Puu exist and are 
continuous functions of (U,V,T) over the domain 

{(U,V,T) : (u,v)EIV,1'ED(r(u),s(V»} . 

Moreover, for any given (r,s) in D IV' P ( T) is a holomorphic 
function of T throughout D(r,s)' 

Additional properties can be derived using the same 
methods that we employed in Ref. 5, namely, by proving that 
the differentials of certain quantities vanish and then using 
the relations P( - 1,I,T) = I and H( - 1,1) = - I. In this 
way one can, for example, show that P( 00 ) = 1. In proving 

pt (T)[ TO - !O(H + Ht )O]P( T) = TO + I 
one uses the relations5 

dHt OdH=dHt O*dH=O. 

To see that 

det P( T) = X( T) 

one uses z =! tr(HO) and 
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d( det P) = tr(d P( T)P( T) -I) 
det P 
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G( T): = [A(!T)] mU3~(~T)U3 . 

Moreover, 

ll(T):=pn[(T+ 1)/(T-1)], 

J2=I, trJ=O, 

Bf: = BJ( - 1,1), 

and, although 

det[F(1I2T)] = - [A.(1I2T)]-1 

= -T[ (T - r)(T - s)] -1/2-+ 00 

(3.14) 

(3.15) 

(3.16) 

( 3.17) 

(3.18) 

when T = 1 and S-+ 1 and when T = - 1 and r ..... - 1, it is 
assumed that a real number m > ! exists such that G( T) satis
fies the following conditions at T = ± 1. 

(i) ThefunctionG(r,s, ± 1) has a continuous extension 
to all of the boundary points (r, 1) and ( - l,s) of D IV such 
that G( u,V, ± 1) has continuous first derivatives and a con
tinuous mixed second derivative with respect to u and v at 
the points (u,O) and (O,v) ofIV. 

(ii) The matrix N J is not symmetric at any point in D IV' 

In particular, FK satisfies conditions (i) and (ii) with 
m = 1 and it is possible that one can prove that these condi
tions hold for all members of the gauge described in EGH. 
For F = FK one finds, in the notation of EGH, 

- ipl +n[T*(n,v,v') + T*(n + 2,v,v')] ) 

- (x - y) T(n,v',v) + (x + y) T*(n,v',v) 
(3.19) 

I 
IV. THE HHP ADAPTED TO (P3,P2 ) 

In this section we shall formulate the matrix HHP that 
is the main subject of this paper. We employ the subscripts 3 
and 2 to designate initial values specified at v = 0, O..;;u < Uo 
and u = 0, 0..;; V < VO, respectively. The notation is meant to 
remind one that the former initial values derive from the 
incident plane wave in region III, while the latter initial val
ues derive from the incident plane wave in region II. In fact, 
we already used this notation when in Sec. I we described the 
initial data as r(u), s(v), E 3(u), andE2(v). As regards r(u), 

s( v), E3 (u), and E2 (v), it is sufficient for all purposes in this 
section ·and in the later sections to assume that these initial 
data functions are C I and satisfy conditions (1.4), (1.6), 
(1.8), (1.9), and E 3 (0) = E 2 (0) = 1. 

A. The initial spectral potential pair (P3'p2) 

The restrictions of P(U,V,T) to the null hypersurfaces 
u = 0 and v = 0 define the initial spectral potential pair 

P3(U,T):=P(U,0,T), P2(V,T):=P(0,V,T). (4.1) 

The construction of Pj (j = 3,2) from the initial data is not 
difficult in principle, although in practice it may not always 
be possible to write the expressions in closed forni. The ordi
nary differential equations that determine Pj (j = 3,2) are 

dP3 = A3P3 , (4.2) 

dP2 = A 2P2 , (4.3) 

where P 3 ( - I,T) = P 2 ( I,T) = I. Here 
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A 1 dH30 
A 3 (r,r): = (r, ,r) = ---"--

2( r - r) 

and 

A 1 
dH2 0 

A2 (s,r): = (- ,s,r) = ---=--
2(r-s) 

can be expressed in terms of the respective initial values of S 
and thus in terms of the prescribed initial data using Eq. 
(2.6). 

The following properties are easily established. 
(i) For any given r such that - l';;;r< 1, P3 (r,r) is a 

holomorphicfunction of r throughout C - [ - l,r] (in the 
sense that it can be holomorphically extended to include the. 
point r = 1). Likewise, for any given s such that - 1 < s';;; 1, 
P2 (s,r) is a holomorphic function of r throughout 
C- [s,l]. 

(ii) The function Q2(r): = P(r)P3(r)-1 is holomor
phic on C - [s,l] and the function Q3( r): = P( r)P2 ( r)-I 
is holomorphic on C - [ - l,r]. 

Property (i) is implied by standard theorems on ordi
nary differential equations. 13 To prove (ii) integrate (3.1) 
along alternative paths in D T consisting of straight line seg
ments: 

( - 1,1) --+ (r,l) --+ (r,s) 

and 

( - 1,1) --+ ( - 1,s) --+ (r,s) . 

Details will be left to the reader. 

B. Admissible (P3,P2) 

Rather than refer back to the actual initial data, it is 
often convenient to think ofPj (j = 3,2) as if they constitut
ed the initial data. Of course, these "data" cannot be pre
scribed arbitrarily. 

Definition: The ordered pair (P3,P2) of 2X2 matrix 
functions, with the respective domains 

dom P 3 = {(r,r): - l';;;r< I,TEC - [ - 1,r]}, (4.4) 

dom P 2 = {(s,r): - 1 <s';;; l,reC - [s,l]} (4.5) 

will be called admissible if the following conditions hold. 
(i) For any given r# -l,dP3 (r) exists and iscontin

uous (in the sense defined in Ref. 2) over dom P 3 ( r), i.e., 

{r:-1.;;;r<r if'Tisrealand -1<r<l, 

and - l.;;;r< 1 for all other r}. 

For any given r#l, dP2(r) exists and is continuous over 
domP2(r),i.e., 

{s:r <s';;; 1 if 'Tis real and - 1 < r < I, 

and - 1 <s';;; 1 for all other r} . 

(ii) There exist initial data functions r(u), s(v), E3 (u), 
and E2 (v), with the properties specified for those functions, 
such that Eqs. (4.2) and (4.3) are satisfied. 

c. Properties of (H3,H2) and (P3,P2) 
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The self-duality relations for the H potential imply that 

!(H3 + H1 )0(H3), = r(H3 ), , (4.6) 
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!(H2 + Hi )0(H2), = s(H2), . 

On the other hand, it is simple to see that 

det Pj = Xi. 

(4.7) 

(4.8) 

For any given rsuch that - l.;;;r< 1, P3 (r,r) is a holomor
phic function of r throughout C - [ - l,r]. Similarly, for 
any given s such that - 1 <s.;;;l, P2 (s,r) is a holomorphic 
function of r throughout C - [s,l]. In a neighborhood of 
r= 00, 

Pj (r) = 1+ (l + Hj )0/2r + O( r- 2
) • (4.9) 

Moreover, the quadratic relation 

P](r) [rO - O!(Hj + HJ>O]Pj(r) = rO + I (4.10) 

holds. 

D. Statement of the HHP adapted to (P3'p2) 

We may now formulate our new HHP as follows. 
Definition: Let (P 3'P 2) denote any given admissible ini

tial spectral potential pair. Then the HHP adapted to 
(P3,P2) is the search for a 2X2 matrix function P with do
main D such that for any given (r,s) inD ly , P( r) = P(r,s,r) 
satisfies the following three conditions in the r plane. 

(i) The function Q2( r): = P( r)P3 ( r) -I is holomor
phic on C - [s,l] (meaning that it has a holomorphic exten
sion to the domain C - [s,l]). 

(ii) The function Q3(r): = P(r)P2(r)-1 is holomor
phic on C - [ - l,r]. 

(iii) The value at infinity is P( 00 ) = l. 
Note: For any given (r,s) in DIY, P(r,s,r) is holomor

phic throughout C - ([ - l,r] U [s,l]). 
Definition: The 2 X 2 matrix field H is defined by 

(l + H)O: = {2r[P( r) - I]} T= 00 , (4.11) 

or, equivalently, in a neighborhood of r = 00 by 

P(r) =1 + (l + H)0/2r+ O(r- I
). (4.12) 

Definition: The 2 X 2 matrix field S is defined by 

S: = - p-I Re H. (4.13) 

We stress that although we have used the symbol 
P(r,s,r) for the solution of the HHP adapted to (P3,P2) and 
the suggestive symbols H(r,s) and S(r,s) as well, it remains 
to be shown that the P(r,s,r) so defined satisfies the differen
tial equation (3.1) and has all the other properties of a bona 
fide P potential and that H (r,s) and S (r,s) have the proper
ties expected for Kinnersley's H potential and the metric 
matrix S. In fact, that is the crux of the problem being ad
dressed in this paper. 

V. A NEW METHOD OF GENERATING COLLIDING 
WAVE SOLUTIONS 

Before proceeding to the proof that the solution of the 
HHP adapted to (P 3'P 2) actually solves the IVP, we shall 
consider one possible way to employ the HHP to generate 
new families of colliding wave solutions. Although we are 
still novices when it comes to exploiting the new HHP, its 
main use may tum out to be connected with proving theo
rems not easily proved by other techniques. 

Here we shall consider any given seed metric, the spec-
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tral potential of which will be denoted by p"eed ( r). The P 
potential p EGH (r), which results from the application of a 
double-Harrison transformation, 12 has already been cited in 
Eq. (3.11). Imagine carrying out lipon the same seed metric 
two such transformations, differing only in the choice of the 
real constant matrix J. From the result of the first transfor
mation let P 3 ( r) be evaluated and from the result of the 
second transformation let P2( r) be evaluated. In this way 
one easily obtains the obviously admissible pair 

(5.1 ) 

(5.2) 

Here J and K are the selected constant matrices, each of 
which is trace-free and has a square equal to the unit matrix. 
Our objective is to construct the solution of the HHP adapt
ed to this (P3,P2) since from the solution of the HHP a 
larger family of solutions than EGH obtained using a dou
ble-Harrison transformation on the same seed metric can be 
constructed. 

The explicit expression for BJ was given in the equa
tions following Eq. (3.11). Using the expressions for BJ and 
BK, one can easily establish the useful relations 

[I+B~][/-Bf] =0, 

[ / - B~ ][ / + Bf] = 0 . 

In particular, relations (5.3) and (5.4) tell us that 

(5.3 ) 

(5.4) 

Bf = Bf = :B I . (5.5) 

We consider it amazing that the solution of the HHP 
adapted to this (P 3'P 2) can be expressed in a form similar to 
Eq. (3.11), namely, 

per) =eBJKl1(T)C73pseed(r)C73e-B,l1(T), (5.6) 

where [BJK ] 2 = 1. However, if we try a P ( r) of this form, it 
follows, for example, that 

P(r)P3(r)-1 

= ~JKl1(T)C73{pSeed(r)p~d(r)-I}C73e-Bil1(T) , (5.7) 

where pseed ( r) p~eed ( r) -I is known to be holomorphic on 
C - [s,l]. The remaining 1/( r)-dependent factors can only 
give rise to singularities at r = ± 1. In fact, if we reexpress 
Eq. (5.7) in the form 

P(r)P3(r)-1 = {!(l + BJK )el1(T) + !(l- BJK)e- l1(T)} 

X C73{pseed( r)p~eed( r) -1}C73 

X{!(l- B I)el1(T) +!(l + B I)e- l1(T)}, 
(5.8) 

where 

e211(T) = (r+ l)/(r-1), 

then it becomes obvious that there can be at most a simple 
pole at r = 1 and a simple pole at r = - 1. The object is to 
select BJK so that the pole at r = - 1 is eliminated from 
P(r)P3(r)-1 and the pole at r= 1 is eliminated from 
P ( r) P 2 ( r) - I. The choice that is found to accomplish the 
task is 

BJK = [/ + BJ][/ + BK] - [I - BK][/ _ BJ] . 

[I+BJ][/+BK] + [/_BK][/_BJ] 

876 J. Math. Phys., Vol. 31, No.4, April 1990 

(5.9) 

It is left to the reader to check this result and verify that 
[BJK ] 2 = / given that [BJ] 2 = [BK] 2 = /. 

The H potential of the new space-time with P potential 
given by Eqs. (5.6) and (5.9) is easily computed using Eq. 
(4.12). We find that 

(5.10) 

As noted by EGH, the double-Harrison transformation 
with 

1/(r) =pn[(r+ 1)/(r-1)] 

does not preserve the colliding wave conditions. 14 To gener
ate a colliding wave solution one must apply the transforma
tion to a solution such as a Kasner metric, which is not itself 
a colliding wave solution. The same observation applies, of 
course, to our new method of generating a solution. In a 
separate paper authored with Li, the family of space-times 
that is obtained when our approach is applied to Kasner seed 
metrics will be considered. 

VI. PROOF THAT THE HHP SOLVES THE IVP 

We desire to establish that the solution of the HHP ex
ists, is unique, and has all the properties that one requires of a 
spectral potential. 15 The proof of the existence of a solution 
will be postponed to a future paper of this series. Tentatively 
assuming that a solution exists, we can establish uniqueness 
and tentatively assuming certain differentiability premises, 
we can show that the solution exhibits all the properties that 
one requires of a bona fide spectral potential. 

Let us begin with some theorems which require no spe
cial assumptions other than the existence of a solution 
P(r,s,r) of the HHP adapted to (P3,P2). 

Theorem 1: 

P(r,l,r) = P3(r,r) , 

P( - 1,s,r) = P2 (s,r) . 

(6.1 ) 

(6.2) 

To prove (6.1) set s = 1 in conditions (i) and (ii) of the 
HHP in Sec. IV D and then use the fact that 
P3( - 1,r) = P 2 ( 1,r) = / to prove that P(r,1,r)P3(r,r)-1 
is holomorphic on C - {1} and P (r, 1, r) is holomorphic on 
C - [ - 1,r]. However, this can only be true if 
P (r, 1, r) P 3 (r, r) - I is holomorphic on C. Therefore, by Liou
ville's theorem, Eq. (4.9), and condition (iii) of the HHP in 
Sec. IVD, 

P(r,1,r)P3(r,r) -I = per, 1, 00 )P3(r, (0) -I = /. 
Equation (6.2) is proved in a similar fashion. 

Theorem 2: 

P( -l,l,r) =1. (6.3) 

ProoF Use Eq. (6.1) and the factthat P3( - 1,r) = 1. 
Theorem 3: 

detP(r) =x(r). (6.4) 

PrOOF From conditions (i)-(iii) of the HHP in Sec. 
IVD and Eq. (4.8) it follows that [detP(r)]X3(r)-1 is 
holomorphic on C - [s,l], [det P( r) lx2( r) -I is holomor
phic on C - [ - 1,r], and det P( (0) = 1. However, since 
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X( r) = X3( r)X2( r), we conclude that [det P( r)]x( r) -I is 
holomorphic on C - [s,l], as well as on C - [ - l,r]; 
therefore, it is holomorphic on C. Again, by Liouville's 
theorem we have [det P( r)]x( r)-I = 1. 

Corollary: P (r ,s, r) - I exists. 
Theorem 4: The solution of the HHP adapted to (P 3'P 2) 

is unique. 
Proof Let P and P' denote any solutions of the HHP 

adapted to (P 3'P 2)' Then from conditions (i) and (ii) of the 
HHP in Sec. IV D it follows that P' ( r) P ( r) -I is holomor
phic on C - [ - 1,r], as well as on C - [s,l], whereupon it 
is holomorphic on C. Using Liouville's theorem and condi
tion (iii) of the HHP in Sec. IV D it follows that 
P'( r)P( r) -I = I. 

TheoremS: 

domH=D Iv , H( -1,1) = -I. (6.5) 

Proof Theorem 5 follows immediately from the defini-
tion of H, together with the definition of the HHP and 
Theorem 2. 

Theorem 6: 

H(r,I) = H 3(r), H( - 1,s) = H 2 (s) . (6.6) 

Proof Theorem 6 follows immediately from the defini-
·tion ofH, Eq. (4.9), and Theorem 1. 

Theorem 7: 

pt (r) [rn -! n(H + Ht )n]p(r) = rn + I. (6.7) 

Proof Conditions (i) and (ii) ofthe HHP in Sec. IV D 
and Eq. (4.10) permit one to conclude that 

[pt (r)] -ie rn + I)P( r)-I 

= {P/r)P(r)-I}t 

X [rn - ~ n(Hj + HJ)n]{Pj(r)P(r)-I} 

= [QLj(r)] -I [rn -! n(Hj + HJ)n] 

XQs_j(r)-I. 

is holomorphic on C - [s, 1] - {oo}, is holomorphic on 
C- [- 1,r] - {oo}, and has a simple pole at r= 00. 

Therefore, 

[pt(r)]-I(rn+l)p(r)-I=rA+B, (6.8) 

where A,B are r-independent 2 X 2 matrices. However, from 
Eq. (4.12) it follows that 

P(r)-l = 1 - (l + H)n12r+ 0(r- 2
) • 

Inserting this into Eq. (6.8), we readily identify 

A = .0., B = -! n(H + Ht)n 

and Theorem 7 follows. 
Corollary: 

det[rn-!n(H+Ht)n]= -J.l.(r)2. (6.9) 

The solution P( r) ofthe HHP adapted to (P3,P2) must 
be shown to satisfy the differential equation (3.1) and have 
the other properties of a bona fide P potential. We should like 
to point out a relevant result concerning any complex-valued 
function!(u,v,r) whose domain 9J is the same as that of P, 
Q3' or Q2 and which, for fixed (u,v) in IV, is (like P, Q3' and 
Q2) a holomorphic function of r throughout: 

9J (u.v) : = {TEC:(u,v,r)E9J} . 
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A result that follows from a well-known theorem is that 
d!(u,v,r) and!uv (u,v,r) are also holomorphic functions of r 
throughout 9J (u,v) if we grant that!u '/v, and!uv exist and 
are continuous functions of (u,v,r) throughout 9J. More
over, if one considers the expansion 

00 !(n)(uv) 
!(u,v,r) = L ' 

n=O (2r)n 

in a neighborhood of r = 00, then! (n),/~n>,!~n>, and!~~) 
exist and are continuous throughout IV and 

00 d! (n) 00 !(n) 
d!(r) = L --, !uv(r) = L _uv_. 

n=O (2r)n n=O (2r)n 

We shall use this result frequently in the sequel. However, to 
do so we shall have to adopt as a working hypothesis a pre
mise which will permit us to show that various functions that 
we encounter do exist and are continuous in the appropriate 
domains. 

Premise: We shall assume as a working hypothesis the 
premise that 

Qj ( r), [ Qj ] u ( r), [ Qj ] v ( r), [ Qj ] uv ( r) (6.10) 

exist and are continuous functions of (u,v, r) over the respec
tive domains 

{(u,v,r):(u,v)EIV,TEC- [-l,r(u)]), ifj=3, (6.11) 

{(u,v,r):(u,v)EIV,TEC - [s(v),l]), ifj = 2. (6.12) 

We shall establish the validity of this premise in a future 
paper of our series on the IVP. 

Theorem 8: P( r), dP( r), and Puv (r) exist and are con
tinuous functions of (u,v,r) throughout 

{(u,v,r):(u,v)EIV,'TED(,(U),S(v»} . 

Proof Theorem 8 is an immediate consequence of the 
assumption that (P 3'P 2) is admissible, our new premise, and 
the definitions of Qj ( j = 3,2). 

Corollary: H, dH, and Huv exist and are continuous 
functions of (u,v) throughout IV. 

Theorem 9: 

Pu (r) = [Hun/2(r - r(u»]P( r) , 

Pv(r) = [Hun/2(r-s(v»]P(r). 

(6.13 ) 

(6.14 ) 

Proof Note that by the corollary to Theorem 3, P( r) has 
an inverse. From Eqs. (4.1) and (4.3) and the definitions of 
Qj (j = 3,2) it follows that 

Pu (r)P(r)-1 = [Q2]u(r)Q2(r)-1 

+ Q2( r)[[H3 ] u .0./2 ( r - r)]Q2( r) -I , 

= [Q3]u (r)Q3(r)-I. 

However, for fixed (u,v) in IV, conditions (i) and (ii) of the 
HHP in Sec. IV D tell us that Q2 ( r) is holomorphic on 
C- [-l,r] and Q3(r) is holomorphic on C- [s,l]. 
Therefore, bearing in mind the comments at the beginning of 
this section, P u ( r )P( r) - I must be holomorphic on C except 
for a simple pole at r = r. Therefore, we can express it in the 
form 

Pu(r)P(r)-1 =A +BI2(r-r), 

where A and Bare r-independent matrices. Next, in the 
above equation, one expands P( r) and Pu (r) in a neighbor-
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hood of r = 00 and concludes that A = 0 and B = Hu 0, 
thus establishing Eq. (6.13). Equation (6.14) is established 
similarly. 

Corollary: 

dP(r)=A(r)P(r), (6.15) 

where 

and 

A(r): = !(r- z + p*)-I dH 0 

z: = !(s + r), p: = !(s - r) . 

Theorem 10: 

!(H + Ht )OHu = r(u)Hu , 

!(H + Ht )OHv = s(v)Hv • 

(6.16 ) 

( 6.17) 

(6.18) 

Proof As in the proof of Theorem 9, we begin here with 
the observation that 

Pu (r)P(r) -I = [Q2]u (r)Q2( r)-I + P( r)[P3( r)]-I 

X[[H3]uO/2( r - r)]Q2( r) -I. 

Here we apply the operator [rO - !O(H + Ht )0] to both 
sides and use Theorem 7 to show that 

[rO - !O(H + Ht )O]P" (r)P(r)-1 

= [rO - !O(H + Ht )O][Q2]" (r)Q2( r)-I 

+ [Qi(r)r ' [Pl(r>]-'(rO+I) 

X [P3( r)] -1[[H3] u 0/2 ( r - r)]Q2( r) -I . 

Now, using Eq. (4.10), we may express the above equation 
in the form 

[rO - !O(H + Ht )O]P" (r)P(r)-1 

= [rO - !O(H + Ht )0] {Q21u (r)Q2( r)-I 

+ [Qi(r>]-I[rO-!0(H3+Hl)0] 

X[[H3]uO/2(r- r)]Q2(r)-I. 

Finally, using Eq. (4.6), we conclude that 

[rO - !O(H + Ht )O]P" (r)P(r)-1 

= [rO - !O(H +Ht )0] [Q2]u (r)Q2(r)-1 

+ HQi (r)] -10[H3]u O [Q2(r) ]-1. 

However, by condition (i) of the HHP in Sec. IV D, 
Q2 ( r) is holomorphic on C - [s ( v), 1 ] . Therefore, 
[rO-!O(H+Ht)O]P,,(r)P(r)-1 is holomorphic on 
C - [s(v),l], except perhaps for a simple pole at r = 00. On 
the other hand, we infer from Theorem 10 that 

[rO - !O(H + Ht )O]Pu (r)P(r)-1 

= [rO - !O(H + Ht )O][H,,012(r - r(u»)) , 

which is holomorphic throughout C except perhaps for a 
simple pole at r = r( u ). Consequently, the above expression 
must be independent of r, from which Eq. (6.17) follows. 
Equation (6.18) is proved similarly. 

Corollary: 

!(H + Ht)O dH = (z - p*)dH. (6.19) 

Theorem 11: 

(6.20) 

Proof By Eq. (1.16) and Theorem 3, it follows that 
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(r - z + p*) -I dz = d [det P(r)] = tr(dP(r)P( r)-I). 
det per) 

However, from the corollary to Theorem 9, one may con
clude that the rhs equals 

!( r - z + p*) -I d[tr(HO)] 

and hence that 

z = ! tr(HO) + const. 

The constant may be shown to vanish by considering the 
point of collision r = - 1, s = 1, where z = 0 and 
H( - 1,1) = - 1. The above equation is (for two-dimen
sional matrices) equivalent to Eq. (6.20). 

Corollary: 

S: = - p -I Re H is symmetric. 

Theorem 12: 

detS=I. 

(6.21 ) 

(6.22) 

Proof From Theorem 11 and its corollary, we infer that 

!(H+Ht) = -pS+zO. (6.23) 

Substituting result (6.23) into Eq. (6.9), we obtain the rela
tion 

det[(r- z)O + pOSO] = - Jl(r)2 = p2 - (r- Z)2. 

Setting r = z in the above equation, we obtain Eq. (6.22). 
Theorem 13: 

d(pSO*dS) = 0, (6.24) 

Proof Equation (6.19) can be expressed in the alterna
tive form 

SOdH= *dH. 

Taking the imaginary part of the above equation, one can 
show that pSO*d S is a closed one-form. 

It should be recalled that Eq. (6.24) is equivalent to an 
Ernst equation for the complex field 

E: = (1 + iS 12 )/S22 . 

Moreover, from Eq. (6.6) it can be seen that E(r,s) satisfies 
the requisite initial conditions 

E(r,l) = E3 (r), E( - l,s) = E 2 (s) . 

Except for the proof of existence and of the working 
hypothesis concerning Qj (j = 3,2), this concludes our 
proof that the HHP adapted to admissible (P 3'P 2) solves the 
IVP we posed. 

VII. A FREDHOLM INTEGRAL EQUATION 

We begin with some definitions that will be useful in this 
section. 

Definition: For any given (r,s) inD 1V ' '6 (',s) will denote 
the set of all (r 3,r 2) such that r 3 and r 2 are piecewise 
smooth, simple, positively oriented, and nonintersecting 
closed contours in the finite complex plane and such that 

[ - 1,r] Cr3+' [s,l] cr2+ , 

[-1,r]Cr2-, [s,I]Cr3-· 
(7.1) 

Here, as in earlier papers by the present authors, the 
superscript plus denotes that portion of the complex plane 
that lies in the interior of the contour and the superscript 
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minus denotes that portion of the complex plane that lies 
outside the contour. 

A. Derivation of the Fredholm equation 

Let (r,s) be any point inD 1v and (r3,r2) be any mem
ber of ~ (r,s) . Suppose that P( r) is the solution ofthe HHP 
adapted to (P 3'P 2)' Then since P ( r) P 3 ( r) - 1 is holomor
phic in C - [s,l] and P( r)P2( r) -I is holomorphic in 
C - [ - 1,r], for any 'TEr 3- one has 

_1_ f du P(u)P3(u) -I = 0 (7.2) 
211'; Jr, u - r 

and for any 'TEr 2- , one has 

_1_ f du P(u)P2(U)-1 = o. 
211'; Jr2 u - r 

(7.3 ) 

Consider now any 'TEC - (r3+ ur3urt Ur2). Then 

_1_ f du P(u){P3(u)-IP3(r) - I} 
211'i Jr, u - r 

1 1 d P(u){P2(u)-IP2(r) -I} + - u -'---'-....:.....'"'-'---'---=....:...--'--~ 
211'; r 2 U - r 

+_1_ f duP(u) =0, 
211'i Jr,ur2 u - r 

which implies in tum that 

P( r) = 1 + _1_ f du P(u){P3(u) -IP3( r) - I} 
211'i Jr, u - r 

(7.4) 

where we have used the fact that P( 00 ) = 1 to establish the 
existence of the integrals on the rhs and evaluate one inte
gral. Since the "kernels" in the above integrands are holo
morphic functions of rover C - [ - 1,r] and C - [s,l], 
respectively, it follows that Eq. (7.4) holds for all 1'EiJ(r,s)' 
In particular, Eq. (7.4) holds for all ron r 3Ur2. 

B. Equivalence to the HHP 

Having derived the Fredholm equation, we now show 
that it is equivalent to the HHP adapted to (P3,P2). 

Theorem 14: Assume that a solution of the Fredholm 
equation (7.4) exists and let P ( r) be the holomorphic exten
sion (which is obviously unique) of the solution to the do
mainD(r,s) . Then P( r) exists and is obtained from Eq. (7.4) 
simply by letting 1'EiJ(r,s) on the rhs. Moreover, P( r) is the 
solution of the Hilbert problem adapted to (P3,P2). 

PrOOF Upon letting 1'EiJ(r,s) in Eq. (7.4), we obtain the 
holomorphic extension ofthe solution. Clearly, P( (0) = I. 

If one defines 

1 1 d _P_(_u_) P....:.j_( U_)_-_I_P=-.j (_r_) 
M/r):=-. u 

2m rj u - r 
(7.5) 

for'TEC - (r3Ur3+ Ur2Ur2+), then from Eq. (7.4) itfol
lows that 

(7.6) 

However, one can see from definition (7.5) that M3 ( r) and 
M ( r) have unique holomorphic extensions such that M3 ( r) 
is holomorphic on C - [ - 1,r] and M3 ( 00 ) = 0 and 
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M 2(r) is holomorphic on C- [s,l] and M 2(00) =0. 
Therefore, from Eq. (7.6) it follows that 

M3 ( r) = 0, M2 ( r) = 0, 

i.e., for 'TErj- , 

_1_ f duP(u)Pj(u)-1 =0. 
211'; Jrj u - r 

Hence, for 'TEr/, 

P(r)P.(r)-I=_l_ f duP(U)Pj(u)-1 
J 211'i Jr

j 
u - r 

Therefore, P ( r) P 3 ( r) - 1 is holomorphic on [ - 1,r] and 
P( r)P2( r) -I is holomorphic on [s,l]. Because P( r) is ho
lomorphic on D (r.s) it follows that the conditions of the HHP 
adapted to (P3,P2) are satisfied. Q.E.D. 

VIII. STANDARD FORM OF THE FREDHOLM EQUATION 

Equation (7.4) can be reexpressed in the standard form 
of a Fredholm equation ofthe second kind: 

per) __ 1_ f duP(u)K(u,r) =1. (8.1) 
211'i Jr,ur2 

As usual, we have suppressed the dependence of the solution 
P and the kernel K upon rand s. Moreover, the kernel de
pends upon one's choice of (r3,r2) in ~ (r,s)' 

Definitions: The symbol K3 will denote that function 
whose domain is 

dom K3: = {(r,u,r): - l..;r< l,aEC 

- [ - l,r],'TEC - [ - l,r]} (8.2) 

and whose values are given by 

K 3(r,u,r): = [P3(r,u)-IP3(r,r) - 1]I(u- r) . (8.3) 

Similarly, the symbol K2 will denote that function 
whose domain is 

dom K2: = {(s,u,r): - l..;s< 1,aEC 

- [s,l],'TEC- [s,l]} (8.4 ) 

and whose values are given by 

K 2 (s,u,r): = [P2 (s,u) -IP2(s,r) - 1]I(u - r). (8.5) 

Equations (8.2)-(8.5) imply that for fixed (r,s) inD1v , 
K 3(r,u,r) is a holomorphic function of (u,r) over 
(C- [-1,r])2 andK2 (s,u,r) is a holomorphicfunctionof 
(u,r) over (C- [s,1])2. Moreover, 

(8.6) 

The symbol K will denote that function whose domain is 

dom K: = {(r,S,r3,r2,u,r):(r,s)ED1v , 

(r3,r2E~ (r.s)' aEr3Ur2,1'EiJ(r,s)} 

and whose values are given by 

K r r ) {
K3(r,U,r), when aEr3 , 

( r,s, 3' 2'U, r : = 
K 2 (s,u,r), when aEr2 . 

(8.7) 

(8.8) 

Definition: Let F be any function whose domain is D, 
i.e., the same as dom P, and whose values are m X 2 matrices 
with complex entries. Then F(r.s) will denote that function 
whose domain is D(r.s) and whose values are defined by 
F(r,s) (r): = F(r,s,r). 
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Theorem 15: Suppose that F(r,s) is holomorphic for giv
en (r,s) in Dry. Then the integral 

(F·K) (r,s,'T): 

= ~ r duF(r,s,u)K(r,s,r3,r2,U,'T) (8.9) 
21Tl Jr,ur, 

has the same value for all (r 3,r 2) in C(;J (r,s) • In other words, 
the value of the integral is independent of the choice of 
(r3,r2 )· 

Proof: The validity of Theorem 15 follows easily from 
the holomorphy statements following Eq. (8.5). 

Let (r,s) denote any point in Dry and (r3,r2 ) denote 
any member of C(;J (r,s) • The Fredholm equation is, in full 
explicitness, 

P(r,s,'T) - ~ r du P(r,s,u)K(r,S,r3,r2,U,'T) = I, 
21Tl Jr,ur2 

(8.10) 

where P(r,s,u) is a Lebesgue integrable 2X2 matrix func
tion of u on r 3 U r 2' Since the kernel is a continuous function 
of (u,'T) on the compact set (r3 Ur2 )2 it follows that any 
solution P(r,s,'T) is a continuous function of l' on r 3Ur2• 

Therefore, without loss of generality, we can restrict our
selves to solutions P(r,s,'T) which are continuous functions 
of l' on r 3 U r 2' Moreover, from Theorem 15, P (r,s) is holo
morphically extendable to D(r,s); this extension is obtained 
by simply letting 'Tin the kernel of Eq. (8.10) range over 

D(r,s) • 

Henceforth, P (r,s) will be understood to haveD(r,s) as its 
domain and to be holomorphic over that domain. 

Granting the existence of the solution p(r,s) for each 
(r,s) in Dry, the Fredholm equation is expressible in the 
form 

P-P·K=f, (8.11 ) 

where P has domain D, f has domain Dry X C, and 
f (r,s,'T) = I for all (r,s,'T). Furthermore, the solution P (r,s) 

is independent of the choice of (r 3,r 2) and P (r,s, 00 ) = I. 

IX. PERSPECTIVES 

In a future paper of this series we shall present proofs 
based upon the Fredholm equation of the existence of solu
tions of the HHP adapted to (P3,P2 ) and the validity ofthe 
differentiability-continuity premises made in this paper. In 
addition, we shall show that the assumption of certain differ
entiability-continuity and analyticity properties for the ini
tial value data permits one to infer corresponding differen
tiability-continuity and analyticity properties, respectively, 
for the solution P of the HHP. The solution for P in terms of 
the resolvent kernel will be discussed in some detail. 
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APPENDIX A: CAUCHY INTEGRAL EQUATION 

Using methods very similar to those that were employed 
in Sec. VII in the derivation of the Fredholm equation and 
the proof that it is equivalent to the HHP, one can also derive 
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the following Cauchy equation and show that it too is equiv
alent to the HHP adapted to (P3,P2 ): 

P( 1') = 1+_1_ r du P(u ){P3(u ) -I - I} 
21TiJr, u - l' 

+ _1_ r du P(u ){Pz(u )-1 - I} 

21T; Jr, u - l' 

for any (r 3.r z) in C(;J (r,s) and any 
'TEC - (r3+ ur3urt Ur2 ). 

We find in general that the Fredholm equation is more 
useful in connection with proving various theorems such as 
those that will be contained in the sequel to this series. 

APPENDIX B: COLLINEAR CASE 

The first general solution of the IVP for colliding gravi
tational plane waves with collinear polarizations was ob
tained by Szekeres 16 by using the Green's function method of 
Riemann. New forms of the same solution were obtained in 
Refs. 1 and 2 using different methods. Here we shall show 
the connection between the HHP of this paper and the meth
od that was used in Ref. 2. 

For the collinear case, Eqs. (1.12) and (3.4)-(3.7) 
yield, upon setting s = 1 for j = 3 and r = - 1 for j = 2, 

(Bl) 

where 'II ( 1') is expressed in terms of the initial data function 
t/lj by a simple integral which is given by Eqs. (1.12) and 
(2.23) of Ref. 2. Equations (3.4), (3.7), and (Bl) further 
yield 

P( 'T)Pj (1')-1 

=e-"'u., 

where 

Xexp{q('T)U3[~('T) - Xj' ('T)~j('T)]} 

XP~. ('T)e"'p" 

., {2, if j= 3, 
J '= . 3, if j = 2, 

(B2) 

q('T): =!(l + ( 2)('T- r) + !(l- (2)('T-S), (B3) 

~('T): = - X('T)'II('T), 

and 

~j('T) = - Xi ('T)'IIj('T) . . 

Hence, the HHP adapted to the (P3,PZ) of Eq. (BI) is 
solved if one finds ~('T) and t/l such that (i) 
~('T) -X2('T)~3('T) is holomorphic on C- [s,l], (ii) 
~('T) -X3('T)~Z('T) is holomorphic on C- [-l,r], and 
(iii) ~( 00 ) = 0 and t/l: = [ - 'T~( 1')] T= 00 • 

The above Hilbert problem adapted to (~3'~Z) (as it was 
called in Ref. 2) was solved explicitly in Ref. 2 and the solu
tion is given by Eqs. (1.12) and (1.21) of that paper. 
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The most general Lagrangian for two-dimensional gravity with dynamical torsion is 
considered. A general solution of the system of nonlinear equations of motion is found. Also 
found is a global solution of the Cauchy problem. 

I. INTRODUCTION 

The two-dimensional theory of gravity has attracted a 
growing interest at present. 1-8 One of the reasons for study
ing this model is pedagogical because it provides a deeper 
insight into the four-dimensional gravity and its quantiza
tion. Another reason arises from close connection with 
string models9 in which a two-dimensional metric on a string 
world sheet acquires dynamics at the quantum level. 10 

One usually adopts a constant curvature equation for a 
metric as an equation of motion for two-dimensional gravi
ty. 1-8 In conformal gauge it results in the integrable Liouville 
equation that presents instructive problems at the quantum 
level. I 1-14 As far as the bosonic string model is concerned, 
the additional Liouville mode arises after quantization in the 
number of dimensions not equal to the critical one. 10 This 
mode can already be added at the classical level and provides 
an interesting modification of the standard bosonic string 
action. 15-17 

A constant curvature equation for two-dimensional 
gravity cannot be obtained from an action principle for an 
invariant Lagrangian without auxiliary fields. This happens 
because in two dimensions the Hilbert-Einstein Lagrangian 
equals a total derivative and yields no equation of motion. 

The problem of introducing a dynamic for two-dimen
sional metric from a purely geometric viewpoint has been 
solved in the framework of Riemann-Cartan geometry 
when metric and torsion are considered as independent dy
namical variables. 18 The model is called two-dimensional 
gravity with dynamical torsion. 

Metric and torsionl9 are fundamental and independent 
geometrical concepts. If matter fields are coupled minimally 
to metric and torsion, then the canonical energy-momentum 
tensor of matter is the source for metric and the canonical 
spin tensor is the source for torsion (see, for example, Ref. 
20). This difference offers a different physical interpretation 
of forces provided by metric and torsion. It is natural to 
assume that metric describes gravity interaction between 
masses like in general relativity whereas torsion describes a 
new, probably short-range interaction between spins. 

In the present paper it is proved that two-dimensional 
gravity with dynamical torsion is a new completely integra
ble model. That is a general solution of the equations of mo
tion following from the Lagrangian 

L = - ~ - g OrR ~Pr6 + l PT~pr + A ), g = det ga,B' 
(1) 

which contains a curvature squared term, a torsion squared 
term, and a cosmological constant is found. This Lagrangian 

is the most general Lagrangian yielding second-order equa
tions of motion for zweibein and Lorentz connection. It also 
found a global solution of the Cauchy problem. 

The Lagrangian L was proposed in the context of the 
bosonic string theory to overcome difficulties with tachyon 
and critical dimension of a space-time. 18 The model was 
called a string with dynamical geometry because metric and 
torsion, which define the geometry of a string world sheet, 
became independent dynamical variables. Functional inte
gration indicated that addition of the Lagrangian L to the 
bosonic string Lagrangian modifies the theory in such a way 
that the notion of critical dimension disappears. 18 This fact is 
based on the violation of the conformal symmetry by L. The 
problem of tachyon is solved at the classical level in Ref. 21. 

In two-dimensional space-time, the dynamical torsion 
theory was discussed in Ref. 22 where the Cauchy problem 
was anlayzed and the equations of motion were integrated in 
the stationary limit. This result is generalized in the present 
paper. It is proved that two-dimensional gravity with dy
namical torsion is a new integrable model. Theorems 1 and 2 
of this paper yield a general solution of the equations of mo
tion when torsion is nonzero, the solution being expressed by 
the new type of special functions. Theorem 3 yields a zero 
torsion solution. In the letter case scalar curvature must be 
constant and the equations of motion are reduced to the 
Liouville equation. Thus the constant curvature two-dimen
sional gravity is the zero torsion sector of gravity theory with 
dynamical torsion. 

The plan of the paper is as follows. In Sec. II the Rie
mann-Cartan geometry is briefly reviewed and the Lagran
gian is discussed. In Sec. III the equations of motion are 
solved. Section IV contains examples of stationary and ho
mogeneous space-times with nonzero torsion and the linear 
approximation. In Sec. V a global solution of the Cauchy 
problem is found. Section VI concludes the paper. 

II. THE LAGRANGIAN 

Let M be a two-dimensional manifold19 with local co
ordinates; a, a = 0, 1. Geometry on Mis defined by a metric 
tensor gaP (;) which is symmetric in its indices and by a 
linear connection raP r(;). No symmetry under permuta
tion of the indices of r is assumed. In Riemann-Cartan ge
ometry, one postulates that the linear connection is metric 
compatible, that is the covariant derivative of the metric 
equals to zero: 

VagPr = Jagpy - raP 6g6y - r ar ligPli = O. (2) 

This equation quarantees that raising and lowering of tensor 
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indices commutes with covariant differentiation. Equation 
(2) is algebraic for metrical connection r and can be solved. 
Its general solution has the following form: 

r aPr = raP liglir 

where 

=!(aagPr +apgar -argaP) 

+ ~(TaPr + TraP - Tpra ), 

T afJr = - T {3a r = Ta{3liglir = T afJrT {3a r 

is a torsion tensor which is antisymmetric in the first pair of 
indices. 

General relativity is based on Riemannian geometry 
where the equation for torsion to be zero is postulated. Cor
responding metrical connection is called Christoffel's sym
bols and is defined by the metric only 

f aPr = !(aagPr + apgar - argaP)' 

Metric and torsion form a complete set of independent 
geometrical notions in Riemann-Cartan geometry and de
fine metrical connection uniquely. Curvature tensor is de
fined in terms of metrical connection as usual 

R aPr li = aa r Pr li - r ar Er PE li - (a++{3). 

In the following sections, an equivalent realization of 
Riemann-Cartan geometry will be used. Let metric have the 
signature ( + - ) then one can introduce zweibein ea a, 

a = 0, 1, and Lorentz connection (J) a ab = - (J) a ba by the fol
lowing formulas: 

(3) 

(4) 

Equation (3) defines zweibein up to a local Lorentz rotation 
and Eq. (4) uniquely defines Lorentz connection in terms of 
zweibein and metrical connection. Note that the number of 
components of Lorentz connection equals that of torsion. 
Zweibein has one component more than metric due to the 
symmetry under local Lorentz rotation. 

Curvature and torsion have the following form in terms 
of zweibein and Lorentz connection: 

The transformation of Greek indices into Latin ones and vice 
versa is carried out by the zweibein. 

Two-dimensional gravity with dynamical torsion is de
scribed by Lagrangian ( 1 ), where y and {3 are coupling con
stants and A is cosmological constant. This Lagrangian is 
invariant under general coordinate transformations and lo
cal Lorentz rotation. The presence of dimension-full con
stants rand A breaks the conformal (or Weyl) invariance. 
Up to a total divergence L is the unique invariant Lagran
gian (among polynomials in curvature and torsion) which 
yields the second-order equations of motion for zweibein and 
Lorentz connection. Moreover, there are no pseudoinvar
iants that can be added to this Lagrangian. The curvature
squared term includes a kinetic term for the Lorentz connec
tion, whereas the torsion-squared term includes a kinetic 
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term for the zweibein and a mass term for the Lorentz con
nection. 

The uniqueness of L can be easily proved if one notices 
that in two dimensions curvature tensor is completely de
fined by the scalar curvature R = Rab ab, 

where Eab is the antisymmetric tensor, Eab = - Eba , EOI = 1, 
and torsion tensor is completely defined by the pseudovector 
T*c = Tab c~b, 

Tab c = - !Eab T*c. 

III. SOLUTION OF THE EQUATIONS OF MOTION 

In the present section we write down the equations of 
motion for zweibein and Lorentz connection then fix the 
conformal gauge and prove three theorems that give a gen
eral solution for the equations of motion. 

To simplify calculations, let us parametrize Lorentz 
connection by pseudovector field B a 

(5) 

This is always possible in two dimensions. Then curvature 
takes the following form: 

Rapab = Fap~b, Fap = aaBp - apBa' 

Varying the Lagrangian (1) with respect to Ba and ea a 
one gets the following equations of motion: 

2yVpFaP - {3Taab~b = 0, (6) 

{3V P T{3aa + {3TabeTabc - ({3 14) T bed Tbedeaa 

- 2yFaPFap + (yI2)FprFPreaa - Aea
a = 0. (7) 

Here, V P means the covariant derivative with Lorentz con
nection when it acts on tensors with Latin indices and metri
cal connection without torsion (Christoffell's symbols) 
when it acts on tensors with Greek indices. The difference 
between Greek and Latin indices arises after integration by 

parts because of the identity aa~ - g =.[=gf apP, 
Equations (6) and (7) can be completely integrated in 

the conformal gauge 

(8) 

where cp(s) is a scalar field. The conformal gauge (8) can 
always be fixed in two dimensions by means of general coor
dinate and local Lorentz transformations that are parame
trized by three independent functions. Then, Eqs. (6) and 
(7) take the following form: 

2yap(E- 2'1'FaP) -{3(~papcp-Ba) =0, (9) 

{3({)~Otp - aa a acp + aaCP a acp - !{)~apcp a Pcp - Ea aapBP 

+ EaPapBa - BaBa + !{)~BpBP + ~papcpBa 
- ~paacpBp + {)~~rapcpBr) - 2ye - 2'1'FaPFap 

+ (y/2)e - 2'1'{)~FprFPr - Ae2'1'{)~ = 0, (10) 

where 0 = apa p. Here, raising and lowering of all indices 
are carried out by means of the Minkowskian metric, and the 
distinction between Greek and Latin indices disappears. 

Let us denote by Cn(D) a space off unctions that have 
derivatives up to the nth order in some region D of their 
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arguments. Then the following theorem holds. 
Theorem 1: Let B aec 2(D) and xeC 3(D) in some two

dimensional region of coordinates {~a}. Then Eq. (9) has 
the following general solution.in D: 

B a = ~papX' (11) 

where the scalar field X satisfies the equation 

2rOX + P(~ - x)e2
<p = O. (12) 

Proot Let us introduce vector field Ea dual to 
B a, B a = ~PEp. Then Eq. (9) after multiplication by Eap 
takes the following form: 

-2rap(r2<PayEY) -pap~+/3Ep =0. (13) 

Equation (13) shows that vector field Ep is a gradient of a 
scalar field that we denote by X', Ep = apX'. Substitution of 
this expression into Eq. (13) yields the equation 

- 2rap(e- 2'POx') - pap(rp - X') = 0, 

where the first integral has the form 

- 2re - 2'POx ' - /3(~ - X') = c, c = const. 

After shifting the scalar field X' = X + cl/3 one gets Eqs. 
(11) and (12). 

The inverse statement is "if Pa is expressed by Eq. (11) 
in terms of the scalar field satisfying Eq. (12), then it satis
fies Eq. (9)." This inverse statement can be verified by 
straightforward calculations. 

The assumption Baec 2 (D) and XeC3(D) are needed 
for Eqs. (9), (11), and (12) to be defined on D. 0 

Having found a general solution of Eq. (9), one can 
write down equations of motion (9) and ( 10) in terms of two 
scalar fields ~ and/ = ~ - X. It is also convenient to rescale 
coordinates 

~o = ~(2rIP) T, ~ 1 = ~(2rl/3) U 

and introduce the following notations: fp = arp laT, ~' 
= a~ I au. Then equations of motion can be written as two 

dynamical equations and two constraints. 
Proposition 1: Equations of motion (6) and (7) in con

formal gauge are equivalent to the following system of equa
tions: 

0/ + (/2 - A)e2'P = 0, (14) 

O~ + (/2 + / - A)e2tp = 0, (15) 

2/" + j2 + /'2 - 2fpj - 2~ '/' + (/2 - A)e2tp = 0, (16) 

i' + .if' - i~ , - f' fp = 0, (17) 

where A = 4Arlp2. 
The proof is based on Theorem and simple, but 

lengthy, algebraic manipulations which are omitted here. 
The form (14)-( 17) of the equations of motion breaks 

down the manifest Lorentz covariance but is useful in ana
lyzing the Cauchy problem.22 Let us calculate the number of 
independent functions in the complete set of initial data. 
Suppose that rp and fp are defined at the initial time T = O. 
Then from constraints (16) and (17) one can find initial 
data for/andjup to some integrating constants. It means 
that/is not an independent dynamical variable. The oppo
site conclusion is valid also. One can choose/as an indepen
dent dynamical variable and find initial data for ~ using 
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constraints (16) and (17). Next it must be proved that if/ 
and rp satisfy the dynamical equations (14) and (15) then 
the constraints ( 16) and ( 17) are satisfied during the evolu
tion provided they are satisfied at the initial time. This is 
done in Ref. 21 using the Hamiltonian approach where it is 
demonstrated that constraints (16) and (17) are of the first 
class. 

A general solution of equations of motion (14 )-( 17) 
can be found in light cone coordinates 

S=U-T, 'TJ=U+T. 

Let us denote derivatives by means of the indices. For exam
ple, ~s = arp las· 

Proposition 2: In the light cone coordinates, equations of 
motion (14)-( 17) take the following form: 

- 4/slI + (/2 - A)e2tp = 0, (18) 

- ~Sll + (j2 + /- A)e2tp = 0, 

/1111 + /~ - 2rpJlI = 0, 

Iss + /~ - 2~s/s = o. 

(19) 

(20) 

(21) 

Proot the proof is based on simple algebraic manipula
tions that are only sketched here. Equations (18) and (19) 
follow from (14) and (15). Equation (20) is the following 
linear combination (14)-(16)-2(17). Equation (21) fol
lows from (17) after the use of (20). 0 

In the proof of Theorem 2 we will use the following 
simple lemmas showing that Eqs. (18)-(21) are not inde
pendent from each other. 

Lemma 1: Equation (20) is one ofthe first integrals of 
Eqs. (18) and (19). 

Proot Let us differentiate (20) with respect to S, 
/lIl1S + 2/JlIs - 2~lIs/1I - 2~JlIs = 0, 

and use Eqs. (18) and (19) for excluding the mixed deriva
tives/lIs and rplls' Then one gets an identity. This procedure 
can be reversed. That is the following linear combination of 
equations: 

!(18)1I + ~/1I (18) - ~/1I (19) - !rpll (18) 

after integration over S yields the equation 

/1111 + /~ - 2~JlI = H('TJ), 

where H( 'TJ) is an arbitrary function. Hence, Eq. (20) is one 
of the first integrals of Eqs. (18) and (19) which corre
sponds to H = O. 0 

Lemma 2: Equation (21) is one of the first integrals of 
Eqs. (18) and (19). 

Proot Proof repeats the one of Lemma 1 with the change 
of coordinates S~'TJ. 0 

As follows from the proved lemmas, Eq. (19) is the 
consequence of (l8), (20) or (28), (21). ButEq. (18) does 
not follow from ( 19), (20) or ( 19), (21) because after inte
gration over 'TJ or S one gest an arbitrary function. 

In what follows, derivatives of one argument functions 
are denoted by primes. One easily distinguishes them from U 

derivatives from the context. 
Theorem 2: Let jeC 3(D), ~C2(D), and /11 #0 or 

/s #0 in some two-dimensional region D of coordinates 
(s,'TJ). Then general solution of equations of motion (18)
(21) in D has the following form: 
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1= (J(F± G), 

e2'P= 1(J'IF'G'eB
, 

(22) 

(23) 

where (J is the one-argument function defined by the follow
ing ordinary differential equation: 

41(J'1 = ± [«(J2 - 2(J + 2 - A)e8 +A], A = const, 
(24) 

F( t) EC 2 ( 0 1 ) and G ( 'T] ) EC 2 ( O2) are arbitrary functions de
fined on the intervals 0 1 and O2 , DC 0 1 X O2 , and satisfying 
the inequalities F' > 0, G' > O. Primes denote derivatives by 
the arguments. One must choose either upper signs in formu
las (22) and (24) or the lower signs. 

Proof: The assumptionsl1/:;60 and/s :;60 are equivalent 
to each other as the obvious consequence of Eq. (18). 

Due to the previous lemmas, Eq. (19) can be omitted as 
the consequence of (18), (20) or (18), (21). 

Equations (20) and (21) can be integrated after divid
ing them by 11/ and Is: 

lnlf1/ 1 +1- 2cp + F(t) = 0, (25) 

(26) 

where F(t) and G( 'T]) are arbitrary functions oftheir argu
ments. Let us introduce two monotonic functions F(t) and 
G( 'T]) defined by the following equations: 

F' = dF = eF > 0, G' = dG = eO> O. 
dt d'T] 

Then the difference between (25) and (26) is equivalent to 
the following equation: 

lf1/I/G' = lfsIIF '. (27) 

It is always possible to introduce new coordinates 
(t,'T]) -+ (F+ G,F- G), because the Jacobian of this trans
formation is positive. Due to the moduli sign in Eq. (27) 
there are two cases. The first is I Js > O. Then I does not 
depend on the coordinate F - G because 

a'T] at 
IF- G =11/ a(F _ G) + Is a(F _ G) 

=_I1/+/s=o 
G' F' , 

as follows from Eq. (27). In the second case,JJs <O,Jis a 
function of one variable also, 1= (F - G), because 
IF+G = OduetoEq. (27). The factthat/is a function of one 
argument only is a crucial consequence of Eqs. (20) and 
(21). In what follows we denote this function by (J. 

Let us consider thecase/= (J(F+ G). ThenEqs. (18), 
(20), and (21 ) are equivalent to the following two equations 

- 4(J" F'G' + «(J2 - A)e2'P = 0, (28) 

lnl(J'G'1 + (J - 2cp + In F' = 0, (29) 

which follows from (18) and (25), (26). Equation (29) can 
be solved with respect to cp, 

e2'P = 1(J'IF'G'eB• (30) 

After substitution of this solution into Eq. (28) it can be 
integrated to give 

41(J'1 - «(J2 - 2(J + 2 - A)eB 
- A = 0, A = const. (31) 
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In the second case 1= (J(F - G), and the system of Eqs. 
(18), (25), and (26) takes the form 

4(J" F'G' + «(J2 - A)e2'P = 0, 

lnl(J'G'1 + (J- 2cp + lnF' = 0, 

(32) 

(33) 

which differs from Eqs. (28) and (29) only by the sign in the 
first equation. Equations (32) and (33) can be integrated as 
in the previous case to give (30) and the equation for (J 

41 (J , 1 + «(J 2 - 2(J + 2 - A) e8 + A = 0, (34 ) 

differing from Eq. (31) only by the signs. Formulas (30), 
(31), and (34) yield a general solution ofEqs. (18)-(21) 
whenl1/:;60 oris :;60. 

The assumptions cp, F, GEC 2 (D) are needed because 
Eqs. (18)-(21) are of the second order. The assumption 
IEC 3 (D) is needed because in deriving Eq. (19) from (18) 
and (20) or (21 ) one must differentiate ( 18), and in order to 
satisfy the requirement XEC3(D) of Theorem 1. 0 

The solution from Theorem 2 will be briefly discussed in 
the next sections. Theorem 2 does not give a general solution 
because of the assumption 11/:;60 or Is :;60. The following 
theorem covers this gap. 

Theorem3:Letf,cpeC 2 (D) andl1/ = o oris = Oinsome 
two-dimensional region D of coordinates (t,'T]). Then the 
system ofEqs. (18)-(21) has a solution only for A~O. 

For positive A a general solution takes the form 

1= ±{J\, 

e2'P = 4F'G 'I{J\(F ± G)2, 

(35) 

(36) 

where F(t)EC 2
( 0 1 ) and G( 'T])EC 2

( O2 ) are arbitrary func
tions defined on the intervals 0 1 and O2, DC01 X02, and 
satisfying the inequality F'G' > O. One must choose either 
upper signs in formulas (35) and (36) or the lower signs. 

For zero A a general solution is as follows: 

1= 0, cp = F + G. (37) 

Proof: The assumptions 11/ = 0 and Is = 0 are equiva
lent to each other as the obvious consequence of Eq. (18). 

Whenl1/ = 0, Eq. (18) has the solution (35) only for 
A~O. For constantl Eqs. (20) and (21) are satisfied and Eq. 
( 19) transforms into the Liouville equation 

(38) 

General solution of Liouville equation has a well-known 
form (36). 

When A = 0, then I = 0 and Eq. (19) transforms into 
the d'Alembert equation which has a general solution (37). 

The assumptions off, cpeC 2 (D) are obvious. 0 
From a geometric view point, Theorem 2 describes 

space-times with nonzero curvature and torsion, whereas 
Theorem 3 corresponds to a space-time with zero torsion 
and constant curvature. To prove this statement one has to 
write down scalar curvature and torsion squared, which is 
geometric invariant in terms of (J. Straightforward calcula
tions yield the result 

R= -(Plr)(J, TabcT
abc = -4(Plr)I(J'le- B

• 

Now one can easily verify that Theorem 3 describes space
times with constant curvature and zero torsion, 
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R = +2~A/r, Tobe = O. 

The fact that zero torsion and constant curvature space
times satisfy the equations of motion can be traced back to 
Eqs. (9) and ( 10), and in this form has been proved in Ref. 
22. 

IV. SPACE-TIMES WITH NONTRIVIAL TORSION 

General solution of equations of motion for two-dimen
sional gravity with dynamical torsion found in the previous 
section consists of two sectors. The first describing space
times with nonzero torsion and curvature is new whereas the 
second describing zero torsion and constant curvature 
space-times is already known. In the present section, we dis
cuss only the first sector which is covered by Theorem 2. 

In fact, Theorem 2 formulated as a local one yields a 
global general solution defined on the whole coordinate 
plane with little exception. This happens because new special 
function () defined by Eq. (24) is smooth on the whole real 
axis or has one singular point. When A = 0, () is expressible 
in terms of the integral logarithm functions. In a general 
case, Figs. 1-9 show numerical solutions of the equation 

()' = «(}2 _ 2() + 2 - A)ee +A, 

corresponding to the upper sign in Eq. (24) written without 
moduli sign and the factor 4 which is absorbed by rescaling 
the argument. There are nine qualitatively different cases for 
different choices of A and A. Each case contains up to four 
branches and every one of them can be shifted independently 
along the x axis. All branches are smooth on the whole coor-

FIG. 5. O<Ad, 2e.fA(,[li..-1)<A<0 or A<O, A-2<A<0. 
[A= -2.0,A= -2.0.] 
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the half-plane and have singularity at the boundary 
F(5) + G(7J) =Xl · Thus the solution (22)-(24) is globally 
defined except for the upper branches. 

Another important note should be made about the 
choice of signs in Eqs. (22) and (24). The upper signs corre
spond to spacelike argument F + G whereas the lower 
choice corresponds to timelike argument F - G. To prove 
this statement let us consider tangent vectors to the line 
F - G = const. At any point of the coordinate plane the fol
lowing inequality holds: 

I dO'l = 1- (F-G)r 1 = I F'+G' 1>1. 
dr (F- G)a F' - G' 

This means that coordinate line F + G is spacelike. Similar 
arguments prove that coordinate line F - G is timelike. 

To get a solution of the equations of motion (18)-(21) 
one must distinguish spacelike and timelike arguments. For 
a spacelike argument one must choose only those branches 
shown in Figs. 1-9 that have positive derivative because the 
right-hand side of Eq. (24) must be positive and double 
them by parity transformation, X --> - x. For a timelike ar
gument one must choose the remaining branches with nega
tive derivative and double them by time reversing, X --> - X, 

X being timelike. 
At this point we consider stationary and homogeneous 

space-times as two simplest examples. They correspond to 
the following choice 

F(5) = 5, G(7J) = 7J. 

Then for the spacelike argument all geometrical quantities 
will depend only from 0', and the branches on Figs. 1-9 with 
positive derivative show the dependence from the space co
ordinate O'. For the timelike argument, the branches with 
negative derivative show the dependence from the time coor
dinate r. 

There does exist stationary spherically symmetric solu
tions. For one-dimensional space, spherical symmetry re
duces to the reflection symmetry. Therefore everyone of the 
uppermost branches in Figs. 1-9 describes one-half of the 
spherically symmetric solution. One of them, with singular
ity at the origin, is shown in Fig. 10. It is tempting to~all the 
singularity a two-dimensional black hole but this is not true. 
To get a physical interpretation of the singularity one has to 
analyze trajectories ofpointlike particles. They can be found 
explicitly.23 The analysis shows that singularity has a repul
sive character and no particle can penetrate through it. 

Homogeneous space-times have no singularity. Their 
evolution will go on forever and will be approaching a space 
of constant curvature and zero torsion or will be tending to 
infinity. In a general case, the final state is not described by 
Theorem 3 because the asymptotics can differ from 

/= ±..JA. 
At the end of this section we consider the simplest exam-

ple of linear approximation in order to understand the kine
matics of space-time with nontrivial torsion. Let Minkow
skian space-time with zero torsion be the zero-order 
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N 

-2 -1 2 

FIG. 10. The spherically symmetric solution of the equation 
10'1 = (0 2 

- 20 + 2 - A)eB +A for A = 1.0,A = 0.0 with singularity at 
the origin. 

approximation (vacuum). This solution exists only for zero 
cosmological constant. Then at the first-order approxima
tion one gets the following equations of motion: 

Otp=O, 0/=0, I" =0, i'=o 
as the consequence of Proposition 1. Thusl does not describe 
a dynamical mode, w bile tp describes a massless excitation in 
Minkowskian space-time. The situation coincides with that 
of constant curvature two-dimensional gravity with zero 
cosmological constant because at the linear approximation 
near Minkowskian space-time torsion equals zero. 

Torsion plays a dynamical role at the higher-order ap
proximations or at the linear approximation near a more 
general type of vacuum solution. In the latter case, a station
ary vacuum solution has no translational symmetry, and the 
theory includes all troubles inherent for quantization of con
stant curvature gravity ll-14 which we will not discuss here. 

V.THE CAUCHY PROBLEM 

Using the general solution found in Sec. III we formu
late the Cauchy problem for space-times with nontrivial tor
sion and find a global solution for smooth initial data in the 
present section. The Cauchy problem for the Liouville equa
tion describing space-times with zero torsion was considered 
in Ref. 24. 

To get a unique smooth solution of the Cauchy problem 
the initial data must specify the corresponding branch of a 
general solution from Theorem 2. To this end one must get 
rid of the moduli sign in Eq. (24) and make a choice of the 
signs in the right-hand side of it. Moreover, one must choose 
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the branch ifthere is still more than one. Before formulating 
the theorem let us discuss how the initial data for I and A 
make the unique choice of the branches. 

Let I and i be defined at the initial time l' = 0 on the 
whole axis - 00 <u< + 00, 

l(u,O) =Io(u), j(u,O) =/1(u), (39) 

wherefo andlt are sufficiently smooth functions. The sign in 
the right-hand side of Eq. (24) is defined by the sign ofthe 
product/,;l1/ as was shown in the proof of Theorem 2. It can 
be calculated at the initial time 

I,; (u,O) =~(fb -II)' 11/(u,0) =~(fb +/1)' (40) 

Thus to get a global smooth solution of the Cauchy problem 
the functions 10 and II must satisfy one of the following in
equalities: 

(fb - It) (fb + II) > 0 [f = O(F + G) ], 

(fb - 11)(fb + II) <0 [f= O(F- G)]. 

To get rid of the moduli sign in Eq. (24) the sign of the 
derivative 0' should be known. It is also fixed by the initial 
data. The derivativesl,; andl1/ are as follows: 

I,; = OJ', 11/ = ± O'G', (41) 

where ± correspond to different arguments of the solution 
O(F ± G). Because F' > 0 and G' > 0 then the sign of 0' is 
fixed by the signs of I,; and 11/ . 

Thus the initial data (39) should be divided into the 
four classes: 

Ib -It>O, Ib +/1>0 [f= O(F+ G), 0'>0], 
(42) 

Ib -II <0, Ib +/1 <0 [f= O(F+ G), 0' <0], 
(43) 

Ib -/1>0, Ib + It <0 [f= O(F- G), 0'>0], 
(44) 

Ib -II <0, Ib + It >0 [f= O(F- G), 0' <0]. 
(45) 

For each class of the initial data, Eq. (24) can be written 
without a moduli sign and with a definite sign in the right
hand side of it. 

To get a global smooth solution of the Cauchy problem, 
the value of A cannot be chosen arbitrarily too. This happens 
because for every branch shown in Figs. 1-9 the right-hand 
side of Eq. (24) must be positive at any moment and thus at 
the initial time. Therefore, in the cases (42) and (43) the 
following inequality must be satisfied: 

(f~ -2fo+2-A)ef.'+A>0, (46) 

whereas in the cases (44) and (45) the inequality must be 
opposite 

(f~ - 210 + 2 - A)ef.' + A <0 (47) 

for all u. 
Theorem 4: If the initial data (39) foEC 3 

( - 00 <u< + 00), ItEC 2
( - 00 <u< + 00) satisfy one 

of the inequalities (42 )-( 45) and the constantA satisfies the 
corresponding inequality (46) or (47) then the solution of 
the Cauchy problem for the equations of motion (14)-( 17) 
is unique and takes the following form: 
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/= 8(x), 

where 8 is the branch of solution ofEq. (24) containing/o in 
its range and having positive derivative for (42), (44) and 
negative derivative for (43), (45). The argument is defined 
by the initial data through the formula 

x =! 8 -1(/0(0"- r» +! 8 -1(/0(0"+ r» 

1 i(7+ T +- dt/I (t)8,-I(/o(t». 
2 (7- T 

(48) 

The function rp is defined by the equation 

(49) 

Solution of the Cauchy problem is smooth and is defined on 
the whole half-plane r> 0 or on the strip between the lines 
r = 0 and x(O",r) = XI where XI is the singular point for the 
upper branches of Eq. (24) with positive derivative. 

Proof Ifone of the inequalities (42)-( 45), and the con
stant A satisfies the corresponding inequality (46) or (47), 
are satisfied then there always exists a branch 8 that contains 
/0 in its range and it is unique up to a translation along X axis 
as was discussed at the beginning of the present section. 

Let us express the argument through the initial data 
when they satisfy the inequalities (42) and (46). Then Eq. 
(24) takes the following form: 

48'= (8 2 -28+2-A)e8 +A. (50) 

Using Eqs. (40) and (41) one easily finds equations defining 
the argument through the initial data 

F' = 2{(f~ - /1)/[ (f~ - 2/0 + 2 - A)ef.. + A p, (51) 

G' = 2{(/~ + /1)/[ (f~ - 2/0 + 2 - A)ef.' + A p. (52) 

The argument of the solution X = F + G takes the following 
form: 

x=2 dO" 0 i s f' 
(70 (/~ - 2/0 + 2 - A)ef.· + A 

+2 dO" 0 i l1 f' 
(70 (/~ - 2/0 + 2 - A) + ef.. + A 

+ 2111 dO" II (53) 
5 (/~ - 2/0 + 2 - A)e'" + A ' 

where the constant of integration 0"0 can be evaluated at the 
initial time 

8(x(O",r = 0» = /0(0"). 

At this point one sees that the arbitrariness in shifting the 
branch along the X axis is compensated by the choice of 0"0. 

To transform the argument (53) into the form (48) let 
us rewrite Eq. (50) 

4d8/[(8 2 -28+2-A)e8 +A] =dt. (54) 

The first two integrals entering (53) can be rewritten using 
the following formula: 

rtow d8 
Jfo «7o) (8 2 

- 28 + 2 - A)e8 + A 

(55) 
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where 8 -I is the inverse of the solution of (54), which al
ways exists because 8' #0. The remaining integral in (53) 
can be written using the notion of the inverse function too. 
To this end let us differentiate (55) by /0(5). Then 

[(f~ - 2/0 + 2 - A)ef.· + A ] -I = !8,-I(/O(5». 
Now one sees that Eqs. (53) and (48) are equivalent. 

The only difference in the proof of Eq. (48) for another 
choice of the initial data is different signs in Eqs. (50)-( 52) 
but the final result remains unchanged. 

Let us discuss the region where the solution of the 
Cauchy problem is defined. When the initial data satisfy in
equalities (46) and (47), and the solution is described by the 
uppermost branch shown in Figs. 1-9, then the solution of 
the Cauchy problem is defined on the strip between the line 
r = 0 and the line x (0", r) = x I where x 1 is the singular point 
for the branch. To prove this statement one has to note that 
during the evolution of a space-time the argument x of the 
solution is increasing, and its value at the initial time at any 
point 0" cannot exceed or be equal to XI because the initial 
data are smooth and belong to the same branch. The increas
ing of the argument follows from the inequality 

dx -(5 = const,77) = G' > 0, 
dr 

and the fact that coordinate lines 5 = const are future direct
ed. 

For all other choices of the initial data satisfying in
equalities (42 )-( 45) and (46) and (47) the solution of the 
Cauchy problem is defined on the whole half-plane r> 0 be
cause corresponding branches have no singularity or the sin
gular point lies in the past. 

The expression (49) for rp follows from (23) and 
expression for the argument x = F ± G. 

Conditions/oeC 3 andlIeC 2 are needed because the solu
tion/must have derivatives up to the third order as follows 
from Theorem 2. 0 

It is instructive to check directly that the solution 
/= 8(x) where the argument is defined by Eq. (48) does 
satisfy the initial data (39). To this end let us calculate x and 
x at the initial time 

x(O",O) = 8 -1(/0(0"», 

x(O",O) =/1(0")8'-1(/0(0"». 

Now one sees that Theorem 4 yields the correct answer 

8(x(O",O» =/0(0"), 

8(x(O",O» = 8'x 

= 8'(8 -1(/0(0"»)/1(0")8'-1(/0(0"» =/1(0"). 

The last equality follows after differentiation of the defini
tion/o = 8(8 -1(/0» with respect t%. 

Thus we have found all smooth globally defined (except 
for the singularity in the future) solutions of the Cauchy 
problem. At first sight the inequalities imposed on the initial 
data restrict the freedom of will. One may ask what will be if 
the initial data are smooth but do not satisfy inequalities 
(42)-(45) or (46) and (47). In this case the upper half-
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plane will have wedges where the solution of the Cauchy 
problem will be multivalued or will not be defined by the 
initial data at all. These solutions can be regarded as smooth 
solutions defined not on the upper half-plane but on the 
manifold with more complicated topology. 

VI. CONCLUSION 

In the present paper a general solution of the equations 
of motion for two-dimensional gravity with dynamical tor
sion is found. There are two sectors in the theory. The first 
describes two-dimensional space-times with nontrivial tor
sion and curvature. The second describes space-times with 
zero torsion. It turns out that in the second case curvature 
must be constant, and equations of motion reduce to the 
Liouville equation. In this way two-dimensional gravity 
with dynamical torsion solves the long standing problem of 
construction of purely geometric Lagrangian yielding the 
Liouville equation. Now it appears as one of the sectors of 
two-dimensional gravity with dynamical torsion corre
sponding to zero torsion. 

Having found a general solution of the equations of mo
tion we have found a global solution of the Cauchy problem 
for space-times with nontrivial torsion. Initial data can be 
chosen in such a way that singularity will appear after finite 
time of evolution or there exist globally defined smooth solu
tions. This situation reminds us of that for the Liouville 
equation.24 

Recently, a stable instantonlike solution for the theory 
has been found by Akdeniz, Kizilersii, and Rizaoglu2S (see 
also Ref. 26). 

Two-dimensional gravity with dynamical torsion 18 was 
introduced in the context of the string theory and seems to 
solve the problem of critical dimension and existence of ta
chyon in the bosonic string theory. Due to its purely geomet
ric origin, the model perhaps will find a variety of applica
tions in mathematics and physics. 
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The master equation is used to obtain a model describing the ensemble-averaged intensity 
corresponding to linear particle transport in randomly mixed immiscible fluids. An asymptotic 
limit corresponding to small amounts of opaque fluids admixed with large amounts of 
transparent fluids is employed to reduce the complexity of the description. In the limit of a 
single transparent fluid, a renormalized transport equation is obtained, involving an effective 
source and effective interaction coefficients that account, in a simple way, for the statistical 
nature of the problem in this asymptotic limit. 

I. INTRODUCTION 

In recent years there has been considerable interest in 
the problem of describing linear particle transport in a sto
chastic medium consisting of two randomly mixed immisci
ble fluids. I

-
16 The goal in this work has been to develop a 

relatively simple and accurate description for the ensemble
averaged solution of the stochastic transport problem. The 
generic linear transport equation treated in these papers, and 
which we will consider here, is written 

1 at/J (7s --+ O·Vt/J+ ut/J=-tP +S, 
v at 41T 

where 

tP = f dO t/J(O) . 
)4". 

(1) 

(2) 

In writing Eqs. (1) and (2) we have used the notation of 
neutron transport theory, but our considerations are equally 
applicable in any linear transport setting. The dependent 
variable in Eq. (1) is the angular flux t/J(r,O,t), with r, 0, 
and t denoting the spatial, angular (neutron flight direc
tion), and time variables, respectively. The quantity tP(r,t) is 
the scalar flux, v is the neutron speed, (7(r,t) is the macro
scopic total cross section, (7s (r,t) is the macroscopic scatter
ing cross section, and S(r,O,t) is the external (nonscatter
ing) source of neutrons. We have assumed isotropic and 
coherent (no energy exchange) scattering in Eq. (1), but 
this simplification is not necessary for the essentials of the 
considerations to follow. Thus Eq. (1) is a monoenergetic 
equation, and there is no need to display the energy variable 
which is simply a parameter. 

The master equation approach described by van Kam
pen 17 has been used2.4.9.11.16 to obtain, in the case of a binary 
mixture, a set of two coupled transport equations in order to 
describe (in the case of Markov mixing statistics) the ensem
ble-averaged angular flux. This approach is easily extended 
to the case of M randomly mixed immiscible fluids. The en
semble-averaged flux, <t/J), is given by 

M 

<t/J> = I Pit/Ji' (3) 
;=1 

where the t/Ji satisfy the coupled transport equations 

(4) 

Here, t/Ji (r,O,t) is the ensemble-averaged flux given that the 
space-time point r,t is in fluid i, tPi (r,t) is the integral of t/Ji 
over all solid angle, and Pi (r,t) is the probability of the 
space-time point r,t being in fluid i. The Aij (r,O,t) are the 
Markov transition probabilities describing the transition 
from fluid i to fluid j. They are defined by the equation 

Prob(i ..... j) = dS/Aij' i#j, (5) 

where Prob(i ..... j) is the probability of the fluid mixture be
ing in fluid j at point S + ds, given that it is in fluid i at point 
s. The probabilities Pi in Eqs. (3) and (4) are related to the 
A ij according to 

dpi M Pj M 1 
-= I- - Pi I-· (6) 
ds j#i Aji Hi Aij 

The quantities (7;. (7s;. and Si in Eq. (4) are the cross sections 
and external source associated with the ith fluid, and are 
taken as deterministic functions of their arguments. The sta
tistical nature of the problem enters through the statistics of 
the fluid mixing, i.e., through the knowledge as to what fluid 
is present in the mixture at space point r and time t. That is, 
(7, (7s, and Sin Eq. ( 1 ) are M-state discrete random variables. 

This master equation description of linear transport in 
an M-component Markovian mixture is known to be exact in 
the absence of time dependence and the scattering interac
tion in the underlying transport problem.2.7.8.17 In the pres
ence of time dependence and scattering, it is a heuristic mod
eI4.9.11.13.16 that appears to be, at least for a binary mixture 
(M = 2), qualitatively as well as semiquantitatively accu
rate. 13 A model ofthis same generic form has also been pro
posed for mixing statistics more general than Markovian in 
the case of a binary mixture.4 We also remark that a question 
has recently been raised 14 concerning the physical realizabi
lity of Markov statistics in three-dimensional geometry for 
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other than layered slabs. In two-dimensional geometry, the 
physical realizability of Markov statistics for a binary mix
ture has been demonstrated. IS For the purpose of this paper, 
we accept Eqs. (3) and (4) as a reasonable model of linear 
transport in an M-component stochastic mixture, and inves
tigate a certain asymptotic limit of this description. 

The limit we consider is that corresponding to N of the 
M fluids being "thin (transparent)" and present in large 
amounts, and the remaining M - N fluids being "thick 
(opaque)" and present in small amounts. By "thick" we 
mean that the cross sections 0'; and us; as well as the source 
S; are large compared to the corresponding quantities for the 
"thin" fluids. If we let subscripts nand k denote thin and 
thick, respectively, we can quantify this characterization of 
the two types of fluids by writing 

Un =0(1); Usn =0(1); Sn=O(1), (7) 

Uk = O(1IE); O'sk = O(lIE); Sk = O(1IE), (8) 

where E is a formal smallness parameter. To introduce the 
presumption concerning the presence of small amounts of 
the thick fluids, we scale the Markov transition probabilities 
as 

Ann = 0(1); Ank = 0(1); Akk = 0(1); Akn = O(E). 

(9) 

Physically, Eq. (9) states that the predominant transitions 
are from thick to thin fluids. Introducing the scaling given by 
Eq. (9) into Eq. (6), we deduce that Pi> the probability of 
being in the ith fluid, scales as 

Pn = 0(1); Pk = O(E) . ( 10) 

Hence we see that scaling the transition probabilities accord
ing to Eq. (9) yields the result that the thick fluids are pres
ent in small amounts. 

In the remainder of this paper we show that, in lowest 
order in E, these scalings reduce the M coupled differential 
equations given by Eq. (4) to N such equations, with the 
remaining M - N equations being algebraic. Thus in this 
asymptotic limit, the complexity of the statistical transport 
description is reduced, roughly speaking, in proportion to 
the number of thick fluids. In particular, for a single thin 
fluid (N = 1), we obtain a single renormalized transport 
equation involving an effective source and effective cross 
sections that account for the statistical nature of the problem 
in a very simple way. In our development, it is not necessary 
to specify which of the fluids is thin; only the number N of 
thin materials must be specified. This leads to a relatively 
robust reduced description in that the interchange of the 
designation of two fluids, one as thick and the other as thin, 
does not affect the result. As part of our development, we 
also give the necessary initial and boundary layer analyses 
needed to obtain the correct initial and boundary conditions 
on the reduced set of differential equations. 

We close this introduction by noting that this asympto
tic limit has already been developed in the case of a binary 
mixture (M = 2).15 In this case, N is necessarily one since 
there can be only one thin material and one thick material. 
The treatment of a binary mixture is particularly simple 
since one can "symmetrize" the equations for tPl and tP2 
through the change of variables9,16 

893 J. Math. Phys., Vol. 31, No.4, April 1990 

(tP) = PltPl + P2tP2' () = (PIP2) 1/2(tP2 - tPI) . (11) 

Introducing the thick and thin scalings given by Eqs. (7)
( 10) into the coupled equations for (tP) and () leads, in a very 
simple way, to a renormalized equation for (tP) whose effec
tive cross sections and source are invariant under the inter
change of indices 1 and 2. This implies, as we noted earlier, 
that one need not identify which fluid is thin. When more 
than two fluids are present in the mixture (M> 2), there 
seems to be no useful symmetrization analog of Eq. (11) 
and, as we shall see, it is much more involved to obtain a 
reduced set of equations which is symmetric upon the inter
change of fluid indices. Further, the present treatment has 
an advantage over the earlier treatment l5 even for M = 2 in 
that in any order of reduction one preserves the exact deep-in 
exponential decay rate for the time-independent, source
free, purely absorbing problem with spatially independent 
cross sections 0'; and transition probabilities Aij' This is the 
case, for any choice of N, no matter how far the actual phys
ical problem is removed from the asymptotic limit that led to 
the reduced equations. For M = 2, these two treatments 
agree, as they must, if the smallness parameter E is, in reality, 
a vanishingly small number. That is, the two treatments are 
asymptotically equivalent, but the present treatment is more 
robust in that it yields certain exact results, as just noted, 
away from the asymptotic limit. We also note that the earlier 
binary mixture paper l5 did not consider the initial and 
boundary layer analyses needed to obtain the proper initial 
and boundary conditions for the reduced set of equations. 

II. THE REDUCED EQUATIONS 

Of the M fluids constituting the mixture, we assume that 
N of these are thin and M - N are thick, as discussed in the 
last section. If we identify by fluid index which of the fluids 
are thin and which are thick, the use of the scalings given by 
Eqs. (7) through (10) leads to a very simple analysis. Spe
cifically, if we introduce these scalings into Eq. (4) and seek 
an asymptotic solution according to 

tP; = L EntP~n), (12) 
n=O 

we find, upon equating coefficients of En, that the tP~O) satisfy 
the same equations as given by Eq. (4), but with the space 
and time derivatives deleted from the thick fluid equations. 
Thus we have, with an error of O(E), that the tP; satisfy a 
reduced set of equations consisting of N differential equa
tions and M - N algebraic equations. However, this very 
simple result has the major drawback that this reduced set of 
equations is not symmetric in the fluid indices. It is necessary 
to specify which fluid indices correspond to the thin fluids 
and which correspond to the thick fluids. Accordingly, we 
consider an alternate treatment in which it is only necessary 
to specify N, the number of thin fluids. The final result will 
be symmetric in the fluid indices, which means that it is 
unnecessary to identify any given fluid component as either 
thick or thin. In this sense, the treatment about to be given is 
much more robust than the simple treatment just sketched. 
We shall also see that it preserves, for all N and independent 
of how close the physical problem is to the asymptotic limit, 
the deep-in decay length as discussed at the end of the last 
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section. The simple treatment just sketched does not have 
this property. 

We rewrite Eq. (4) in matrix notation as 

d'P 1 
-+~'P=-~s4t+Q, (13) 

ds 417" 
where d / ds is the convective derivative in Eq. (4), 'P is an M
component column vector with components p; "" Q is a sim
ilar vector with components PiS;, • is the integral of'P over 
all solid angle, ~s is anM X M diagonal matrix with diagonal 
elements Us" and ~ is an M XM matrix with elements given 
by 

1:;; = U; + I _1_, 1:ij = - _1_, i=l=j. (14) 
j,c; Aij Aj ; 

Prior to introducing the scalings given by Eqs. (7)-( 10) into 
Eq. (13), we diagonalize the matrix 1:. We introduce a new 
dependent variable X according to 

'P=MX, (15) 

where M is the modal matrix corresponding to 1:, i.e., the 
columns of M are the eigenvectors of 1:. Substituting Eq. 
(15) into Eq. (13) and left-multiplying the result by M- 1 

gives 

M-1d(MX)+A =_I_ M- I1:M +M-1Q. (16) 
ds X 417" .11 

Here, A is the diagonal matrix whose elements are the eigen
values of 1:, i.e., 

A = M- I 1:M, (17) 

and 

11=M- I4t=! dflx(fl). 
411" 

(18) 

In obtaining Eq. (16) we have assumed isotropic statistics, 
i.e., the Markov transition probabilities, Aij' are independent 
of direction fl. This implies that the modal matrix M is inde
pendent of fl and hence passes through the angular integra
tion which relates 11 to X according to Eq. (18). The more 
general case of anisotropic statistics, A ij = A ij ( fl ), can also 
be treated, with some additional algebra, but for simplicity 
we treat only the case of isotropic statistics in this paper. The 
eigenvalues of 1:, which we denote by v satisfy 

1:x = 'VX, (19) 
and the eigenvectors x are the columns of M. Thus the eigen
values follow from 

M 

D(v)=det[1:-vl]= L (-I)M-"c"v"=O, 
n=O 

(20) 

where I is the identity matrix and the coefficient c" is the sum 
of all principal minors of 1: of order M - n, with c M = 1. In 
particular, Co is the determinant of~. If we assume N thin 
fluids, it is clear from the scalings given by Eqs. (7)-(10) 
that the matrix 1: has N columns of O( 1), and M - N co
lumns of O( liE). Then the sealing of the c" is given by 

[
0 (E- (M-N» , O<n<N, 

c - (21) 
,,- 0 (E- (M-,,» , N + l<n<M. 

From Eqs. (20) and (21), it is easily seen that N eigenvalues 
will be O( 1) and M - N will be O( liE). That is, using the 
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scaling given by Eq. (21) in Eq. (20) gives, if v = 0(1), 
N 

D(v)- L (-I)M-"c"v"=O, v=O(1), (22) 
,,=0 

where all terms in the sum in Eq. (22) are O( E - (M - N». On 
the other hand, if we assume v = O( liE), we find 

M 

D(v)- L (_l)M-"C"v"=O, V=O(lIE) ,(23) 
n=N 

where all terms in the sum in Eq. (23) are O(E- M
). Equa

tion (22) has N roots and Eq. (23) has M - N roots. Thus 
all M eigenvalues are recovered with this sealing. It is impor
tant to note that we did not have to identify a given fluid as 
either thick or thin in these considerations; we only needed 
to specify N, the number of thin fluids, to obtain N eigenval
ues of O( 1) and M - N eigenvalues of O( liE). For con
creteness, we order the eigenvalues such that 

VI <V2< ... <vM . (24) 

Thus the first N columns of the modal matrix M are the 
eigenvectors of 1: corresponding to O( 1) eigenvalues, and 
the remaining M - N columns are the eigenvectors corre
sponding to O( liE) eigenvalues. In constructing the modal 
matrix, we conceptually normalize each eigenvector to 
length O( 1) so that the introduction of M into the analysis 
does not introduce any artificial sealing into the problem. 

To proceed, we introduce the diagonal matrices Land U 
with elements 

£.. = [0, l<i<N, 
(25) 

II 1, N+ l<i<M, 

u .. = [1, l<i<N, 
(26) 

II 0, N+ l<i<M. 

It is clear that L + U is simply the identity matrix I. Thus the 
diagonal eigenvalue matrix A given by Eq. (17) seales as 

A ..... AU + (lIE)AL. (27) 

It is easily seen from the sealings given by Eqs. (7) through 
(10) that all elements of the vector Q have the same scaling, 
which is 0(1). Since M has been constructed to be 0(1), 
M- 1 is also O( 1) and thus 

M-1Q = 0(1) . (28) 

To obtain the scaling on the term involving 1:. in Eq. (16), 
we introduce the matrix e defined by 

1:. = e1:; e- I = 1:1:.- 1. (29) 

Since 1:. is diagonal, its inverse is simply computed and us
ing the scalings given by Eqs. (7)-( 10) one easily verifies 
that e- I = O( 1), which implies that e = O( 1) since lei =1=0. 
Thus (M -leM) = O( 1) and we conclude that 

M- I 1:.M = M- 1e1:M = (M-1eM)A (30) 

is a matrix with the first N columns of O( 1) and the remain
ing M - N columns of O( liE), i.e., 

M- l 1:.M ..... M- I 1:.MU + (lIE)M- l 1:.ML. (31) 

Finally, we need to consider the scaling of the derivative 
term in Eq. (16). If we assume that the present consider
ations involve scalings away from initial and boundary lay-
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ers (i.e., we seek an interior solution), we take d Ids to be 
O( 1). We also assume that dMI ds is O( 1 ). That is, we as
sume that the U j and Aij are sufficiently slowly varying in 
time and space such that differentiating M does not intro
duce terms larger than O( 1). Combining all of these consid
erations, we find that in the interior (away from initial and 
boundary layers) Eq. (16) scales as 

M-1d(MX) +AUX+J...ALX 
ds E 

= (1I41T)[M-Il:sMU1) + (l/E)M- 1l:sML1)] 

+ M-1Q. (32) 

Having introduced the scaling, we can easily return to the 
physical variable \fI [see Eq. (15)]. We find the equivalent 
scaled equation 

d\fl + (l:MUM-1)\fI + J... (l:MLM-1)\fI 
ds E 

= (l/41T)[ (l:sMUM-1)CI» + (lIE)(l:sMLM- 1)CI»] 

+ Q. (33) 

We emphasize that the scaled equations given by Eqs. (32) 
and (33) depend only upon N, the number of fluid compo
nents identified as thin. We did not need to specify, by identi
fying the fluid indices i, which of the fluids are thin and 
which are thick. 

In seeking an asymptotic solution to these scaled equa
tions, it is algebraically easier to use Eq. (32) rather than Eq. 
(33). Accordingly, we seek a solution to Eq. (32) as a power 
series in E, i.e., 

x = L E"X(n) . (34) 
n=O 

Using Eq. (34) in Eq. (32) and equating coefficients of E", 
we obtain as the first two equations 

ALX(O) = (l/41T) M- 1l:sML1)(0) , 

M- 1 d(MX(O» + AUX(O) + ALX(I) 
ds 

(35) 

= (l/41T) [M- 1l:sMU1)(0) + M- 1l:sML1)(\}] + M-1Q. 

(36) 

Integration of Eq. (35) over all solid angle gives, assuming 
isotropic statistics, 

(A - M- 1l:sM)L1)(0) = O. (37) 

Since the matrix multiplying L 1)(0) in Eq. (37) is nonsingular, 
we have 

(38) 

Using Eq. (38) in Eq. (35) then gives, since A is nonsingu
lar, 

LX(O) = O. 

Now, left-multiplying Eq. (36) by L gives 

LM- 1 d(MX(O» + ALX(1) 
ds 

(39) 

= LM-1Q + (1I41T)(LM- 1l:sM)(U1)(O) + L1)(1) . 

(40) 
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The derivative term in Eq. (40) is ofO(E) and can legiti
mately be neglected; it actually belongs in the next higher 
order (in E) equation. To see this, we use the identity 

X(O) = (L + U)X(O), (41) 

and use ofEq. (39) in Eq. (41) yields 

X(O) = UX(O) . ( 42) 

Then the derivative term in Eq. (40) can be written 

LM- 1 d(MX(O» = LM-1(dM) UX(O). (43) 
ds ds 

If one examines the eigenvalue problem given by Eq. 
( 19) under the assumption of N thin fluids, one deduces that 
each O( liE) eigenvalue has a corresponding eigenvector 
with all elements O( 1 ), and each O( 1 ) eigenvalue has a cor
responding eigenvector with N elements O( 1) and the re
mainder O(E). The ordering ofthe O(E) elements depends 
upon which fluids are identified as thin. However, no matter 
what identification is made, the product M -I (dMI ds) al
ways scales the same; namely, all elements of this product 
are O( 1) except for those in a submatrix in the lower left 
consisting of N columns and M - N rows. All elements in 
this submatrix scale as O(E). Then it is easily verified that 
the right-hand side ofEq. (43) is O(E), assuming, as we have 
before, that the derivative operating on M does not increase 
the magnitude of any of the matrix elements in an E scaling 
sense. An integration of Eq. (40) over all solid angle then 
gives, neglecting the derivative term, 

(A - LM- 1l:sM)L1)(\) = LM-1Qo + LM- 1l:sMU1)(0) ,(44) 

where we have defined 

Qo = r dfl Q(fl) . 
J41T 

The matrix H, defined as 

H = A - LM-1l:sM, 

is nonsingular, and thus Eq. (44) yields 

(45) 

(46) 

(47) 

We use this result as follows. We return to Eq. (36) and left
multiply by U to obtain 

UM-1 d(MX(O» + AUX(O) 
ds 

= UM-1Q + (l/41T)UM- 1l:sM(U1)(O) + L1)(\}) . (48) 

SubstitutingEq. (47) for L1)(1) into Eq. (48) yieldsthesignif
icant result 

UM-1 d(MX(O» + AUX(O) 
ds 

= UM-1Q + (1I41T)UM- 1l:sMH- 1L(M- 1Qo 

+ M- 1l:sMU1)(O» + (1I41T)UM- 1l:sMU1)(O). (49) 

To obtain our final result, we use Eq. (42) in the deriva
tive term in Eq. (49), and recognize that 

X = X(O) + O(E) . (50) 

Then we find, from Eqs. (39) and (49), the reduced set of 
equations (in the X variable) corresponding to N thin fluids. 
These equations are 
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LX =0+ O(E) 

and 

UM- 1 d(MUX) + AU 
ds X 

= UM-1Q + 0/41T)UM- 1:IsMH- 1LM- 1Qo 

(51) 

+ (l/41T)UM- 1:IsMH- 1AU1) + O(E) , (52) 

where we have used the identity 

1+ MH-1LM-1:Is = MH-1M-1:I. (53) 

Alternately, we can express this result in terms of the origi
nal variables in the problem by using Eqs. ( 15) and ( 17). We 
find 

LM-1\(l = 0 + O(E) , (54) 

and, if we again use Eq. (42) in the derivative term in Eq. 
(52), 

UM-1 d\(l + UM-1:I\(I 
ds 

= UM-1Q + (l/41T)UM- 1:IsMH- 1LM- 1Qo 

+ (l/41T)UM- 1:IsMH- I AUM- 1$ + O(E) , (55) 

with the matrix H given by 

H = (M-1:I - LM-1:Is)M. (56) 

Equations (54) and (55), or equivalently Eqs. (51) and 
(52), represent the reduced set of equations corresponding 
to N thin fluids. Equation (54) represents M - N algebraic 
equations and Eq. (55) represents N differential equations. 
The ensemble-averaged flux, <¢), is given in terms of the 
solution to these equations by the simple expression 

<¢) = pT\(I, (57) 

where P is an M-component column vector with all compo
nents one, and the superscript Tmeans transpose, i.e., pT is 
an M-component row vector with all components one. 

We emphasize two items concerning our final result. 
First, these equations are symmetric with respect to the fluid 
indices. To use these equations, one needs only specify N, the 
number of thin fluids; one does not need to identify which 
fluids are thin and which are thick. Aside from physical con
siderations concerning how many fluids can legitimately be 
characterized as thick and thin, the choice of N is dictated by 
the amount of reduction one wishes to make in the full set of 
equations given by Eq. (4). The smaller the choice of N, the 
less differential equations need to be solved to obtain < ¢). Of 
course, if the physical problem is far from the asymptotic 
limit being considered, the accuracy of the result deterio
rates as N becomes smaller. Second, recalling that A is the 
diagonal matrix of the eigenvalues of :I, it is clearly seen 
from Eq. (52) that the Nth order reduction maintains exact
ly the N largest characteristic decay lengths of the full prob
lem given by Eq. (4). In particular, for N = 1 the dominant 
(largest) decay length is preserved, which means that even 
in this lowest order approximation one obtains the proper 
deep-in exponential decay rate for a time-independent, 
source-free, purely absorbing problem with the U; and A.u 
spatially independent. We consider explicitly the renormal
ized transport equation associated with N = 1 later on in this 
paper. Prior to this, however, we give the necessary initial 
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and boundary layer analyses to obtain the initial and bound
ary conditions on Eq. (55). 

III. INITIAL AND BOUNDARY LAYER ANALYSES 

In this section we obtain, via initial and boundary layer 
analyses, the initial and boundary conditions that apply to 
Eq. (55). Considering first the initial conditions, we write 
the initial conditions on the full set of equations given by Eq. 
( 4), or equivalently in matrix notation by Eq. (13), as 

\(I(r,O,Q) = y(r,O) , (58) 

where y is the prescribed known initial data. In the initial 
layer (t near 0), one expects a rapid variation of\(l with time. 
To account for this, we introduce a scaled time T' = tiE, and 
then the convective derivative is written 

d 1 a 
-=--+O·V. 
ds EV aT' 

(59) 

We now assume that in the initial layer a I aT' = O( 1 ), and we 
further assume that the spatial variation ofy is O( 1) so that 
o . V in Eq. (59) is 00). Introducing Eq. (59) into Eq. 
(32), the scaled transport equation for X in the initial layer 
(away from the boundary layer) is given by 

M-l(~~+O.V) MX; + AUX; +~ALX; 
~ aT' E 

= _1_(M- 1:IsMU1); + ~M-l:IsML1);) + M-1Q. 
41T E 

(60) 

Here we have subscripted both X and 1) with an "i" to em
phasize that Eq. (60) holds in the initial layer. 

To lowest order in E, it is clear from Eq. (60) that we 
have, with an error of O(E), 

~ M- 1 a(MX;) + AL . = _1_ M-1:I ML. (61) 
a X, 4 s 1), . 

V T' 1T 

We can remove M from under the a I aT' operator in Eq. (61) 
since aMI at has consistently been assumed to be O( 1 ), and 
hence aMI aT' is O( E). That is, in the initial layer analysis, we 
properly treat all properties of the ith fluid, namely U;, us;, 
and the A.u' as time independent, equal to their values at 
t = O. Then left-multiplication of Eq. (61) by U gives 

~ a(UX;) = _1_ UM-1:I ML . (62) 
a 4 

s 1), . 
V T' 1T 

From Eqs. (15) and (58), we deduce that the initial condi
tion on Eq. (62) is 

UX;(O) = UM-1y. (63) 

To deal with the right-hand side ofEq. (62), we return to 
Eq. (61) and left-multiply by L. This yields a closed set of 
equations for LX; given by 

~ a(LX;) +AL . =_I_ LM - 1:I ML . 
a X, 4 s 1), , 

V T' 1T 
(64) 

and integration over all solid angle gives 

~ a(L1);) + H(L .) =0 
a 1)" v T' 

(65) 

where the matrix H is given by Eq. (46). The initial condi
tion on Eq. (65) again follows from Eqs. (15) and (58) as 
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L'I'Ii(O) = LM- 1yo, 

where 

(66) 

Yo = i dO. yen) . 
417" 

(67) 

Since the matrix H is nonsingular, we can apply H -1 to Eq. 
(65). Using the result for L'I'Ii in Eq. (62) gives 

~(U .) = - _1_~(UM-ll: MH- 1L .). (68) 
ar X, 41T ar • 'I'l, 

Integration of Eq. (68) over 0<; r < 00, using Eq. (63) for 
UXi (0), and recognizing that L'I'Ii vanishes as r increases 
without bound [see Eqs. (65) and (66)], we find that 
UXi ( 00 ) is given by 

UX;( 00) = UM- 1y + _1_UM-ll:.MH-IL'I'Ii(O) . 
41T 

(69) 

This large time initial layer result must match with the small 
time interior solution, and this asymptotic matching require
ment gives the initial conditions on the reduced set of (interi
or) equations derived in the last section. These conditions 
are, using Eq. (66) for L'I'Ii (0), 

UX(O) = UM- 1y + (l/41T)UM- 1l:.MH- ILM- 1yo' (70) 

Finally, using Eq. (15) which relates X to '11, we find the 
proper initial conditions on the reduced set of equations giv
en by Eq. (55). Recalling that our analysis here is to lowest 
order in E, we have 

UM- I'I1(r,n,O) 

= UM-1y(r,n) + _1_ UM- 1l:.MH- 1LM- 1Yo(r) 
41T 

+ O(E) , (71) 

where all elements of the various matrices in Eq. (71) are to 
be evaluated at t = O. 

We note several items concerning Eq. (71). First, these 
initial conditions contain an error of O(E), which is consis
tent with the error in the differential equations to which they 
apply [see Eq. (55)]. Second, these initial conditions apply 
at each spatial point r; the variable r is simply a parameter in 
Eq. (71). Third, the original initial data y(r,n) is explicitly 
contained in Eq. (71), but so is yo(r), the angular integral of 
y (r ,0. ). The appearance of Yo is to be expected since Qo, the 
angular integral of the external source Q, is contained in the 
reduced equations [see Eq. (55) ], and an initial condition is 
equivalent to a delta function in time source at t = O. We see, 
however, that the relatively complex terms involving Yo in 
Eq. (71) and Qo in Eq. (55) both vanish for a purely absorb
ing (a.i = 0) problem. Last, we note that Eq. (71) was de
rived by an asymptotic matching of UXi ( 00 ) to Ux (0). We 
should also ensure that LXi ( 00 ) matches to LX (0). This is 
easily seen to be the case. Equation (65) predicts that L'I'Ii 
decays exponentially with T, and from Eq. (64) we then 
deduce that LXi also decays exponentially with r, approach
ing zero as r increases without bound. This indeed matches 
with the small time interior solution for LX which is identi
cally zero [see Eq. (51)]. 

We now take up the boundary conditions on Eq. (55). 
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We take the boundary conditions on the full set of equations 
to be 

'I1(r.,n,t) = r(r.,n,t), 0·0. > 0, (72) 

where r describes the known incoming angular flux, and 0 is 
a local unit inward normal vector at a surface point r •. In the 
boundary layer (r near r.) we expect a rapid spatial vari
ation of '11 in a direction normal to the surface. If we intro
duce a local inward-pointing normal coordinate z, with 
Z = Ocorrespondingtor = r.,andfurtherintroduceascaled 
variable r = Z/E, the convective derivative is written 

~=..!..~+E..~+ (n·V) , (73) 
ds vat Ear P 

where J.L = 0 • 0. and (0. • V) p denotes the streaming opera
tor in the plane perpendicular to z. We assume that in the 
boundary layer a / ar = O( 1 ). We further assume that the 
temporal and spatial variations ofr along the surface as well 
as the local radius of curvature of the surface are O( 1 ). Then 
the time derivative and the perpendicular spatial gradient in 
Eq. (73) are O( 1 ). Thus if we introduce Eq. (73) into Eq. 
(32), the scaled transport equation in the boundary layer 
(away from the initial layer) is given by 

M- I [ 1 a J.L a ] -; at + -;- ar + (0.. V)p MXb 

1 
+ AUXb + - ALXb 

E 

= M-IQ + _1_ (M-Il:.MU'I'Ib +..!.. M-Il:.ML'I'Ib)' 
41T E 

(74) 

Here we have subscripted both X and '1'1 with a" b " to empha
size that Eq. (74) holds in the boundary layer. 

To lowest order in E, Eq. (74) yields the equation, with 
an error OfO(E), 

M- 1 a(MXb) +AL =_I_ M- Il: ML (75) 
J.L ar Xb 41T • 'I'Ib' 

From this point on, the analysis closely parallels the initial 
layer analysis and we omit the algebraic details. We obtain as 
the boundary conditions on Eq. (55) 

(o·n)UM- I'I1(r.,n,t) 

= (0· n)UM-Inr.,n,t) 

+ (I/41T)UM- Il:.MH- 1LF(r.,t) 

+O(E), 0·0.>0. (76) 

The various matrices in Eq. (76) are to be evaluated at the 
surface point r. in question. Here the vector LF(r,t), which 
physically is a vector of particle currents, is defined by an 
angular integration according to 

(77) 

The vector LX ( r,n,t) satisfies the canonical half-space 
"multigroup" albedo equation given by 

(78) 
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with boundary conditions 

LXb(O,O,t) = LM-1r(rs,0,t), 0 0 0>0, (79) 

LXb (00,0,t) < 00 . (80) 

In the initial layer analysis, the equation analogous to Eq. 
(78), namely Eq. (64), could be solved explicitly and simply 
[see Eqs. (65)-(67)] for the required i = 0 term, Ll1i (0), 
in Eq. (69). Such simplicity is not the case here. In principle, 
but with algebraic complexity, Eqs. (78 )-( 80) can be solved 
via a Wiener-Hopf analysis, a singular eigenfunction tech
nique,19 or by employing invariance methods.20 Then 
F(rs,t), needed in the boundary conditions given by Eq. 
(76), follows from Eq. (77) evaluated at r = rs' For one 
thick fluid (M - N = 1), Eqs. (78)-(80) become scalar, 
and the solution of these equations is well known and rela
tively simple. 19.20 The surface quantity needed inEq. (76), 
LF(rs,t), is in this case a simple angular integral involving 
the incoming flux rand Chandrasekhar's well-known H 
function. 20 For two thick materials (M - N = 2), theneces
sary analysis ofEqs. (78)-(80) has been given by Siewert.21 

To our knowledge, the solution of Eqs. (78)-(80) for 
M - N> 2 is unavailable in the literature, but in principle 
can be found by one of the three methods alluded to above. 

Finally, we make a few remarks concerning the bound
ary conditions given by Eq. (76) in the same vein as those we 
made for the initial conditions given by Eq. (71). These are: 
( 1) The boundary conditions and the differential equations 
to which they apply are consistent in that both are in error by 
O(E); (2) the time variable is simply a parameter in these 
boundary conditions; (3) these boundary conditions con
tain an isotropic component, namely LF(rs,t), as is expected 
because of the close correspondence of an incident flux and a 
surface external source; and (4) asymptotic matching of the 
boundary layer and interior solutions for Ux was used to 
derive the boundary conditions, and it is easily verified that 
the boundary layer and interior solutions for LX also match 
as required since both are zero in the matching region. 

IV. A RENORMALIZED TRANSPORT EQUATION 

In this section we consider a special case of our analysis 
corresponding to one thin fluid (N = 1). Then the reduced 
set of equations becomes scalar, and we can write our results 
as a renormalized transport equation. That is, we obtain an 
equation for (t/J), the ensemble-averaged flux, of the form 
given by Eq. (1), but with effective cross sections and an 
effective external source which account for the statistical 
nature of the problem in this asymptotic limit. 

In this case, the matrix U has only one nonzero element, 
and for any column vector v and square matrix A we have the 
identities 

Uv = Jv l ; UA = B , (81) 

where J is an M-component column vector with all zero 
components except for the first component which is one, VI is 
the first component ofv, and all rows of the matrix B are zero 
except for the first row, which coincides with the first row of 
A. From the second equality in Eq. (81) we see that Eq. (52) 
contains only one nonzero equation. This can be isolated by 
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left-multiplying Eq. (52) by JT. Making use of the first equa
lity in Eq. (81) and J1U = JT, we find 

JTM-I d(MJXI) 
ds +VIXI 

= JTM-IQ + (l/41T)JTM- I:IsMH- ILM- IQo 

+ (1I41T)(JTM- I:IsMH- IJ)vl7J1 + O(E). (82) 

To relate X I to (t/J), the ensemble-averaged flux, we use 

(t/J) = pT'i' = PTMX, (83) 

where P is a column vector with all components one. We 
rewrite Eq. (83) as 

(t/J) = pTM(L + U)X, (84) 

and using Eqs. (51) and (81) we deduce 

(t/J) = (PTMJ)XI + O(E) . (85)' 

Using Eq. (85) for XI in Eq. (82) gives 

(PTMJ)JTM-I.E..[ MJ (t/J)] + vl(t/J) 
ds (pTMJ) 

= (pTMJ)(JTM-IQ) 

+ (l/41T)(PTMJ)(JTM- I:IsMH- ILM- IQo) 

+ (1I41T)(JTM- I:IsMH- IJ)VI (t,b) + O(E). (86) 

Now, by examining the modal matrix M in the case of one 
thin fluid (N = 1), one can deduce 

MJ 
~=---= c + O(E), (87) 
(pTMJ) 

where c is a vector with only one nonzero component. This 
component, whose position is determined by which fluid is 
identified as thin, can be set to one by normalizing, to O(E), 
the eigenvector corresponding to the smallest eigenvalue of 
:I to unit length. Then the term given by the left-hand side of 
Eq. (87) can be taken outside the derivative in Eq. (86), and 
we arrive at the renormalized transport equation 

d ~:) + uelf(t/J) = 0';; (t,b) + Self + O(E) , (88) 

where 

Us,elf = (JTM-I:IsMH-IJ)vl' 

Self = (PTMJ)(JTM-IQ) 

(89) 

(90) 

+ (l/41T)(PTMJ)(JTM- I:IsMH- ILM- IQo) . 

(91) 

We emphasize that v I in Eqs. (89) and (90) is the smallest 
eigenvalue of the matrix :I, and hence this renormalized 
equation possesses the exact deep-in characteristic decay 
length in the absence of sources (scattering and external) of 
the full transport description given by Eq. (4). 

The expressions for us.elf and Self can be written in a 
somewhat more explicit form by considering the eigenvalue 
problem corresponding to the transpose of the matrix:I. We 
denote these eigenvectors by y; the eigenvalues will again be 
v, the eigenvalues defined by Eq. (19). Thus we have the 
eigenvalue problem 

:ITy = vy. (92) 

If the eigenvectors x and y are normalized such that 
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yTX= 1, (93) 

it is well known that the matrix M*, the modal matrix corre
sponding to ~ T (the columns of M* are the eigenvectors y), 
is related to the modal matrix M by 

M-I=(M*)T. 

Then Eqs. (90) and (91) can be rewritten as 

( y~sMH-IM-IXI)VI 
U s.elf = 

(94) 

(95) 

(96) 

where XI and YI are the eigenvectors ofEqs. (19) and (92) 
corresponding to the smallest eigenvalue VI' 

The initial and boundary conditions for the renormal
ized transport equation given by Eq. (88) follow by similar 
manipulations ofEqs. (71) and (76) as 

(",(r,fl,O) ) 

and 

(pTXI ) [yiy(r,fl)] 

(yixl) 

+ _1_ [(PTXI ) [Yi~sMH-ILM-IYo(r)] ] 
41T (yixI) 

+ O(E) , (97) 

(0 ° fl) (",(rs,fl,t» 

[ 
(PTXI) [y[r(rs,fl,t)] ] = (no fl) 

(yixl ) 

+ _1_ [(PTXI ) [Yi~sMH-ILF(rs,t)]] 
41T (yixI) 

+O(E), oofl>O. (98) 

Unfortunately, in this asymptotic limit of a single thin fluid 
(N = 1) which leads, as we have seen, to a scalar transport 
description, one must solve a matrix canonical transport 
problem defined by Eqs. (78) through (80) to obtain the 
vector F needed in Eq. (98) to specify the boundary condi
tions. This matrix transport problem is, on one hand, cpm
plex in that it involves M - 1 coupled transport equations. 
On the other hand, it is simple in the sense that it is a time
independent, source-free halfspace problem whose coeffi
cients (u;. Us;. and As;) are spatially independent. 

To make contact with earlier work,15 we consider the 
renormalized transport equation just derived in the simplest 
case ofa binary mixture (M = 2). In this case we have only 
two Markov transition probabilities and we simplify the no
tation somewhat by setting AJ2 = Al and A21 = A2• Then the 
eigenvalues satisfy [see Eq. (20)] 

v - (UI + u2 + ~ +~) V + (UIU 2 + ~2 + ~I) = 0 . 
Al A2 /1.1 2 

(99) 

Since U eff is the smallest eigenvalue [see Eq. (89)], we have 
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- 4 U IU2 +.2 + -1 . ( U U )]112 
Al A2 

(100) 

An asymptotically equivalent expression for U elf can be 
found by neglecting the v term in Eq. (99) when searching 
for the O( 1) eigenvalue since this term is O( E) compared to 
the other terms in Eq. (99). This gives 

(101) 

Neither of these two expressions for U elf agree with the result 
reported earlierl5 for a binary mixture. This earlier result is 
(for homogeneous statistics) 

(UI U 2 + u2/A I + u 1/A2 ) 

U
eff = [(A lu2 +A2u l )/(AI +A2 ) + l/AI + l/A2 ] 

(102) 

We see that all three expressions for U elf are symmetric in the 
indices, so that one does not need to specify which fluid is 
thin. However, we also see that all three expressions are dif
ferent. Nevertheless, they are all asymptotically equivalent 
as they must be. That is, if we explicitly identify one of the 
two fluids, say fluid 1, as thin, all three expressions for U eff 
yield the common result 

U If (1 thin) = ulA I + U~2 + ulu~IA2 + O(E) . (103) 
e Al (1 + U~2) 

In general, Eq. (100) is to be preferred over Eqs. (101) and 
(102) in that it is most robust; it gives the exact deep-in 
decay length, as discussed earlier, no matter how far the 
physical problem is from the asymptotic limit under consi
deration. 

To compute the effective scattering cross section and 
external source as given by Eqs. (95) and (96), we need to 
find the eigenvectors X; and y;, i = 1,2, according to Eqs. 
( 19) and (92), construct M and M - I, and perform the ma
trix multiplications indicated in Eqs. (95) and (96). The 
resulting expressions for us.eff and Seff are algebraically com
plex and will not be given here. We point out, however, that 
the earlier expressions reported for us,eff and Seff (see Ref. 
15) differ from the expressions that result from Eqs. (95) 
and (96). However, these two sets of expressions, both of 
which are invariant under the interchange of fluid indices, 
are asymptotically equivalent. If we identify fluid 1 as the 
thin fluid and define U a; = U; - Us;. both sets of expressions 
predict 

U s.eff (1 thin) 

usI A I (1 + ua2 A2 ) + uszA2/(1 + U~2) 
= 

Al (1 + ua2 A2 ) 
+ O(E) 

(104) 

and 

Self (1 thin) 

= PISI (fl) + pzS2(fl)/( 1 + U~2) 

+ U
s2A

2P2 i dfl'S2(fl') 
417'( 1 + U~2) (1 + Ua2 A2 ) 417" 

+O(E). (105) 
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Thus the situation for us,elf and Self is the same as for Uelf' 

Different asymptotic treatments yield algebraically different 
results, but these different results are all asymptotically 
equivalent, differing from each other by D(E). 
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The relativistic evolution of a system of particles in the proper-time Schwinger-DeWitt 
formalism is investigated. For a class of interactions that can be represented as Fourier 
transforms of bounded complex matrix-valued measures, a Dyson series representation ofthe 
propagator is obtained. This class of interactions is non-Abelian and includes both external 
electromagnetic and Yang-Mills fields. The study of the relativistic problem is facilitated by 
embedding the original quantum evolution into a larger class of evolution problems that result 
if one makes an analytic continuation of the metric tensor glJ.'" This continuation is chosen so 
that the extended propagator shares (for all signatures of glJ.") the Gaussian decay properties 
typical of heat kernels. Estimates of the nth-order Dyson iterate kernels are found that ensure 
the absolute convergence of the perturbation series. In this fashion a number of analytic and 
smoothness properties of the propagator are determined. In particular, it is demonstrated that 
the convergent Dyson series representation constructs a fundamental solution of the equations 
of motion. 

I. INTRODUCTION 

A Hamiltonian suitable for relativistic quantum evolu
tion of a finite number of particles interacting via non-Abe
lian fields is 

H(x,r) = (l/2m)glJ."{pI' - aiL (x,r»(p" - a"(x,r» 

+ v(x,r) . (1.1) 

Here r is to be identified with the proper time, XERd is a 
generic d-dimensional point that describes the space-time 
coordinates of the system, and m is a mass parameter. The 
metric tensor glJ.v is assumed to be the x, r independent diag
onal matrix appropriate for special relativity. Summation 
with respect to the repeated Lorentz indices JL or v is always 
implied. Let x = (x·,x2

, ••• ,X
d

) be the contravariant represen
tation of x. Then the differential operator [I' = - ift a laxlJ. 
denotes the momentum conjugate to xI' = glJ."x". For one
body problems, alJ. and v will generally be functions of all the 
components of x. In an N-body application, the components 
of alJ. and v associated with a given particle will depend on 
just the variables in Rd that describe the space-time location 
of that particle. 

The internal degrees offreedom in this problem are car
ried by the vector space CS

• For example, if the system has N 
particles and if the ith particle has spin or isospin n;, then the 
dimension of CS is 

N 

S = L (2n; + 1) . ( 1.2) 
;=. 

The associated quantum states f/J( r) are elements of the Hil
bert space 'y2(Rd,CS). For each possible x, r, andJL the val
ues of the external field alJ.(x,r) and interparticle field 
vex, r) are bounded (noncommuting) linear operators on 
the space CS

• In many applications·,2 alJ.(x, r) are Hermitian 
operators defined by a sum of SU (n) matrices. In this latter 
case the parts of alJ.(x, r) proportional to the identity 1 (on 
CS) describe the electromagnetic field potentials while the 

remaining elements of the sum define Yang-Mills interac
tions. 

The equation of motion for the propagator K is the 
Schwinger-DeWitt proper-time realization3

-
S of the Schro

dinger equation, 

iii ~ K(x,r,y,ro) = H(x,r)K(x,r,y,ro) , 
ar 

( 1.3a) 

together with the delta-function initial condition at the time 
ro, 

lim K(x,r,y,ro) = c5(x - y)1 . ( 1.3b) 
T-To + 

For a class of analytic vector and scalar fields alJ. and v de
fined as Fourier transforms of r-dependent measures, the 
principal goal of this paper is to obtain explicit solutions of 
the proper-time Schrooinger initial-value problem (1.3a) 
and (1.3b). These solutions of ( 1.3 a ) will take the form of a 
convergent kernel-valued Dyson6 series. This investigation 
establishes many of the analytic properties of the propagator 
K in the variables x, y, r, ro and in the physical parameters of 
interest-the mass m and Planck's constant Ii. 

The subsequent analysis in this paper will interpret 
( 1.3a) as an s-component system of classical partial differen
tial equations (PDE's) and find its fundamental solution 
K(x, r;y, To) via a pointwise convergent infinite series. 
However, much of the motivation for our treatment stems 
from the abstract 'y2 (Rd

, CS
) analog to the PDE (1.3a). 

Specifically, let the pair H ( r) and H 0 denote the closed oper
ators on 'y2 (Rd, CS

) defined, respectively, by H(x, r) and 
its field-free (alJ. = v = 0) restriction. As a consequence the 
perturbing operator W( r), connecting H( r) to Ho, is for
mally defined by 

H(r) =Ho+ W(r). ( 1.4a) 

Acting on sufficiently smooth 'y2 (Rd, CS
) functions, W( r) 
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becomes 

WeT) = - (l!m)ap(',T)pp 

- (1!2m) [(ppap)(',T) -ap(',T)ap(',T)] 

+ v( ',T) • (l.4b) 

The first term on the right side of ( l.4b) is a linear differen
tial operator while the remaining factors are a multiplication 
operator. 

The ,Y2(Rd
, CS)-space evolution problem7 is to deter

mine the solution tP( T) satisfying 

ifz ~ tP( T) = H( T)tP( T) , (1.Sa) 
dT 

( I.Sb) 

where tPo is some initial data function lying in the domain of 
H(To)· 

The evolution operator U( T,To) associated with the 
problem ( 1. Sa) and ( l.5b) is the linear operator mapping tPo 
to tP( T), i.e., 

tP(T) = U(T,To)tPo' (1.6a) 

The statement that the operator U( T, To) is an integral opera
tor whose kernel is the propagator K provides the bridge 
between the operator and the pointwise description of the 
evolution problem, namely, 

(U( T,To)tPo)(X) = J K(X,T;y,To)tPo(y)dy. (1.6b) 

The familiar Dyson expansion8-JO for U( T, To) is a conse
quence of attempting to solve the integral equation equiva
lent to (1.Sa) and (1.Sb) by iteration. The resulting formal 
series for U( T,To) then reads 

00 

U( T,To) = 2: Dn (T,To) , (1.7a) 
n=O 

where the nth Dyson iterate is 

Dn (T,To) = c~r { dTn Uo( T,Tn ) 

X W(Tn) UO(Tn,Tn_ l ) X··· X W( TI ) Uo( TI,To)' 
(1.7b) 

Here Uo( T,To) is the evolution operator for the free Hamilto
nian Ho. The variable Tn is (TI, T2, ... ,Tn ) and the integral 
subscript < denotes the n-dimensional time-ordered do
main To<TI<" ·<Tn<T. 

One aspect of our method for investigating the solutions 
of ( l.3a) and (1.3b) is to embed the original problem in a 
larger family of evolution problems that results if one makes 
an analytic continuation of the metric tensor g. In this way 
the original problem may be viewed as the boundary value of 
this enlarged class of solutions. The complex-valued ex
tended metric tensor and the related scalar products are de
fined as follows. The diagonal matrixg has eigenvalues {ep } 

that are restricted to be either + 1 or - 1. Let u + and u _ 
represent the number of positive and negative eigenvalues, 
respectively. The signature of g is then u + - U _. The real 
parameter - 00 < E < 00 will identify the extended matrix 
g( E) and the value E = 0 will specify the original metric ten
sor, i.e.,gpv(O) = gpv' Thed Xdmatrixg(E) is diagonal and 
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is obtained from g by replacing all the positive eigenvalues 
(diagonal entries) of g by (1 - iE)/( 1 + iE) and the nega
tive eigenvalues by - (1 + iE)/( 1 - iE). A notable advan
tage of this parametrization of the extended problem is that 
geE) is a unitary transformation satisfying 

g(E)-1 =g(E)t =g( - E) , (1.8) 

where t represents the adjoint on the space Cd. 
A convenient notation for the scalar product of two Cd

_ 

valued vectors v and w is 

(v,w) = gpyifwY . (1.9a) 

If v and w are real vectors, then ( 1. 9a) is the usual indefinite 
scalar product associated withg; if u _ = 1 and u + = 3, then 
(1.9a) is the Lorentz scalar product in Minkowski space
time. For geE) we define a symmetric bilinear product 

(v,w)€ = gpv(E)ifwV 
• (1.9b) 

This extended scalar product has an E-independent estimate 

( 1.9c) 

where 1'1 is the Euclidean distance norm on Cd. Conclusion 
(1.9c) follows from thefactthatg(E) is unitary. Asareason
able abuse of notation, we shall refer to g( E) as an extended 
metric tensor in spite of the fact that for E#O, geE) is non
Hermitian. 

The E-extended problem is defined when gpv in the 
Hamiltonian ( 1.1 ) is replaced by gpv (E). The corresponding 
modified Hamiltonian is the differential operator 

H(X,T;E) = (l/2m)(p-a(x,T),p-a(x,T»€ +V(X,T). 
( 1.10) 

In order to understand the motivation for introducing the 
particular extension of the metric tensor described above it 
suffices to examine the analytic form of the free propagator 
in the variable E. The free evolution kernel is the solution of 

iii ~ Ko(x,r,y,To;E) aT 
fz2 a a 

--gpv(E)--Ko(x,r,y,To;E) , 
2m, ax!-' axv 

( 1.11) 

which satisfies the initial condition ( l.3b). The explicit solu
tion reads 

KO(X,T;Y,TO;E) 

=N[detg( _E)]I/2 

xexp{[imI2fz(T - To)] (x - y,x - y) _€}I 
( 1.12) 

where the normalization factor is N = (ml 
[217HZ( T - To)] )d 12. Writing 

(x - y,x - y)-E 

1 - c ( ). 2E I 12 = 1 + c x - y,x - y + I 1 + c x - y , 

( 1.13) 

it is seen that for forward evolution T> To with E> 0 the func
tionKohas Gaussian decay with respect to Ix - yl. Of course 
as E-+O +, Ko becomes the Lorentz invariant scalar that 
defines the interaction-free relativistic propagator. The pres
ence of Gaussian decay in the propagators mimics what hap-
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pens in the heat equation. II ,12 This decay property means 
that the kernels Ko and K define bounded operators on the 
spaces ,YP(Rd

, C'), I <p< 00, whenever €> O. Knowledge of 
the continuity properties of the kernels K(x,r,y,1'o;€) in the 
variable € has, in similar circumstances with 0'+ = d, al
lowed one to provel2

,13 that the € -+0 + limit of this function 
is the correct integral kernel for the evolution operator 
U( 1',1'0) and, in particular, that the representation (1.6b) is 
valid. 

In framing the mathematical definition of the evolution 
problem we have sought the widest generality consistent 
with our method of solution. For example, we allow al' (x, 1') 
to be an arbitrary bounded linear operator on C' rather than 
the Hermitian operators they usually are in applications. 
This serves to illustrate that our method does not require 
that H(x, 1') define, via extension on ,Y2(]Rd, C'), a self
adjoint operator H( 1'). Similarly, metric tensors with any 
signature are permitted. The differential operator H(x, 1') is 
always second order but its type changes as 0'_ varies. For 
0'_ = 0 (or d), it is elliptic and suitable for nonrelativistic 
quantum mechanics; if 0'_ = 1 (or d - 1), it is hyperbolic 
and describes Minkowski space-time; and finally if 0'_;>2 

(or <d - 2), it is ultrahyperbolic. This latter class of differ
ential operator enters the relativistic theoriesl4-17 of Hor
witz, Piron, and others if there are two or more particles. 
Our constructive solution is successful for all 0'_, In the 
cases where 0' ± differ from the Minkowski values, the Lor
entz transformation is understood in the generalized sense of 
a representation of the de Sitter group SO ( 0' +' 0'_) of trans
formations of]Rd which leave the product (x, x) invariant. 

In applications linked to the Klein-Gordon equation 
the parameter m equals 1 and the physical mass of the sys
tem, me2

, enters as a part of the scalar potential vex, 1'). 
Problems in which the constituents have different mass val
ues can easily be accommodated in our formalism by a suit
able scaling of the space-time coordinates of the various par
ticles. 18 We keep the value of m as an explicit variable in our 
representations since the analytic scaling in m provides one 
method of derivation for the derivative field approxima
tions l9,20 to this system. 

A Dyson series analysis similar to the one developed 
here was used to treat the scalar wave function (s = 1) prob
lem for nonrelativistic Hamiltonians.9 The new results 
found in this paper extend this constructive series method to 
include relativistic dynamics as well as non-Abelian interac
tions. One major difference in emphasis between the ap
proach taken here and that found in Ref. 9 is the use of the 
abstract evolution theory. In Ref. 9 the theory oflinear dif
ferential equations in Banach space7 was used in parallel 
with the Dyson series method. The present set of results uses 
only a coordinate space kernel valued Dyson series descrip
tion. The optimal union, in the relativistic context, of the 
abstract evolution theory and the pointwise characterization 
of the propagator given here will be the subject of further 
study. 

In Sec. II the class of Fourier image interactions that 
serve to define the Hamiltonian H(x, 1'; €) is described. In 
Sec. III the formulas that construct the nth Dyson iterate 
kernel are derived. In Sec. IV the convergence properties of 
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the sum over n of the Dyson kernels is established and it is 
proved that the resultant kernel is a fundamental solution of 
the proper-time Schrooinger equation. In Sec. V our results 
are summarized for wave functions and it is verified that we 
have constructed a solution of the partial differential equa
tion corresponding to (1. 5a) and (1.5b). 

II. ANALYTIC FIELDS AND MEASURES 

The family of potential fields that define the Hamilto
nians (1.1) and (1.10) are taken to be Fourier images of 
bounded measures. Specifically, a = (ai, a2

, ... ,ad
) and v are 

assumed to have the general form 

a(x,1') = f ei(x,a) dr(a,1') , (2.1 ) 

v(x,1') = f ei(x,a) dv(a,1') . (2.2) 

In the integrals (2.1) and (2.2) the quantity a denotes the 
(wave vector) variable of integration that runs over the do
main ]Rd. The evolution variable 1'is assumed to take its val
ues in the fixed time segment [0, T]. It is common to refer to 
a as a vector potential and vas a scalar potential. Of course, a 
and v determine, respectively, a vector in Cd and a scalar in C 
only after the expectation values with respect to a particular 
quantum state t/1E,Y2(Rd, C') have been computed. Similar 
potentials have been described in detail in Refs. 9 and 21; 
thus we give only enough detail to define these potentials 
fully and indicate some of the new structural features not 
found in these prior works. 

The norm sign 1'1 is employed with several meanings. In 
the case where its argument is in C, it denotes the absolute 
value; if its argument is a d-component multi-index 
tP= (tPI,tP2, .. ·,tPd),thenitisthesumltPl =tPl + ... +tPd;if 
its argument is a matrix AECnx m, then it implies the Euclid-
ean norm 

n m 

IA 12= L L IAijI2; (2.3) 
i= Ij= \ 

and finally, if the argument is a measure, then it denotes the 
corresponding total variation measure. The appropriate 
meaning will follow from the context. For example, if 
n = m = s, then (2.3) is the norm we systematically use to 
estimate the values of the various kernels such as Ko and K. 

Note that the identity matrix has a norm equal to.[s. 
Let (C'xs), denote the space of r-tuples ofsXs matrices 

over the field C. In the present circumstances r is d for the 
vector potential a and it is I for the scalar potential v. Let the 
quantity p be an arbitrary element of the Banach space 
..4'(Rd, (csx ')1 of (CSxs),-valued Borel measures on Rd 
having finite total variation norm. On ..4'(Rd, (CSxs>1 the 
norm of p is defined via its associated total variation measure 
Ip I· Let f!g represent the Borel measurable sets on Rd. Label 
the countable partitions of eEf!g by 11" = {eJi= \. Then 

00 

Ipl (e) = sup L Ip(ei ) I . 
1T ;= 1 

(2.4a) 

The norm that makes the space ..4' (Rd, (CSX S) 1 into a Ban-
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ach space is 

I!PII = Ipi (Rd
) < 00 • (2Ab) 

We frequently use the polar decomposition of the measure p 
relative to the positive scalar measure Ipl. This decomposi
tion asserts (cf. Ref. 21, Lemma 1; Ref. 22, Theorem 6.12) 
that there is a Borel measurable function p: Rd -+ (CSX S) " 

with Euclidean norm Ip(a) 1= 1, for all aeRd, such that 

i dp(a) = iP(a)d Ip(a) I, ee~. (2.5) 

Let Sk C Rd be a closed ball of radius k> ° and centered 
at the origin. The Banach subspace of 1(Rd

, (CS x s>1 con
sisting of those measures whose support is contained in Skis 
denoted by 1(Sk' (CSXS)1. Next we consider measures 
suitable for the transforms (2.1) and (2.2). These are con
tinuous one-variable functions on the time interval [0, T] 
whose values are measures, namely, 

(2.6) 

With these definitions in place we state the hypotheses 
on the fields a and v that will be used throughout the remain
der of the paper. Since these potential field hypotheses are 
always assumed they will not be cited as part of the ensuing 
lemmas and propositions. 

Potential Class (A): Let k < 00. The potentials a and v 
are said to be in class (A) if a and v are the Fourier images, 
Eqs. (2.1) and (2.2), of the time-dependent measures r( r) 
and v( r) satisfying 

(1) r(r)e1(SkI2,(CSXS)1, 1'E[0, T]; 
(2) v(r)e1(Sk'CSXS), 1'E[0, T]; 
(3) both r(') and v(·) are continuous on [0, T]. 
A simple but important fact is that the space 

1(Sk' CSXS)1 is invariant with respect to multiplication by 
the extended metric tensor. If r( r) is in 1(Sk' (CS XS)1, 
then the d-tuple {g/lV (E) rV ( r)}~ = 1 is a measure in 
1(Sk' (CSXS)1. Further, observe that hypothesis (A) im
plies that a(', r) and v(', r) are, respectively, (CSxs)d_ and 
CSxs-valued analytic functions of x. In earlier related 
work,9.12,21 it was always assumed that a and v were either 
real-valued or Hermitian. 

Expanding the Hamiltonian H(x, r, E) leads to cross 
terms of the type 

(p,a(x,r»" = g/lV (E)pI'aV(x,r) , (2.7) 

(a(x,r),a(x,r»" = g/lV (E)a/l(x,r)aV(x,r) . (2.8) 

Expressions for the functions (2.7) and (2.8) in terms of the 
measures r( r) and v( r) are repeatedly used in the subse
quent construction of the Dyson kernels. Consider (2.7) 
first. The definition (1.9b) of ( ',' ) E' the polar factorization 
(2.5), and the properties of class (A) imply 

(p,a(x,r»" = f (Iia,y(a,r» "ei(x,a) d Irl (a,r) . (2.9) 

Next examine (2.8). The right side of this expression is 
structurally similar to vex, r) and so it is helpful to know the 
associated measure occurring in the Fourier description of 
this function. This is given by the following convolution 
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measure: 

(2. lOa) 

where (r(r)*r(r»" is the measure in1(Sk' CSXS ) defined 
by 

(r(r)*r(r»,,(e) = J Xe(a + a') (y(a,r),y(a',r»" 

xd(lr(r)IXlr(r)I). (2. lOb) 

In this latter integral I r( r) I X I r( r) I is the two-dimensional 
product measure onSk12 XSkl2 having the variable (a, a'). 
The function X e is the characteristic function for the Borel 
set e. The convolution operation in (2. lOb) has the effect of 
enlarging the domain of support of the resultant measure. 
Provided that the support of r( r) is within Sk /2, the support 
of (r( r) *r( r) )" lies within S k' This behavior is our reason 
for requiring the measure spaces to have the support restric
tionsstated in conditions (1) and (2) of the class (A). Also, 
formulas (2.lOa) and (2.lOb) show that the process of 
choosing E:;60 leads to an E dependence in the measure 
(r(r)*r(r»" but leaves unchanged the Lorentz invariant 
phase factor ei(x,a). 

Finally it is convenient to define a measure IL (r) that 
constructs the p-independent part of the Hamiltonian 
H(x, r; E). Upon setting 

IL(r) = (l/2m) (r(r)*r(r»" + v(r) , (2.118) 

it follows that 

_1_(a(x,r),a(x,r»" + v(x,r) = J ei(x,a) dIL(a,r) . 
2m 

(2.11b) 

In the study of the convergence properties of the Dyson 
series, r-uniform bounds of the vector and scalar potentials 
playa key role. For potentials in class (A) property (3) 
implies that IIr(') II and Ilv(') II are real continuous func
tions on [0, T]. Thus one may define the finite bounds 

rT = sup Ilr( r) II, V T = sup IIv( r) II . 
.,.;;[O,T] .,.;;[O,T] 

(2.12) 

The quantities rT and V T provide [cf. the representations 
(2.1) and (2.2)] the uniform pointwise bounds 

la(x,r) I <rT' Iv(x,r) I <vT , (2.13) 

for all (x,r)eRdx [0, T]. Furthermore, definition (2.11a) 
means that IIIL ( r) II has the bound 

IIIL(r)II«yTI2m) + vT=ILT' . (2.14) 

Observe that rT' Vn and ILT are E independent. 
The utilization of potentials whose Fourier images are 

measures for the study of dynamics has a long history. Their 
first use dates back to Ito's early work23 on the Feynman 
path integral. Further extensive use of these potentials in 
more recent studies of the path integral may be found in 
Albeverio and H0egh-Krohn24 as well as Cameron and Stor
vick.25 These potentials have played a central role9,12,21 in 
the study of the summability of Dyson series in various non
relativistic problems. Of course, it is to be appreciated that 
the convergence properties of the Dyson series found in this 
paper are specific to the class of Fourier image potentials of 
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class (A). For potentials that are not analytic or have un
bounded values, the Dyson series is typicallylo an asympto
tic rather than a convergent series. 

III. DYSON KERNELS 

This section contains an explicit computation of the for
mulas that characterize the integral kernels of the nth Dyson 
iterate Dn ('T, 'To; E) that arise in the evolution generated by 
H(x, 'T; E). Let Q = (x, r, y, 'To) denote the pair of final and 
initial space-time points. The kernel d n (Q; E) constructs 
Dn ('T, 'To; E) via 

[Dn('T,'TO;E)tPO] (x) = J dn(Q;E)tPo(y)dy. (3.1) 

The representations found below completely determine the 
geometrical and analytical character of dn (Q; E). The com
putation is implemented by obtaining a mixed coordinate
momentum space representation for the operator 
Dn ('T, 'To; E) and then Fourier transforming this mixed form 
to find dn (Q; E). This kernel calculation is described infor
mally, although it is not too difficult to recast the analysis in 
a mathematically rigorous fashion.9, 12,21 We proceed in this 
way since the subsequent treatment of the Dyson series in 
Secs. IV and V will require only the formulas for d n (Q; E) 
and is insensitive to the method used to find them. Neverthe
less it is important to understand where the representations 
of dn (Q; E) come from and why they are correct. 

As a first calculation we determine the mixed coordi
nate-momentum space kernels of Do( 'T, 'To; E) and 
Dl ('T, 'To; E). The operator Do( 'T, 'To; E) is, in fact, the free 
evolution operator 

Uo( 'T,'To;E) = exp{ - i( 'T - 'To)Ho(E)/Ii} . 

The Ho(E) evolution of a plane wave state is given by the 
generalized-function identity 

exp{ - [i( 'T - 'To)/Ii]Ho(E)} exp U(x,a» 

= exp { - [ili( 'T - 'To)/2m](a,a) € + i(x,a)}. (3.2) 

Note that the phase argument of the exponential on the 
right-hand side of (3.2) contains both the g(E) and g(O) 

scalar products. This mixture of scalar product types is a 
common feature of the representations of dn • Let tPo be a 
suitably smooth 2'2(Rd

, CS) test function and suppose ~o is 

its Fourier transform, having the same normalization as 
(2.1), i.e., 

tPo(x) = f ei(x,a)~o(a)da. (3.3) 

Identity (3.2) implies 

[Do( 'T,'To;€)tPo] (x) == [Uo( 'T,'To;€)tPo] (x) 

= f exp{- [ili('T-'To)/2m] 

X (ao,ao) € + i(x,ao)}~o(ao)dao . 
(3.4a) 

The mixed kernel of the zeroth Dyson iterate is that function 
do which satisfies 

[Do('T,'To;E)tPo](X) = f do(x,r,ao,'To;E)~o(ao)dao. 
(3.4b) 

Comparing Eqs. (3.4a) and (3.4b) we see that 

do (x,r,ao,'To;E) 

= exp{ - [m('T- 'To)/2m](ao,ao)€ + i(x,ao)}I. 
(3.4c) 

The first iterate is given by the formula 

[D1 ('T,'To;E)tPo] (x) 

X UO('T1,'To;E)tPo](X). (3.5) 

We proceed by computing the effect of the interaction 
W( roE) on the state (3.4a). Equation (2.11) determines the 
p-independent parts of the operator W( roE) and Eq. (2.9) 
provides the second of the two p-dependent terms of W. The 
firstp-dependent term is - m-1(a(x,'T),p)€ and the effect 
of this momentum operator on the plane wave state is 

(a(x,'T),p)€ei(x,a.,) = (a(x,'T),liao)€ei(x,a.,). (3.6) 

We then combine this with the representation (2.1) for 
a(x,'T) and the resulting expression is of the same form as 
those found in Eqs. (2.9) and (2.11) . Upon defining 

tPl ('T) = W( roE) Uo( 'T,'To;€)tPo, (3.7a) 

one readily finds 

(3.Th) 

For each fixed a o and 'T the object within the square brackets is a measure in the space ...It (S k' csx S). 
ToobtainDI ('T,'To;€)tPo, act with Uo( 'T,'T1;E) on tPl ('T1 ) and follow that by an integration over the variable 'Tl from 'To to'T. If 

the dao integration is done last, the result may be written as a mixed coordinate-momentum space kernel for D 1. Specifically, 
"'-

letting Q = (x,r,ao,'To), one has 

[D1 ('T,'To;E)tPo] (x) = f d1 (Q;E)~o(ao)dao, 
where 
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dl (Q;E) = ! [ dTI f [dJt(al,TI) - ~ (ao + ~ al,r(al,TI») E d Irl (al,TI) ] 

X exp{ - [iIi( T - TI )/2m] (ao + al,ao + al) E - [ili( TI - To)/2m] (ao,ao) E + i(x,ao + a l)}. (3.Sb) 

In obtaining (3.Sb) the operator Uo( T,TI;E) was evaluated by again employing (3.2) with a:--+ao + a l and T - TO--+T - TI' 
FOrE> 0, the exponential function [cf. (1.13)] is a decaying Gaussian as laol--+ 00. This means thattheintegration in (3.8a) 
is absolutely convergent for a wide class of test functions ;Po. 

The nth mixed Dyson kernel is found by repeating the above process n times. The result of this calculation is the multiple 
integral 

d" (Q;E) = ~f dT" f [dJt(a",T,,) -!!. ("i l 

aj + ~a",r(a"'T"») d Irl(a,,'T,,)] 
(iii) < m j= 0 2 E 

x",x[dJt(aVTI)- ~(ao+~ al,r(al,TI»)E dlrl(al,TI)] 

X exp( -..!!!. i (T - TiV j) (ai,aj ) E + i(X, i aj )) . 
2m IJ=O j=O 

(3.9) 

The notation for the indices i,j is iV j = max(iJ). The quadratic momentum factor in the exponential in (3.9) is a conse
quence of the identity 

ito (Ti+1 -Ti)(to aj' ktO ak)E = iJtO (T-TNj)(a/Jaj)o (3.10) 

valid for all times To<TI<'''<Tn<Tn+1 =T. The order of the C'xs-valued measures in (3.9) is important since these 
operators on CS do not generally commute. A A 

The coordinate space kernel dn (Q;E) is obtained as a Fourier transform of dn (Q;E), namely, 

dn(Q;E) =-I-fdn(x,r,ao,To;E)e-;<Y''''') dao. (3.11) 
(217)d 

Although it is an exercise of some complexity, the dao integration can be done exactly. We sketch this calculation and devise a 
notation to express the result in a convenient form. 

Proceed by extracting all the ao dependence from the exponential in (3.9). Let 

(
iii n .( " )) !t(Q;U",T,,;E) =exp -- L (T-TNj)(ai,aj)E +1 x, L aj , 

2mY=1 j=1 
( 3.12) 

and note that partial derivative ay" (I' = 1, ... ,d), given by 

{ 

~, if gl'P = 1, 
a =~= a)l' 
y".:J... a 

V)'I' _ _ if g = - 1 
a)l' , 1'1' ' 

(3.13) 

acts on the plane wave state as 

(- iay,,)le-i(X-y,a.,) = (ab)le-i(X-y,a.,), 1= 1,2, .... (3.14) 

Using (3.12)-(3.14) we can formally write 

d,,(Q;E) =~f dT" f [dJt(a",Tn) -!!.(iay +al + ... +an_ 1 +~a",r(a"'Tn») dlrl(a",Tn)] 
(iii) < m 2 E 

X .. · X [dJt(al,TI) - ! (i ay + ~ al,r(al,TI») Ed Irl (al,TI) Jrl (Q;Un,Tn;E)J(Q;U",T,,;E) , (3.1Sa) 

where 

J(Q;U",Tn;E) = ~f dao exp( - iIi(T - TO) (aO,aO)E - i!!. i (T - Tj)(aO,aj)E + i(x - y,ao») . 
(217) 2m m j= I 

(3.1Sb) 

The integral J is in the form of a Fresnel integral with a linear (in ao) shifted phase. As such it can be computed in closed form. 
The result is 

J(Q;Un,Tn;E)=N[detg(-E)]1/2exp( im (x-Y,X-Y)_E-i(X- Y, i T-T
j 

aj )) 
21i( T - To) j= I T - To 

(
'Ii n ( T - Ti )( T - Tj) ) 

Xexp ;m iJ~1 T -To (ai,aj)E' (3.16) 
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Here N is the normalization constant found in the free propagator. The integral (3.15b) is absolutely convergent if E > 0 and 
(3.16) shows the function it defines has a well-defined limit as E ..... O, which in turn is a continuous function ofQ, an' and 1'". 

A veryusefulformofdn (Q;E) emerges when theexponentialsinJarecommuted through the; ay derivatives in (3.15b). 
This commutation process changes the structure of the integrand in (3.15a) and introduces a number of new terms. We 
introduce appropriate notations to describe this situation. Denote by: : an ordering operation. If Ai, Bj , C k , etc. are a series 
of operators, then: : is defined as the product of these operators with increasing index value as read from right to left-i.e., if 
j>k>;, then 

(3.17) 

In our applications the indices i,j, k are attached to the time labels T;,Tj,Tk' etc. Since the integral (3.15a) orders the time by 
1'" >1'" _ 1 > ... >1'1>1'0' the effect of: : on its arguments will be to ensure the correct ordering of the noncommuting 
operator-valued measures. An additional useful convention is to let [r] be the greatest integer less than or equal to r. The 
following lemma provides the required identities needed to carry out the commutation process. 

Lemma 1: Let 1]1,1]2, ... ,1]r be a set of r (csXs)d matrices. If zeC and xeCd , then the formula 

z(X,X) _. z(x,x) _. [r/21 r-/ • • 
(1]"ax )E"'(1]I,aX )Ee =e L (2z) L :(x,1]Q'>"'(x,1]Q,_)(1]Q,_21+I,1]Q,_',+2)E"'(1]q,_I,1]q)E: (3.18) 

/=0 q,,1 

is valid. The summation convention for qr,/ is the following. For a given 1 and r. qr,/ represents a two-stage selection from 
{1])i= I into particular subsets. First choose r - 21 elements from {1]);= t and label these with the subscriptsql> q2.· .. 'qr- 2/' 

Next out of the remaining 211]'s form 1 pairs and use the subscripts 1..qr- 2/+ pqr- 2/+ 2} ..... {qr- 1 ,qr} to label these. The 
summation over qr,/ involves all distinct choices of this type. There are r![2/ (r - 2/)111] -I terms in this sum. 

The nonrelativistic version of this algebraic lemma is found in Ref. 9. The combinatorial aspects of the nonrelativistic and 
relativistic formula are identical. A verification that the E indices in (3.18) are correct can be seen from the formulas 

(1],aX) Eez(x,x) -. = 2z( 1],x)ez(x,x) -., 

(1]itax) E (1]j'x) = (1]it1]j) E' 

(3.19a) 

(3.19b) 

In order to complete the calculation of d" one needs to expand the product of measures in (3.15a). We devise a notation 
for these expanded measures. Let n be the order of the Dyson kernel and for each r, O<r<n, define jr to be a set of integers 
jr =.{jIJ2, .. ·Jr} if r> 0 and the empty set ifr = O. LetJ",r denote the set of all subsets of{I, ... ,n} having relements. If r = 0, 
then J",o = {jo} = {0}. There are (~) elementsjr in J".r' To eachjreJ~.r we associate a product measure. First define 

1i(1 /-1 A ) 

dp/ (a/.T/) = d/-L(a/,T/) - - - a/ + L aj.r(a/.T/) d Irl (a/,T/). 
m 2 j=1 E 

together with the associated polar factorization 

dp/ (a/.T/) = p/ (a/,T/)d Ip/I (a/.T/). 

One constructs a positive real-valued measure on (Rt X ... X R:.@ X ... X @) via 

(3.20a) 

(3.20b) 

(3.2Oc) 

Formula (3.2Oc) is to be understood in the following sense. If r = 0, the measure involves only the products of d IPi I. for 
i = 1, ... ,n. On the other hand, ifr>O andjr = {j1, ... Jr}, then thejjth term of the product for the r= 0 case has the measure 
d IPh I (ah,Tj) replaced by the measure d Irl (all,Tj), for each; = l-r. 

The notation above means that the product of measures and differential operators in (3.15a) may be restated as 

: IT [d/-L(a/,T/) - ~ (i ay + a l + ... + a/_ 1 +.!... a/,r(a/,T/») d Irl (a/,T/)] : 
/=1 m 2 E 

= : IT [dP/ (a/,T/) - iii (ay.r(a/,T/» Ed Irl (a/,T/)] : 
/=1 m 

= .?_" L dA"(jr;a",1',,): [IT p/(a/,T/) IT] ( -mili)(ay,r(a/,T/»E : . 
r 0 J,eJ,..r tt tJ~ 

(3.21 ) 

Consider next the behavior ofthe exponential phase arguments in (3.15a) and (3.16). The a,,-quadratic portion of 
(3.16) is independent of the y variables and so commutes with the operator ay in the integrand of (3.15a). Adding the a,,
quadratic phases of It and J gives (up to the multiplicative constant - iii/2m) 

" [ (T-Tk)(T-Tj )] " 
. '} (1' - TjVk) - _ (ajtak)E = ') Gjk(ajtak)E' 
J,t: 1 l' To j.t: I 

(3.22a) 

where 

Gjk =.G(Tj,Tk;T,To) = (1'- To)~ (5jt5k)' (3.22b) 
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Here [1 is the one-dimensional fixed end point Green's function for the unit interval. Specifically, if S> = max (s,s ') and 
S < = mines,s'), then 

[1 (s,s') =s< (1-s». (3.22c) 

The argument Sj in (3.22b) is the fractional elapsed time, 

Sj = (rj - ro)/( r - ro). (3.22d) 

The addition of the an -linear phase parts offt and J also leads to a simple result. The an -linear phase of Jisy dependent 
and moving these factors through the ay operators changes the integrand (3.15a). However, these modifications of the 
integrand leave the exponential phase of J unchanged. Summing these parts of the phases inft and J gives 

i (x, i aj ) - i (x - y, i r - rj aj ) = i i (w(Sj;Q),aj ). 
j=) j=) r-ro j=) 

(3.23) 

The function w( . ;Q) is a linear path from the initial point y to the final point x, 

w(Sj;Q) =y - Sj(x - y). (3.24) 

In the flat Minkowski-type manifold on which this problem is set, W is a geodesic connecting the end points of Q. Note that the 
Green's function G( r j , r k ;r, ro) and the path w(Sj ;Q) associated with it are independent of the parameter E" and the signature 
ofgpv ' 

Putting together the above identities yields the final representation for dn (Q;E"). This result can be written in the form of 
the free evolution kernel times a multiple integral, 

dn (Q;E") = Ko(Q;E")dn (Q;E"). 

In order to write dn in a compact form, set 

/-1 '" ,.. 

<1>1 (qr,l,an ) = II (r(aqr_U,rqr_2),r(aqr_2,_t,rqr_u_t »E' 
;=0 

r- 21 '" 

'1'1 (qr,l,an ) = II (r(aq"rq),y - Xn)· 
;=) 

(3.25) 

(3.26a) 

(3.26b) 

(3.26c) 

Here the complex vector Xn is given in terms of its components by 

ft n 
X~=xP--l!!'Vg(E")vp L (r-rj)af, (3.26d) 

m j=) 

In both (3.26b) and (3.26c) it is unnecessary to specify the order of the noncommuting terms in the product because the index 
ordering operation: : will properly account for the p!acements of the matrices concerned. The summation convention for 
qr,1 is that of Lemma I, with the correspondence 'TJ;++r(al;,rj ). 

In applying Lemma I in order to compute the integrand of dn (Q;E") and hence dn (Q;E"), one first takes the x - y 
quadratic and linear terms in the phase of J and completes the square. After this revision of the phase of J has taken place, one 
can apply Lemma I to compute the partial derivatives appearing in (3.15a). Assembling all the above steps together, one 
obtains, for n> I, 

If n = 0, define do (Q;E") = l. The function d n (Q;E") will be 
referred to as the reduced Dyson kernel. 

The explicit representation (3.25)-(3.27) for dn (Q;E") 
is one of the principal results of this paper. Note that the 
multiple integral (3.27) is well defined for all E" because its 
integrand is a jointly continuous function of all its variables 
and the variables of integration range over a compact set. 
The characterization (3.25)-(3.27) is the relativistic and 
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(3.27) 

non-Abelian generalization of formula (6.20) in Ref. 9. Al
though this formula is both intricate and long, it will prove 
easy to investigate analytically and easy to find suitable 
bound estimates that guarantee the summability of the Dy
son series. After the substitution of the original defining for
mulas for A n(jr;an ,1' n)' fJl n (jr), etc., the integral represen
tation (3.27) will manifestly display all the analytic 
dependence on E", ft, m, and Q. 
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IV. SUMMABILITY ANALYSIS 

In the previous section the fact that the space-time man
ifolds of special relativity are flat was used in order to intro
duce a Fourier analysis of the integral kernel ofthe nth Dy
son iterate, Dn (1",1"o;E). This formal calculation provided an 
exPlicit expression for the nth iterate kernel, dn (Q;E). The 
objective of the present section is twofold. First, bounds of 
d n (Q;E) are found that suffice to ensure that the summation 
over n is well defined in a pointwise sense. The second half of 
the section will verify that this sum is the fundamental solu
tion of the proper-time Schrodinger equation (1.3a) with 
Hamiltonian H(X,1";E). 

Perhaps the most basic convergence problem here is 
found in the sum of the reduced kernels 

F(Q;E) = i: dn (Q;E). (4.1 ) 
n=O 

We now outline a four-step method for bounding dn (Q;E). 
Forward evolution 1";'1"0 is always assumed. 

(a) Consider the exponential function appearing in 
(3.27). The second term in the phase factor is 

n 

i L (w(Sj;Q),aj ), 
j=1 

which is pure imaginary and hence will not change the mod
ulus of the exponential function. In order to understand the 
a-quadratic portion of the exponential it is helpful to employ 
the real and imaginary decomposition of the extended Lor
entz scalar, 

(V,W)E = [(1- ~)/(1 +~) ](v,w) 

- [2iE/(1 +~) ]v·w. ( 4.2a) 

Here V' W denotes the Euclidean scalar product };~ = 1 if'uf'. 
Decomposition (4.2a) allows one to write 

n 

L Gj1(aj,al)E 
j,I=O 

(4.2b) 

The imaginary valued term on the right has the form pre
viously encountered in the study of the nonrelativistic evolu
tion problem [Ref. 12, Eq. (2.37)]. For 1"0<1"1<'" <1"n <1", 
the identity 

n 

L Gjlaj'al 
j,I=O 

= ± (_1_ _ 1 ) 1 ± (1" _ 1"j )aj 12 ;,0 
1=1 1"-1"1 1"-1"/_1 j=1 

(4.2c) 

shows that the modulus of the exponential in (3.27) is 
bounded by 1. 

(b) Next examine the measure volume associated with 
the momentum and time integrations. Formulas (3.20a) 
and (3.2Oc) together with estimates (2.12) and (2.14) and 
the restriction that laj I <k imply that 

IIAn(jr;an,'Tn ) 11< (,uT + m-1IinkrT)n - 'r'T' (4.3a) 
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Inequality (4.3a) is applicable for all values of n, r, j" an' 
'Tn' and E that enter in the integral (3.27). The time-ordered 
integration gives one the well known result 

(4.3b) 

(c) The most elaborate structure in (3.27) is given by 
the integrand function containing fJ' n (jr ). The norm iden
tity Ipi (a,1"') I = 1 (TE[O,T]) means that 

I: fJ'n(jr) iJI Pdak ,1"k): I <1fJ'n(j,)I· (4.4a) 

k<Ij, 

To estimate the functions '111 and <I> ( that occur in fJ' n (j r ) , 

we use theunitarity of gil v (E) and the identity Ir(a,1"') 1= 1. 
These ensure that 1<I>(qr,l,an ) 1< 1 and that the factors en
tering in '111 (qr,(,an ) have the bound 

I (r(aq/,1"q),Y - Xn) 1<lx - yl + link ( 1" -1"o)/m. 

(4.4b) 

Since the sum over the allowed qr,( in (3.26a) has 
rI[2( (r - 21)!l!],-1 terms and our estimates of '111 and <1>( 
depend upon rand 1 but not on the value of qr,( one sees that 

L 1'111 (qr,(,an )<I>( (qr,l,an ) I 
q,,1 

< rI [Ix- 1+ Iink(1"-1"0)]r-21. 
21(r - 21)!i! Y m 

(4.4c) 

Rather than bound I fJ' n (jr ) I, it is more appropriate to 
bound (1"-1"o)nlfJ'n(j,)I. The factor (1"-1"o)n comes 
from the time scale factor in (4.3b). Sincer - 21;,0 and r<n, 
it is seen that every occurrence of (1" - 1"0) in 
( 1" - 1"0) n I fJ' n (jr) I has a non-negative power. Let 81" be a 
time displacement bound, i.e., (1" - 1"0) <81"< T. Then one 
has 

(4.4d) 

Replacing the coefficient rI/ [ (r - 21)!i!] by the larger value 
nl(D and then extending the sum over! from [r/2] to r we 
obtain 

(Ii/m )r( 1" - 1"o)n! fJ' n (jr) I 

«81")n- r[lx - yl + Iink81"/m + l/2k]'. (4.4e) 

(d) The final step is to carry out the summation over jr 
and r. The bounds occurring in (4.3a), (4.3b), and (4.4e) 
are independent of the value of j r' There are (~) terms in the 
sum over subsets jrEJn r' Thus, at this stage, the bound for 
Idn (Q;E) I reads ' 
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_ 1 n (n) ( fmkr 8T)n-r 
Idn (Q;€) 1< -n L f..t T8T+ T 

n!1i r=O r m 

X Ix-ylrT+ T +-2:.. [ 
fmkr 8T r]r 

m 2k 

= _1_[ Ix - ylrT + f..t T8T +.!!:.-
~r 2k 

2linkr T8T ] n + . 
m 

(4.Sa) 

The n dependence of this last bound can be further simplified 
if we use nn In! < en and (1 + n-1a)n<eQ

, a;>O, to obtain 

Ian (Q;€) I 
« 2ek:T8T) n 

xexp[~(IX _ yl + _1 + f..t T 8T)]. 
2lik8T 2k rT 

(4.Sb) 

Estimate (4. Sb) is independent of 1'E [ To, To + 8T] and €;>O. 
The quantitiesf..tT' rT' and k are all finite constants associat
ed with the values or the supports of the potentials in class 
(A). 

If one defines a variable 

0= 2ekrT8Tlm, (4.6) 

it follows from (4.Sb) that the series (4.1) is absolutely con
vergent whenever 0 < 1. Est~mates similar to (4.Sb) apply to 
the x, y, and T derivatives of d n (Q;€). One can verify that the 
x or y partial derivatives may be interchanged with the inte
grals in (3.27). One then investigates the multiple integral 
(3.27) with the integrand modified by the partial deriva
tives. Note that all the x, y dependence is contained in the 
phase factor 

n 

L (w(Sj;Q),a) 
j=1 

and in the function '1'1 (qr.l ,Un)' In a like fashion the first 
partial deriv~tive with respect to T or To may be calculated. 
Recall that r( T) and v( T) are continuous in T though not 
necessarily differentiable in T. Here, the present study of the 
Dyson series differs from the former nonrelativistic ap
proach,9.]9 wherein it assumed that these measures were 
continuously differentiable in T. There it was necessary to 
use these stronger assumptions on the potentials in order to 
utilize the evolution theory in Banach space.7 In expression 
(3.27) each measure dr( T; ) and dv( T;) appears within the 
corresponding time integral over T;. The only T dependence 
t6 appear in (3.27) is in the upper limit of the 'Tn domain of 
integration and in the manifest T dependence found in 
9 n (jr ) and Sj' After employing the Leibnitz rule for differ
entiating parametric integrals, the estimating method (a)
( d) is again applicable. 

Prior to summarizing these results in lemma form, it is 
helpful to introduce some additional notation. Let Id+ be the 
set of d-tuples of non-negative integers. The multi-index 
¢e[~ will specify a partial derivative with respect to the 
variable x, while 8E[~ will be ay partial derivative, e.g., 

a~ = (~)"" ... (~)"'d. (4.7) 
ax] aXd 
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The triangular time domain obeying To < T is defined to be 
the set 

A~ = {(To,T)E[0,T]2: To<T} 

and the closure of A ~ will be denoted by AT' Finally if 8T is a 
time displacement bound, the striplike region it defines is 
denoted by 

A~(8T) = {(To,T)EA~: T - To <8r}, 

with closure AT (8T). The convergence condition 0 < 1 is 
fulfilled if the time pair (To,T)EAT (8T), where 8T 
<mI2ekrT' From (4.Sb) we extract the estimating func
tion 

b(x,8T) = exp{mlxI/2Iik8T}. (4.8) 

The reduced kernel an (Q;€) is characterized by the follow
ing. 

Lemma 2: Let an: AT XRd XRd X [0,00) -+CSxsbe the 
function defined by the integral (3.27). For all n;>o,an has 
partial derivatives to arbitrary order in x,y that are jointly 
~ontinuous in the domain AT X Rd X Rd X [0,00 ). Further, 
dn has a first-order partial derivative in T continuous in the 
domain A~XRd XRd X [0,00). IfO<8T< T - TO is an arbi
trary time displacement bound, then, throughout the do
main AT (8T) X Rd X Rd X [0,00 ), an and its derivatives sat
isfy the estimates 

Ian (Q;€) I <0nc]b(x - y,8T), (4.9a) 

(4.9b) 

(4.9c) 

where the positive constants C; (i = 1,2,3,4) are indepen
dent of n, Q, and €. 

Proof (sketch): The discussion prior to the lemma 
shows how the inequalities (4.9a)-( 4.9c) are obtained. The 
claim that an (Q;€), a~a ;an (Q;€), and (a laT) an (Q;€) are 
continuous in an appropriate domain of (Q,€) follows from a 
straightforward application of the dominated convergence 
theorem. 0 

It is worthwhile to contrast the approaches used to 
bound the Dyson series in the relativistic and nonrelativistic 
problems. In the nonrelativistic case, the convergence prop
erties of ( 4.1 ) for analytical potentials are known in substan
tial detaW and the associated derivative field asymptotics]9 
(valid as m -+ 00 ) have been fully worked out. The method 
(a)-(d) is a copy of the nonrelativistic analysis with the 
indefinite Lorentz scalar (u,w) replacing the Euclidean in
ner product U· w. Because of the inequality (1. 9c) the inde
finite character of (u,w) has no adverse impact on the esti
mating procedure (a )-( d). The combinatorial and indexing 
problems for the series in the relativistic and nonrelativistic 
problems are identical. Arguably the most critical ingredient 
in the estimating procedure is the bound of the exponential 
in step (a) implied by the inequality ( 4.2c). The definition of 
the extended metric tensor g( €) was devised so as to ensure 
the validity of (4.2c). If the measures Y( T) and v( T) were 
continuously differentiable on [O,T], then the singular fac-
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tor (r - rO) -I can be deleted from the estimate (4.9c). 
The function F( Q;E) is central in our analysis of the 

propagator K (Q;E). The analytic and smoothness properties 
of F( Q;E) are described as follows. 

Proposition 1: Let 0 < 8r < m/2ekrT be a time displace
mentbound. 

(1) For each (Q,E)EaT(8r) XRd XRd X [0,00), the 
sum ( 4.1) is absolutely convergent and provides a pointwise 
definition of the function 

F: aT (8r) XRd XRd X [0,00) .... CS xs. 

(2) The function F is continuous. For all 
(Q,E)EaT(8r) XRd XRd X [0,00), F has the bound 

IF(Q;E)I<[cI/(1-0)]b(x-y,8r). (4.10) 

(3) The function F has partial derivatives to arbitrary 
order in x,y that are jointly continuous on the domain 
aT (8r) XRd XRd X [0,00). 

( 4 ) The function F has a first-order partial derivative in 
r that is jointly continuous on the domain a~(8r) 
XRd XRd X [0,00). 

Proof: The inequality 8r < m/2ekr T guarantees that 
0< 1 and this together with estimate (4.9a) shows that the 
series (4.1) is absolutely convergent and that F obeys the 
bound (4.10). Let n be any compact subset ofRd X Rd. The 
inequality (4.9a) implies the series (4.1) is uniformly con
vergent on the compact domain a T(8r)xnX[0,E+], 
where 0 < E + < 00. Each term d n is uniformly continuous on 
aT (8r) X n X [O,E + ]. Thus the sum F is continuous on this 
compact set. Since nand E + are arbitrary, it follows that Fis 
continuous throughout aT (8r) XRd XRd X [0,00). This 
establishes properties (1) and (2). 

Estimates (4.9b) and (4.9c) suffice to show that the 
sum (4.1) may be differentiated term by term. The continu
ity properties of a ~ a:F and aF / ar result from an applica
tion of the argument used to prove the continuity of F. 0 

In view of the product identity (3.25) relating dn to d n , 

the convergence of (4.1) implies the convergence of 
'" 

K(Q;E) = L dn(Q;E). (4.11) 
n=O 

In particular, K admits the product representation 
K(Q;E) = Ko(Q;E)F(Q;E). (4.12) 

Although it is not made explicit in Lemma 2 and Propo
sition 1, the inequality (4.9a) may be used to show that 
F(Q;E) is a smooth bounded function as m-I .... O +. In 
sharp contrast to this, Ko (Q;E) has an essential singularity as 
m-I .... O + , as can be seen from inspection of (1.12). Thus 
the factorization (4.12) provides a precise characterization 
of the singular behavior of K(Q;E) in a neighborhood of 
m -I = o. In the analysis of the nonrelativistic propaga
tor,9.19 it was possible to let one variable (complex mass) 
implement the embedding process (which occurs if 
1m m > 0) and play the role of the small parameter in the 
derivative field approximation. In the relativistic case, 
H(x,r) is no longer an elliptic partial differential operator 
and for this reason the embedding procedure is carried out 
separately by the variable E in the metric tensor while the 
asymptotic scaling is still controlled by m - 1 -+ 0 + . 

We now tum to the general problem of verifying that 
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K (Q;E) is the solution of the E-extended proper-time Schro
dinger equation 

ili.!.....K(Q;E) =H(X,r,E)K(Q;E). 
ar 

(4.13) 

We proceed by finding a recurrence relation that links dn to 
d n _ 1 . A summation over n of this recurrence formula then 
leads to identity (4.13). 

In Sec. III, d n (Q;E) was defined, via (3.11), to be the 
A "'-

Fourier transform of dn (Q;E). It is helpful to clarify the 
precise meaning attached to this transform. Let Y(Rd

, 

CSX S) denote the Schwartz space of csx S -valued functions of 
rapid decrease on Rd. Specifically, rEY (Rd, CSXS) if 

Ilmli,¢> = sup Ixli a~r(x)1 < 00, 
XERd 

(4.14 ) 

for all (},t/JEK~ . 
Lemma 3: Let dn: aTXRd XRdX [0,00) -+ CSxsbe the 

function defined by Eqs. (3.4c) and (3.9). For each n>O, dn 

is a continuous function. 
Assume E> O. For each (x,ro,r)ERd X a~ the following 

hold. 
( 1) For all t/JEK~ , 

(2) The Fourier transform (3.11) is a bicontinuous bi-

J·ection from Y(Rd CSXS) onto Y(Rd CSXS) 
~)' x'· 

(3) For all t/JEKd+ ' 

a¢>d (Q·E) =-- a¢>d (Q;E)e-I(Y,a,,) da 1 f A "'- • 

x n' (21T)d x n , 0' 

( 4.15a) 

ad (Q·E) =-- ad (Q·E)e-l(y,ao ) da 1 f A "'- • 

Tn' (21T)d Tn, O· 

(4.15b) 

Proof: (sketch): The integral (3.9) is an absolutely con
vergent integral with a finite domain of integration, 
(Sk )nX [O,T] n. The continuity property of dn in the vari
able (Ch) follows from an application of the dominated 
convergence theorem that exploits the continuity properties 
of the integrand in Eq. (3.9). For n = 0, the continuity of do 
follows from inspection offormula (3.4c). 

Consider statements (1) and (2). Initially let I~I = o. 
Examine (3.4c) and (3.9). The modulus of the exponential 
function is controlled by the real part of its phase, viz., 

The equality in (4.16a) is a consequence of (4.2a) and the 
inequality employs laj I <k,j = 1, ... ,n. Estimate (4.16a) to
gether with the measure volume bound analogous to (4.3a) 
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and (4.3b) shows that 

A "'- (r-ro)n[/LT rT(laol+nk)]n 
Idn(Q;E)I< , --z+ 

n. n m 

Xexp{[fzE( r - ro)/m(1 +~)] 

X( -laoI2+2nklaol)}. (4.16b) 
A "'-

Thus if E> 0 and r> ro, dn (Q;E) has a Gaussian decay 
bound in the variable a o. 

Next compute the ao partial derivatives of dn (Q;E). 
Once again the analytic properties of the integrand of (3.9) 
and the compact domain of integration allow one to justify 
without difficulty (cf. Ref. 26, Appendix B.3; Ref. 19, Prop
osition 2) that the differential operator a::. may be passed 
through the integration. Using estimates like those leading 
to (4.16b) will yield a bound for la~,:dn(Q;E)1 similar to 
(4. 16b)-namely, the same Gaussian decay factor appears 
but it is now multiplied by a polynomial in laol of order 
n + W I. This estimate shows that the norms 
IIdn (x,r,' ,ro;E) 119',1,6' are finite for all () ',<,6'ElI~ , provided 
E> 0 and r> ro' Thus (1) is established if 1<,6 I = O. A parallel 
argument applies if 1<,61 > O. Property (2) is a direct conse
quence of (1) and the Fourier inversion theorem for the 
space Y(Rd

, CSXS
) (Ref. 27, Theorem IX.1). 

(3) Assuming E> 0 and r> ro, a variation of the deriva
tion above shows that a~dn (Q;E) and aTdn (Q;E) satisfy 
Gaussian decay estimates that suffice to guarantee the inter
change ofthe limits shown in (4.15a) and (4.15b). D 

Two special examples of (4.15a) and (4.15b) are im
portant in understanding the recurrence relations for dn • 

For the second-order partial differential operator Ho (E) and 
the first-order partial differential operator W(X,r,E) we have 

W(x,r,E)dn (Q;E) 

1 f A "'- .() = (21T)d W(x,r,E)dn (Q;E)e-' y.a
o dao· (4.18 ) 

Identities (4.17) and (4.18) are valid for E> 0 and r> r o. If 
E = 0, then the Fourier transform (3.11) is not absolutely 
integrable and must be reinterpreted as some type ofimprop
er integral. 

Lemma 4: Assume that E;;;'O. For all n;;;'O, 
(1) the factorization identity (3.25) relatingdn to lin 

holds for all Qea~ X Rd X Rd ; 
(2) for each (ro,r,x)ea~XRd, thefunctionsdn satisfy, 

for all aoERd , the recurrence relation 

and 
(3) for all Qea~xRd XRd, the functions dn satisfy the 

recurrence relation 
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The functions d _I and d _ 1 are defined to be zero. 
Proot (1) Let E> O. The computation in Sec. III that 

transforms (3.11) into (3.15a) and (3.15b) only involves 
the changing of the order of integration with respect to dao 
and the d/L dr integrals. One knows from Lemma 3 that 
(3.11) is absolutely convergent, so Fubini's theorem justifies 
this change ofintegration order. The evaluation of the Gaus
sian integral (3.15b) is (for positive E) a standard exercise 
[cf. Ref. 9, Eqs. (6.15) and (6.16) ]. To obtain the validity of 
(3.25) for E = 0, take the limit as E -+ 0 + and note for fixed 
Qand r> ro thatdn , lin, andKo are continuous functions of E 
on the closed interval [O,E + ], E + > O. 

(2) For (ro,r)Ea~ define the n-dimensional time-or
dered domain 

an (r,ro) = {TnE[O,T]n: 1'o<rl<"·<rn<r}. (4.21) 

In addition, leth denote the exponential function and dA~ 
be the (ao,an )-dependent product measure appearing in 
(3.9): 

"'-
h( Q;an,1'n) 

= exp( _..!!i... ± (r - r iVj ) (a;.aj ) E + i(X' ± a j )) , 
2m iJ~O j~O 

[ 
fz (n - 1 

dA~(an,1'n) = d/L(an,rn) -- L aj 
m j~O 

+ ~ an,y(an,rn») E d Irl (an,rn) ] 

X .. · X [d/L(al,r l ) - ; (ao 

(4.22a) 

+ ~ a1,y(al,rl»)E dlrl(al,rl)]. (4.22b) 

First write (3.9) as the iterated integral 

dn«(2;E) =_l_iT drn[ r d1'n_l 
(iii) n Tn Jan _ I (TI/,Tn) 

X f dA~(an'1'n)h(Q;an'1'n)]. (4.23) 

The Leibnitz rule for differentiating integrals with variable 
A "'-

limits is used to evaluate the r derivative of dn (Q;E). The 
Leibnitz rule is applicable since the integrand in the square 
bracket defines, for each (x,ao,E)ERd XRd X [0,00), a con
tinuously differentiable function of r on the domain 
(rn ,r)E[ ro,T] 2. In this way one obtains 

(4.24) 

where TI is the term coming from the differentiation of the 
upper limit of the drn integral in (4.23) and T2 is the term 
resulting from the r derivative acting onh. 

Consider Tl first. The exponential argument of h has 
the property 

or, equivalently, 

(4.25b) 
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As a consequence of this and 

f [ fJ (" - 1 1 A ) 

dp(a",r) - - .L a j + -a",r(a",r) 
m J=O 2 E 

Xd Irl (a",r) ]/(x.ao + ... + an> 

_ W( ~) j(x.a,) + ... + a n _ ,> - X,r,o: e , (4.25c) 

wcddulln 

T,(Q;€) = 1 f d-r,,_, W(X,T;E) 
(ifJ),,-l < 

X f dA~-I(a"_I,'T"_I)fz(Q;a"_I,'T"_I) 
A A 

= W(x,r;€)d,,_1 (Q;€). ( 4.25d) 

In evaluating the term Tz, we note that,/; satisfies 

. a A A 

ifJ-'/;(Q;a",'T,,) = Ho(€)'/;(Q;a",'T,,). 
ar 

Thus 

( 4.26a) 

(4.26b) 

Combining ( 4.24 ), ( 4.25d), and ( 4.26b) leads to 
(4.19). Obtaining the final line in both (4.25d) and (4.26b) 
requires the passing of first- or second-ordered partial de
rivatives in x through the a" and 'T" integrals. Obvious esti
mates of la!t;(Q;an ,'Tn) I suffice to justify this interchange 
oflimiting orders. The case n = 1 follows an argument simi
lar to the above and the case n = 0 is a straightforward calcu
lation. The recurrence relation ( 4.19) holds for all r> r 0 and 
€>O. 

Consider the proof of statement (3). Initially assume 
€> O. Lemma 3 (1) shows that the right-hand terms of 
( 4.19) are elements of Y (R:!" ;C'x • ). The pointwise charac
terAof ~uality (4.19) means that this conclusion extends to 
a"dn (Q;€). Take the dao Fourier transform of all the terms 
in (4.19) to obtain 

f ifJ :r d" (Q;E)e- i(x.ao> dao 

= f Ho(€)dn(Q;€)e-i(x.ao> dao 

+ f W(x,r,€)dn - 1 (Q;€)e - i(x.ao> dao' (4.27) 

Employing relationships (4.15b), (4.17), and (4.18) gives 
the recurrence relation (4.20) for € > O. The integral repre-

sentation (3.27) of d" (Q;€), the explicit analytic form of 
Ko(Q;€) and the identity (3.25) show (cf. Lemma 2), for 
fixed Q with r> ro, that each function in (4.20) is contin
uous in € on the closed interval [O,€ + ], € + > O. Thus identity 
(4.20) may be extended to € = 0 by continuity. 0 

The final task is to establish that K ( Q;€) is the pointwise 
solution of (4.13), which, in the limit r ..... ro, satisfies the 
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delta function initial condition (1.3b). The delta function 
behavior is best characterized in terms of a multidimensional 
stationary phase expansion. The following lemma adapts 
general results on oscillatory integrals to the present prob
lem wherein the phase factor is the extended Lorentz scalar 
(x-y,x-y)_£ [cf. (1.12)]. 

Lemma 5: For each fixed E>O, let A- + > O. Suppose that 

M·/~£>·. y'~~~Q,)~+~~ 

is a continuous function with the properties (i) there exists a 
compact set nCR~ such that supph{ ',A;E)~n, for all 
A-E[O,.4+]; and (ii) for Itfol<d, the partial derivatives 
a~h(x,.4;€) exist and are continuous in the domain R~ 
X [0,.4+]. 

Let f£ (A-) be the oscillatory integral 

fE(A.) = [1I(itrA-)]d/2 [detg( _E)]I'z 

X r e(if).)(x.x>-'h(X,.4;E)dx. 
JRd 

(4.28) 

Then 

lim fE(A-) = h(O,O;E). (4.29) 
.. ~o+ 

ProofIfE = 0, the principal termh(O,O;E) is the same as 
found in Theorem 2.2 of Fedoriuk's articlez8 on the station
ary phase method. A slight modification of Fedoriuk's proof 
and hypothesis gives the result above. 0 

Below C ~ (Rd,C') will denote the compactly supported 
functions on Rd having continuous nth-order derivatives. 

Proposition 2: Suppose the potentials a and v are in the 
class (A) and 8r is a time displacement bound with 
8r < m [2ekr T ]- I. If 

K: a<j.(8r) XRd XRd X [0,00) ..... C·x • 

is the function defined by Eq. (4.11), then, for each point 
(Q,E)Ea<j.(8r) XRd XRd X [0,00), the partial differential 
equation (4.13) is identically fulfilled. 

Furthermore, if rfJoECg (Rd ,C') and (ro,r)Ea<j.(8r), 
then 

(4.30) 

Proof Let (Q,E) be a fixed point in the domain of K. 
Observe that the r derivative of K may be written 

ifJ~K(Q;E) = i ifJ~d,,(Q;E) 
ar ,,=0 ar 

00 

= L [Ho(E)d,,(Q;E) 
,,=0 

+ W(x,r;E)d" (Q;E)] 

= H(X,r,E)K(Q;E). (4.31 ) 

The estimate (4.9c) shows the n summation may be inter
changed with the r derivative. The recurrence relation 
(4.20) gives the second identity in (4.31). Estimate (4.9b) 
shows thatthe operators Ho(E) and W(X,r,E) maybe pulled 
back through the sum over n to obtain the last equality of 
(4.31). 

In order to verify (4.30), use representation (4.12) for 
K(Q;E) and setA- = m/2fJ(r - To). Changing the variable of 
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integration with the substitution y ..... y' = x - y determines 
the h of Lemma S to be 

hey' ,A.;E) = F(x,1"o + m121U;x - y',1"o;E)t/lo(X - y'). 

(4.32) 

Hypothesis (i) of Lemma S is obeyed since we may take n to 
be the closure of any open ball containing x - supp t/lo' The 
differentiability and continuity requirements are met as a 
consequence of Proposition I ( 3) and the fact t/lo EC g (Rd

, 

cs 
). In evaluating the right-hand side of ( 4.29), we obtain 

the function 

(4.33) 

This diagonal value of F is determined by the series in Eq. 
(4.1). By definition, do(x,r,X,1"o;E) is the identity matrix in 
csxs whereas formula (3.27) for dn (n>1) implies that 
dn (x,1"o;X,1"o;E) vanishes. Thus the value of F(x,1"o;X,To;E) is 
the unit matrix I and consequently ( 4.33) reads 
h(O,O;E) = t/lo(x). This establishes (4.30). 0 

It is worthwhile to note that other proofs of the recur
rence relation (4.20) are possible. One of these alternate 
derivations, which we have completed, is to compute the 
needed space and time derivatives of dn (Q;E) directly from 
the representation obtained via (3.2S) and (3.27). This ap
proach has the merit that it is not necessary to use the E

continuity properties of dn (Q;E) in order to establish the 
recurrence relation at E = 0. However, the derivatives get 
entangled with the multiple summations and combinatorics 
that enter (3.27) and as a result the calculations are of a 
forbidding length. 

V. WAVE FUNCTION EVOLUTION 

We conclude the analysis of relativistic evolution with a 
discussion of the wave function. Let t/loE,2'2(Rd ,CS

) be a 
suitable test function. For each t/lo the fundamental solution 
K ( Q;E), found in Eqs. (4.11) and (4.12), constructs an as
sociated wave function t/I by the formula 

t/I(X;T,To;E) = f K(Q;E)t/lo(y)dy. (S.l) 

Evidently a desirable feature of the test function t/lo is that it 
ensures that the integral (S.l) be absolutely convergent. 
Given estimate (4.10), this integrability is guaranteed if t/lo is 
an ,2'2(Rd ,CS) function of compact support. If E> 0, then 
the compactness of the support of t/lo is unnecessary. How
ever, the summary given below of wave function behavior is 
stated in a fashion such that the results are equally applicable 
for all values of E>O. 

Corollary 1: Assume that a and v are interactions in the 
class (A) and that 81" is a time displacement bound with 
81"< ml(2ekYT)' Ift/loECg (Rd ,CS

), then define the contin
uous function 

t/I: Rd xa~(81") X [0,00) ..... CS 

by formula (S.1). 
( 1) t/I is a smooth function in the sense that a r t/I and a ~ t/I 

(1(,61>0) exist and are continuous. 
(2) For each E>O, the function t/I is a classical 
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(pointwise) solution of 

iii :T t/I(X;1",To;E) = H(X,T;E)t/I(X;1",1"o;E) (S.2) 

in the domain Rd xa~(8T). Furthermore, t/I satisfies the 
initial data condition 

lim t/I(X;T,To;E) = t/lo(x), XERd. (S.3 ) 
1"-70 + 

Proof: Properties (3) and (4) of Proposition 1, the ex
plicit form of Ko(Q;E), and Eq. (4.12) suffice to show that 
the x and T derivatives may be interchanged with the dy 
integral in (S.l), i.e., 

a~t/I(X;T,To;E) = J a~K(Q;E)t/lo(y)dy, 1(,61>0, (S.4a) 

(S.4b) 

The continuity properties of t/I, a ~t/I, and ar t/I are all verified 
by employing the dominated convergence theorem. Setting 

L(X,r,E) = iii ~ - H(X,r,E), 
aT 

one has 

L(X,T;E) J K(Q;E)t/lo(y)dy 

= f L(X,r,E)K(Q;E)t/lo(y)dy = 0. 

(S.Sa) 

(S.Sb) 

The first equality above is justified by the identities (S.4a) 
and (S.4b). Proposition 2 asserts that L(X,r,E)K(Q;E) is 
zero; whence (S.2) follows. Equation (S.3) is a restatement 
ofEq. (4.30). 0 

Corollary 1 indicates that the solution of (S.2) as con
structed by (S.l) is an element of Coo (Rd ,CS

). This smooth
ness is a consequence of the analytic nature of the coeffi
cients of the partial differential operator H(X,r,E). It is 
reasonable to take C g (ad, Cs ) as the initial data space as this 
set off unctions is dense in ,2'2(Rd ,CS

). 

The approach used throughout the paper has been to 
construct the fundamental solution of the equation of mo
tion ( 4.13) via a pointwise absolutely convergent series. The 
associated analysis has not used any facts from the Banach 
space evolution theory, which also is applicable to this prob
lem. Of course a more comprehensive understanding of the 
relativistic evolution problem will emerge when the 
pointwise and abstract characterizations are combined. For 
example, with the estimates given so far for K(Q;E), it is not 
evident how one would prove (if E = 0) that t/I in (S.1) is an 
,2'2(Rd ,CS) function. However, this fact is an automatic 
consequence of the Banach space evolution theory. In the 
nonrelativistic case (0'+ = d) this unified (pointwise and 
abstract) treatment9•

J3 has been carried out in detail by using 
an E-embedding technique. In the present treatment the E

continuation process is responsible for establishing the na-
~ A 

ture of the Fourier equivalence of dn (Q;E) and dn (Q;E); for 
making the generalized Fresnel integral (3.1Sb) well de
fined; and for providing a simple proof of the recurrence 
relation (4.20). 
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Various properties of finite energy solutions of the (1 + 1 )-dimensional sigma models are 
studied. It is shown that the energy densities of these solutions exhibit some extended 
lump-like structures that cross each other without interaction, and that the procedure of 
adding a soliton to a given solution developed by Hamad, Schnider, and Saint-Aubin 
[Commun. Math. Phys. 92,329 (1984); 43,33 (1984)] mixes the matrix elements of this 
solution in a complicated way, but it does not modify its energy momentum tensor 
density. The one parameter family of conserved currents discovered by Eichenherr, Forger, 
and Pohlmeyer [Nucl. Phys. B 155, 381 (1979); 164, 528 (1980); Commun. Math. 
Phys. 46, 207 (1976)J must be considered to distinguish between such solutions. Finally the 
Uhlenbeck method of construction of Euclidean solutions is modified to make it applicable 
to the construction of Minkowskian solutions for some classes of sigma models. It is 
shown that this method does not modify the energy momentum tensor density either. 

I. INTRODUCTION 

In 1976 Pohlmeyer showed! that two-dimensional 
nonlinear a models are integrable. Since then they have 
been the subject of many studies. Different methods have 
been developed to construct, in more or less explicit form, 
classical solutions of their equations of motion both in the 
Euclidean and Minkowski case. The fact that solutions can 
be constructed explicitly can be seen as a consequence of 
the integrability of these models. 

The notion of integrability is, however, not well de
fined. It comes from the theory of ordinary differential 
equations where by Arnold's theorem2 a system is said to 
be integrable if it possesses as many conserved quantities as 
it has its degrees of freedom. Arnold's theorem provides a 
method of exploiting the existence of these conserved 
quantities to reduce the process of the construction of so
lutions of these equations to an algebraic problem. For 
systems of partial differential equations, which can be 
thought as describing systems with an infinite number of 
degrees of freedom, no such theorem exists but, by anal
ogy, such systems are commonly said to be integrable if 
they possess an infinite number of conservation laws, The 
problem with such a definition is that, as everybody knows, 
"infinity plus or minus one is still infinity" and thus, even 
if a given system has an infinite number of conservation 
laws, it is very hard to know whether these conserved 
quantities are sufficient to characterize completely and 
uniquely a given solution. 

We can certainly say that a system is integrable if we 
know how to construct explicitly all its solutions, or, in 
practice, large classes of its solutions. 

Usually, however, we are not interested in all solutions 
as we also require that the solutions possess some further 

a)Chercheur IISN, Belgium. 

properties. For example, in classical field theories, we are 
usually interested in only those solutions whose energy is 
finite. 

Integrable systems are also considered as models 
which can be solved by means of the inverse scattering 
method or equivalently by the so-called Backlund trans
formation method. 3

,4 In these methods one associates with 
the nonlinear system of partial differential equations a pair 
of linear differential equations dependent on an additional 
parameter, for which the original nonlinear equations 
serve as the compatibility condition. This pair of linear 
equations, called the Lax pair in the literature, is usually 
the starting point for the construction of an infinite num
ber of conserved quantities as well as the construction of 
the Backlund transformations. The idea of a Backlund 
transformation can be summarized as follows: one starts 
from a known solution, and tries to construct a new one by 
adding to it what is called a soliton. When one looks at a 
new solution, it appears that the transformation has added 
to the original solution an extended structure which prop
agates with a given speed, and which preserves its shape. 
Usually such a transformation is highly nontrivial to per
form. A simple example of such a construction is the one 
developed for the sine-Gordon equation. 5 The Backlund 
transformation or the inverse scattering method are just 
some of the many techniques for constructing solutions of 
nonlinear models, but as one can guess, specific models 
usually have their specific methods for constructing their 
solutions. 

Since Pohlmeyer published his paper, I many attempts 
have been made to construct solutions of both the 
Minkowskian and Euclidean classical (7 models. The class 
of a models we are interested in is described by a matrix Q 
which, for simplicity, we will assume to be unitary, and the 
expression for the action of these models is given by 
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(1.1 ) 

where the summation over !J- is performed either with the 
Euclidean or the Minkowskian metric, and where, due to 
the unitary of Q, 

( 1.2) 

Further algebraic constraints can be imposed on Q to de
fine other classes of models (see Ref, 4 for a complete list) . 
If, in particular, Q is chosen to be Hermitian, the model is 
the so-called Grassmannian sigma model. 

From the above action it is easy to derive the equations 
of motion of the model i.e., the Euler-Lagrange equations, 

(1.3 ) 

Restricting ourselves to the Minkowskian case we find 
that it is convenient to introduce the light-cone coordinates 
5 = x + t, Tj = x - t. Then if we define 

(1.4) 

the action and the equations of motion of the model can be 
rewritten as 

s= - J dx2 TdASA'1], 

0v1s + 0s-A,/=O. 

( 1.5) 

( 1.6) 

As the model is integrable we can associate with it a 
pair of linear equations3 (called the Lax pair equations) 

0s'i'=AsIJI!(1 + Il), 

o7,tf!=A'1'i'!(1 - A), 
( 1.7) 

from which one can derive an infinite number of conser
vation laws1

•
6

• Defining 

( 1.8) 

we see that we have a one parameter family of conserved 
currents corresponding to each solution6 

is(w) = [( 1 - o»!2( 1 + w)] U(w)asQ QtU(w) - 1, 

J'1(w) = [(1 +w)!2(1-w)]U(w)0'lQQt U(w) , 
( 1.9) 

where U is a function of 5, Tj, and m, which satisfies 

agU=[2w!(w+ 1)]U},;, 

a,p= [2w!(w - 1)] Uj'1" 
(LtO) 

We are interested in the construction of the explicit 
solutions of the Eqs. 0.3). Moreover, we are interested 
only in those solutions that have finite energy. At this stage 
we have to make a distinction between the Euclidean and 
the Minkowskian models. The solutions of the Euclidean 
models in two dimensions can be considered as static so
lutions of the Minkowskian models in 2 + 1 dimensions, 
implying that the two-dimensional action of each such so
lution is its total energy. On the other hand, the energy 
densities of the Minkowskian models in 1 + 1 dimensions 
are not explicit and have to be computed. 
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Applying the standard methods, one shows that the 
energy momentum tensor for the Minkowskian models is 
given by7,g 

( Ul) 

Many classes of solutions of ( 1.3) are known. One of 
the aims of this work is to study some of these solutions 
and in particular those obtained for the Minkowskian 
models by applying various solution generating techniques 
and show how to construct finite energy solutions using 
these techniques. 

Before doing so let us briefly summarize the known 
results from some Euclidean models, as we will use these 
results as a guide for the Minkowskian models. In the 
Euclidean case for some classes of sigma models all finite 
energy solutions can be constructed explicitly, whereas no 
such results have been proved so far for the Minkowskian 
models. 

The first complete set of solutions for a Euclidean 
sigma model was found by Borchers and Garber9 who de
termined all finite energy solutions of the S2n+l models 
[which they called the O(2n + 1) models]. Their construc
tion has been extended 10,11 to the if ~ 1 models and to the 
construction of some classes of solutions of Grassmannian 
models. The set of all these solutions can be described with 
ease. For the CpN - I models, for example, the set of solu
tions splits into N subsets, each solution in any of these 
subsets being completely characterized by a polynomial 
holomorphic vector. In fact the subsets correspond to the 
Gramm-Schmidt orthonormaHzation procedure applied to 
the hoI om orphic vector and its first N - 1 derivatives. 
Moreover, the models possess a topological charge and any 
solution can be uniquely characterized by its energy and 
the topological charge densities. 

Recently Uhlenbeck reduced the problem of the con
struction of all solutions of the U(N) sigma models to that 
of solving a system of algebraic and first-order partial dif
ferential equations. Using her theorem we were then able 
to construct explicitly all solutions ofthe U(3) and U( 4) 
sigma models. 12 For these models, like for the Cp"i- 1 

models, the energy density is not sufficient to characterize 
uniquely a given solution. The U(N}u models do not have 
a topological charge but, by construction, the set of solu
tions also exhibits a subset-like structure. The Uhlenbeck 
construction is based on the Lax pair approach to the 
sigma models. To construct all solutions, one determines 
first some elementary solutions called by Uhlenbeck the 
one-uniton solutions l3

,14 [which are in fact the self-dual 
solutions for the Grassmannian models imbedded in 
U(N)] and then adds to them up to N - 2 additional uni
tons. The method resembles the procedure of adding soli
tons to a Minkowskian solution. However, the addition of 
a uniton to a given solution changes the energy density of 
this solution. The energy density of the new solution ex
hibits, in general, additional peaks; their number, position, 
and shape depend on the properties of the added uniton. 13 
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The construction of classical solutions of the 
Minkowskian sigma models has also received much atten
tion. First Pohlmeyer showed how solutions of the sine
Gordon equation can be related to the solutions of the S2 
sigma model. He also discussed the so-caned dual symme
try that can be exploited to construct some further solu
tions of this model. Later, Eichenherr, and Forger6 have 
extended these results to other sigma models. 

A next major step in the construction of explicit solu
tions of the Minkowskian models was achieved by Hamad, 
Schnider, and Saint-Aubin4 who, using the work of Za
kharov and Mikhailov,3 developed an algorithm for the 
addition of any number of solitons to any given solution. 
Starting from a given solution one has first to solve the Lax 
pair problem (1. 7) for this particular solution. Then the 
addition of a soliton to this solution can be achieved by 
purely algebraic operations. This method has then been 
modified to make it applicable to the construction of Eu
clidean solutions as well. lb,l7 

The problem with all constructions developed for the 
Minkowskian models is that the construction does 110t 
guarantee that the new solutions have finite energy, It is 
interesting to determine how the energy density of a given 
solution is modified when one applies the above mentioned 
procedure and adds a soliton to it. In the next chapter, we 
will show that the addition of a soliton does not alter the 
energy momentum density of the original configuration. 
For this reason we will also argue that the term "addition 
of a soliton" is not well suited for finite energy solutions as 
this procedure corresponds merely to a sophisticated inter
nal mixing of the matrix elements of the original solution. 

Finally let us recall some properties of the (1 + 1)
dimensional sigma models. As is wen known, these models 
are conformaly invariant, which means that in two 
dimensions6

,7 the tensor of the energy momentum density 
for these solutions satisfies the wave equation. The expres
sions for the energy density of such models are thus of the 
form 

TJO=f(x + t) + g(x - t), (1.12 ) 

where f and g are arbitrary functions. This density thus 
describes two extended structures moving with the velocity 
of light in both directions and crossing each other without 
any apparent interaction (the lumps just add to each 
other). This does not mean that the construction of solu
tions is completely trivial, as the nonlinearity of the model 
makes the simple addition of solutions impossible< The 
superposition of two solutions can thus result in some in
ternal rearrangement, but this effect does not manifest it
self in the energy density. We will discuss this point further 
in the next section in which we will discuss some explicit 
examples. 

II. ADDITION OF SOLUTIONS TO FINITE ENERGY 
SOLUTIONS 

In the Introduction, we have described some methods 
that have been developed to construct solutions of the 
Minkowskian sigma models. What is the energy density of 
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these solutions? To answer this question we will consider 
here some of the different methods mentioned before. 

In his seminal paper i Pohlmeyer showed that solutions 
of the sine-Gordon equation can lead to some solutions of 
the S2 model [also called 0(3) sigma model]. This is an 
interesting observation, as the sine-Gordon equation is one 
of the best known nonlinear equations, and Backlund 
transformations have been developed for this equation. The 
field of the S2 model can be described by a three
component real vector q< Assuming that q!olJg; and q~qTf are 
both constant, Pohlmeyer proved that the angle a between 
the vectors qs = Jg<} and q7j = a,}q satisfies the sine-Gordo~ 
equation. Unfortunately, as the energy density for the S 
model is given by 

(2.1 ) 

we see that the assumptions made imply that the energy 
density E is constant and thus that the total energy of these 
solutions is infinite. This means that this embedding of the 
sine-Gordon model into the S2 one is not very useful in the 
context of classical field theories. 

In this paper t Pohlmeyer showed also how to exploit 
the so-called dual symmetry of the model to construct fur
ther new solutions. Given a solution Q of the sigma model, 
one computes first the solution U of the Lax pair problem 
(1.9) for this particular solution and multiplying them to
gether obtains a new solution which now depends on an 
additional parameter w. However, as can be easily checked, 
the gauge fields As and A1/ for the old and the new solutions 
are exactly the same [Eqs. (2.19) and (2.20) in Ref. 6]. As 
a consequence the energy momentum tensor and the La
grangian density are the same for both the new and the old 
solutions. Thus it would appear that this construction does 
not really add a soliton to the original solution. At most it 
corresponds to a sophisticated mixing of the matrix ele
ments of the original solution. 

One of the most elegant procedures for the construc
tion of solutions of the sigma models is the method devel
oped by Hamad, Schnider, and Saint-Aubin.4 This method 
also corresponds to the addition of solitons to a given so
lution< In this procedure one starts by constructing a sim
ple solution Qo of the model and constructs a matrix X 
dependent on a parameter A, and which satisfies a pair of 
linear differential equations [CEq. 2.7) in Ref. 4]. Then, as 
the authors show, Q = XCA,~O)QO is a new solution of the 
model. Once the Lax pair prohlem (L 7) has been solved 
for the starting solution, the construction of any multi
soliton solution reduces to a purely algebraic computation 
(even though it very quickly becomes too tedious to per
form in practice). 

The difficult part of this construction is finding a start
ing solution< In their paper4 Harnad et al. suggest to con
sider what they call the "vacuum" solutions 

Qo=exp[ (ill) (AS + RTf)], (2.2) 

where A and B are two constant Hermitian matrices which 
commute with each other. A few explicit solutions were 
constructed using this method i8

,19 starting from the solu
tion of the form (2.2). 
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Thus if we choose 

I 0 i) 
A=B=~ -i 0' 

the vacuum solution is given by 

(
COSX 

Qo= sinx 
- sin X) 
cosx ' 

where x = (1/2)( g + 71). 

(2.3 ) 

(2.4 ) 

Addition a soliton to this solution is rather tedious, but 
quite straightforward. DefiningJ9 

w=Hs/(l + A) + 1]10- A) L 

u =2 ReCtr), v=2Im«(l), 

A=;V - tArt, 

we have 

gu =g22=COS (x) - (11 A 2 )[(A'IA" )sin(x)sinh(2v) 

+ cos(x)cosh(2u) + ( 1 A 12 - 1 Hcos(2u - 3x) 

- IAj 2cos(2u -x)]], 

(2.5) 

= - sin(x) - (lIA2) [(A'/A")COS(X)Sinh(2V) 

-sin(x)cosh(2v) + C!AI 2 -1)-1[sin(2u-3x) 

+ 1).1 2sin(2u - x)J + 2i[ (J,,'/).")sin(u -x) 

IA12+1 J1 
Xcosh(v) - IA 12 _ {OS(u - x)sinh(v) " 

where 

[
4 COS2( U - x) cosh2 V1 

A2= 1/L12 (1- IA12)2 +)7'2 . 

(2,6) 

(2.7) 

This solution is the same as the one given in Ref. 19 apart 
from an overall multiplication by a constant matrix. 

When we plot the matrix elements of these two 
solutions,19 we see that the construction does indeed ap
pear to add solitons to the original solution. Moreover the 
solitons propagate with a speed that depends on a given 
parameter (which can essentially be chosen arbitrarily), 
The fact that the solitons propagate with arbitrary speed 
may be surprising as we know that the energy density can 
only exhibit structures which can propagate with the speed 
of light. This paradox is resolved by observing that "the 
solitons" appear only in the graphs of the matrix elements; 
their contribution cancels in the energy density. To see this 
we have to compute the energy density of the origi.nal 
solution, and then check how the addition of a soliton 
modifies this density. 

Let us look first at the second problem. When we add 
a soliton to a solution Qo, the gauge fields As and A1] of the 
new solution are given by4 
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FIG. L Energy density (2.11) of the solutions (2.10) and (2.6). 

Ag= x( - l)A~X( - 1) A'1=X(1 )A~X( 1) - \ 
(2.8) 

where A~ and A~ are the gauge fields (1.4) corresponding 
to Qo. From (2.8) it is clear that the energy momentum 
tensor density (1.11) is invariant under the addition of a 
soliton. In other words, Q has exactly the same energy 
density as Qo. This would suggest that the addition of a 
soliton to the solution does not appear to add anything. 
This is, however, not completely true as the energy mo
mentum density does not characterize a given solution 
completely. To characterize it completely we must also 
take into account the "internal" degrees of freedom. Be
fore we investigate this question further let us compute the 
energy density for the solution Qo. From (1.11) and (2.2) 
it is easy to show that 

E=Tr[AAJ + Tr[BB]. (2.9) 

Once again we see that the solutions have a constant en
ergy density and thus the total energy if infinite. 

Is it possible to construct a finite energy solution for 
the Minkowskian sigma model? The answer to this ques
tion is positive. All we have to do is to recall that the 
two-dimensional sigma models are conformaHy invariant. 
This means that 

Qo=exp{ (i/2)[Aj(s) + Bg( 1]) n, (2.10) 

where J and g are any real functions and A and B are given 
by Eqo (2.3), satisfies (1.6) and the energy density for this 
class of solutions is given by 

(2.11 ) 

Finite energy solutions can thus be obtained by choosing f 
and g appropriately. For example we can choose for Jthe 
hyperbolic tangent of any polynomial in ~, and for g a 
similar function but dependent on 71. The figure (Fig. 1) 
exhibits the energy density of the solution for which A and 
B have been chosen as in (2.3) and 

j =tanh(s), g=tanh( 17). (2.12 ) 

This solution is given by (2.4) where 

(2.13 ) 
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FIG. 2,(a) Finite energy solution (2.10): Q1l' (b) Finite energy solution 
(2.10): Ql2' 

The matrix elements of this solution are represented in Fig. 
2. Looking at the energy density and the graphs of the 
matrix elements we see that these solutions do indeed rep
resent two solitons propagating in opposite directions with 
the speed of light. 

We can now, using the method of Hamad et ai., add a 
"soliton" to this solution. Such a solution is given by (2.6) 
in which one has to replace S by tanh(g) andTJ by 
tanh ( 77 ), and x by (2.13). The analytical expression for 
this solution is much more complicated than (2.10) but we 
know that they both have the same energy density (2.11). 
The matrix elements, on the other hand, are slightly dif
ferent. In Figs. 3 and 4 we show matrix elements for this 
solution for different values of It. Once again the matrix 
elements of this solution exhibit two solitons that propa~ 
gate in opposite directions with the speed of light. We 
observe that this solution looks like a J.-dependent mixture 
of the matrix elements of (2.10). 

Let us stress that this is a rather different result from 
the one we have obtained by adding a soliton to the vac
uum solutions (2.2). In that case the addition of a soliton 
has really added a breathing structure that propagates with 
a speed that depends on ,,1,.0 18

,19 We see that, as in the Eu
clidean case, the requirement that the total energy is finite 
provides some constraints on the properti.es of solutions. 

920 J. Math. Phys., Vol. 31, No.4, April 1990 

(b) 

FIG. 3.(a) Finite energy solution (2.6) and (2.12) for). = - 1 + i: Qu. 
(b) Finite energy solution (2.6) and (2.12) for), = - I + t:Re Ql2' (e) 
Finite energy solution (2.li) and (2.12) for A = - 1 +- t:lm QI2' 

How can we thus characterize all finite energy solu
tions? The energy density by itself is not sufficient as there 
exist many different solutions that have exactly the same 
energy density. Integrable models are usually character
ized by an infinite number of conservation laws. Two
dimensional sigma models do have an infinite number of 
such conserved quantities. 1,6 What we should do is then to 
compute explicitly the conserved currents (1.9) for the 
solutions we have analyzed so far and compare the expres
sions for these currents to see if there is any difference 
between them. Unfortunately computing these currents for 
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FIG. 4. Finite energy solution (2.6) and (2.12) for }."~ - O.S + 2i:QJ1. 
(b) Finite energy solution (2.6) and (2.12) for A = - 0.8 + 2i:RcQ12' 
(el Finite energy solution (2.6) and (2.12) for). '= - 0.8 +- i:lmQ\2' 

the solutions (2.6), (2.13) is too tedious to be performed 
in practice, but it seems likely that th.ese currents are mod
ified by the addition of a soliton. Nevertheless, we can 
consider a class of simpler sOlutions having the same en
ergy density and compare their currents. 
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The solutions we can consider are the solutions (2.10) 
with A and B given by constant Hermitian matrices. The 
one parameter family of conserved currents (1.9) for this 
class of solutions is given by 

is-Cu)) = [(l - (lj)/2(1 + w)JiA as!' 

j,,< w) = [ (1 + (t) )/2(1 -- (v) ] iB a,~. 
(2.14 ) 

For this particular class of solutions, we observe that there 
are actually only two independent conserved currents (up 
to a common factor). However, these two currents give us 
all the information we need about the matrices A and B 
and the functions f and g, and determine the solution 
uniquely up to a constant factor. Thus we see that the 
currents contain infomlation that is not contained in the 
energy density. 

As the energy density of a solution remains unchanged 
after the addition of a soliton we can interpret this con
struction as a modification of the internal degrees of free
dom of the solution. Moreover, when we look at the graphs 
of the matrix elements of our explicit solutions (Figs. 2-
4), we see that the shape of the solitons is different after 
the scattering. This means that solitons interact with each 
other in such a way that in thcir interaction they modify 
only their internal (or local) degrees of freedom. 

We have already mentioned that the set of the finite 
energy solutions of the <CpN - 1 sigma models splits into 
different subsets. l] Does the addition of a soliton to the 
Miakowskian model give a similar structure to these solu
tions. The answer to this question is negative. The different 
subsets of Euclidean solutions are really disconnected, 
whereas the one soliton solution (2.6) (wh.ich is actually a 
solution of the rCpl modeI 19

), which we have discussed 
before, goes over to the solution (2.4) in the limit of A. 
going to 00 + Oi. Thus we see that this family of one uniton 
solutions is a continuous deformation of the vacuum solu
tion (2.1O). 

ill. CONSTRUCTION OF SOLUTIONS OF THE 
HYPERBOLIC COMPLEX SIGMA MODELS 

In the previous section we have seen that the so-called 
procedure of the addition of a soliton to a finite action 
solution does not really add a soliton to this solution as the 
energy density of the field configuration remains 
unchanged during the process. Is there any method that 
could possibly add a real soliton to /lny finite energy solu
tion? For the Euclidean model this is the case as the 
UhIenbeck construction modifies a solution in a nontrivial 
way by adding unitons to it. These unitons correspond to 
real peaks in the energy density. Both the multi-soliton 
method and the Uhlenbeck method are based on the Lax 
pair problem (l.7) for the model, but they have been de
veloped, respectively, for the Minkowskian and the Euclid
ean models. Can one adapt either one of them to the other 
class of models? 

The multi-soliton construction has already been mod
ified to permit the construction of Euclidean solutions. 16,17 

When we compare the procedure developed for the con
struction of the finite energy solutions of the ('pN - I 
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model 11 (the Uhlenbeck approach can be thought of as its 
further generalization), it is clear that the solitonic method 
corresponds to a rather trivial modification of the 
solutions. 16 

It is possible to go the other way and adapt the Uhlen
beck construction to the construction of Minkowskian so
lutions of some sigma models. The original method devel
oped for the cpN - I model has already been adapted20 to 
the construction of Minkowskian solutions of the so-called 
hyperbolic complex Grassmannian modek Following this 
generalization, we will now modify the Uhlenbeck 
approach to the construction of Minkowskian solutions for 
the fields valued in hyperbolic complex unitary groups. 20 

The central point of the Uhlenbeck construction de
pends on the use of complex coordinates in the Euclidean 
plane. Light-cone coordinates are commonly used for two
dimensional Minkowskian problems, but the fact that they 
are not related to each other by the complex conjugation 
makes them less convenient for an Uhlenbeck-like COll

struction. The idea put forward in Ref. 20 was to use an
other type of coordinates in the Minkowskian plane, 
namely the hyperbolic complex coordinates defined by 

Z + =X + Et, z _ =X - €t, (3.1) 

where by definition E satisfies 

(3.2) 

and where stands for the hyperbolic complex conjuga
tion. All the algebraic properties of such hyperbolic com
plex numbers were described in detail in Ref. 20. Here let 
us just state that these numbers can be manipulated very 
much like the usual complex numbers. Thus a hyperbolic 
complex number a can be written as a=r + Eh, where r 
and h are two real numbers representing, respectively, the 
real and the hyperbolic-imaginary parts of that number. 
The hyperbolic complex conjugation is defined by a 
= r - €h and the "norm" of a is given by 1 a 12 = 7i a 
= ,-2h2• Note that this "norm" is not positive definite. 

As for complex numbers, rather than using the formal 
constant E, we can use matrices to represent the hyperbolic 
numbers. Thus we can write 

(3.3 ) 

The product of two hyperbolic numbers can then be per
formed by the usual matrix multiplication and the hyper
bolic complex conjugation is given by the conjugation by 
the matrix 

11= (0
1 

\ ) 

(3.4 ) 

Le., 

7i =r;a1j= ( ~ h ~ h). (3,5) 

The fields of the sigma model we want to consider can 
be taken to be given by a square matrix Q whose entries are 
all hyperbolic complex numbers, and which satisfies 
Qt Q = 1, where Qt now stands for (g The action and the 
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equations of motion of the model are stili given by (1.1) 
and (1.3), respectively. Using the variables (3,1), we de
fine 

A -lQta Q A _!QtJ Q + -2 Z.' - -2 Z , I -
(3.6) 

and rewrite the action and the equations of motion as 

s= - 4 f dX2 Tr[A +A - }, (3.7) 

az~A +Jz_A+=O. (3,8) 

The Uhlenbeck procedure now corresponds to the fol-
lowing: assume that Q is a solution of ( 1.3) and that R is 
a projector that satisfies 

RA_Cl-R)=O, 
(3.9) 

(1 - R)(az_R + A_.R) =0. 

Then 

Q=Q(l- 2R) (3.10) 

is Ii new solution of ( 1.3). To prove this it is sufficient to 
observethatA .. = (l/2) Qtaz _ Q =A_ + tLR.Using 
the fact that A -+ = - A~. we see that A_and A + also 
satisfy (3,8). 

Having adapted the Uhlenbeck procedure we can now 
look for some simple solutions and then add unitons to 
them. However, before we do this let us observe that the 
energy momentum tensor is given by 

T'fJ=2 Tr[A +A + +A _A _], 

T lO=2 Tr[A +A + - A _A _], 
( 3.11) 

and is not modified by the addition of a uniton, To see this 
we observe that from Eqs. (3.9) it follows that 
Tr(:4 _ A .. ] Tr[A _A _] and so that the 
energy momentum density of the original solution and of 
the solution obtained from it by the addition of a uniton 
are the same. Thus, as far as this property is concerned, the 
Minkowskian version of the Uhlenbeck procedure is very 
similar to the methods of Harnad et al. 

lt is easy to construct many nontrivial solutions of this 
model. For example, all solutions of the Euclidean unitary 
sigma models constructed in Ref. 14 can be transformed 
into solutions of our hyperbolic model by replacing the 
imaginary constant i by the hyperbolic equivalent E. Un
fortunately aU these solutions were obtained by adding 
unitons to constant solutions for which the energy momen
tum density (3.11) is identically zero. Thus an these solu
tions describe vacuum field configurations. 

However, some finite energy solutions can be con
structed very easily. Take for example 

Q=exp(E{Aif(z +) + fez -)J + B[g(z +) + g(z _ )]}), 
(3.12) 

where A and b are two Hermitian matrices that commute 
with each other, and f and g are any functions that can be 
so chosen that the total energy is finite. For example we 
can take B = 0, f = tanh and 
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A~(i ~ D (3.13) 

For this very special choice, Q is given by 

(

Ch
2 + Ech sh sh2 + ah ch 0) 

Q= 8h2 + Esh ch ch2 + Ech sh 0 , (3.14) 
o 0 1 

where ch = cosh(f(z +) + l(z _ nand sh= sinh(f(z -;. ) 
+ l(z _» (see Ref. 20 to see how to compute a function 
of hyperbolic complex numbers). The use of the hyperbolic 
constant € might seem odd, but it is easy to express this 
solution in terms of real matrices by using the matrix rep
resentation (3.3) of the hyperbolic complex number. In 
this case Q becomes Ii 6 X 6 real matrix: 

sh2 ch sh Ch2 ch sh 0 

c~b:h C:h~h c~h:h c:h~h ~ ~o1 

Q~ Cht sr C~Sh cli' : ~J (3.15) 

The energy density (3.11) for this solution is simply given 
by 

E= (cosh(x + t)] - 2 + [cosh(x _ t)) - 2, (3.16) 

which shows that the total energy of this solution is finite, 
and that this solution corresponds to two lumps which 
propagate in opposite directions with the speed of light. 

We can now try to add a uniton to this particular 
solution. First we calculate the gauge field 

(3.17) 

for this solution, and then solve the Uhlenbeck equations 
(3.9). It is easy to check that in this particular case a 
solution of the Uhlenbeck equation is 

R=vut/vtv, 

where 

1)- ( ~ 1 ) 
- a(z+) , 

(3.19) 

and where a is any hyperbolic-complex holomorphic func
tion. Thus 

Q=Q{! - 2R} (3.20) 

describes a family of one uniton solutions and, from what 
we have said before, an these solutions have exactly the 
same energy density (3.16) as Q. Thus Q can be consid
ered as the solution (3.14) modified by the addition of a 
vacuum solution. 

IV. CONCLUSIONS 

One can construct classes of finite energy solutions of 
some two-dimensional sigma models by using simple 
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Ansatze. The different methods for the construction of 
such nontrivial solutions, like the Backlund transformation 
or the Uhlenbeck procedure, e:ither give solutions that have 
an infinite energy or modify a given solution in a nontrivial 
way but without modifying its energy momentum tensor 
density. To characterize completely a given solution one 
needs, in addition to the energy momentum tensor, also to 
consider other currents. These currents can be interpreted 
as providing us with a description of the internal degree of 
freedom of the solution and they are altered when one 
modi.fies the given solution by adding a soliton to it. 

We have also looked in some detail at the time evolu~ 
tion of the solitonic structures exhibited by our solutions. 
Looking at various matrix elements that exhibit these 
structures we interpret our results as showing that the soli
tons of our two~dimen~ional sigma models scatter inter
nally. This is because we find that during the scattering 
process their internal degrees of freedom do change while 
their energy density exhibits unperturbed evolution with 
the velocity of light. 
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Fourier transformation on.ifl:Y leads to some elementary insight into Witten's expression for 
the Jones polynomial. 

I. INTRODUCTION 

This paper is in response to the interest among knot 
theorists to gain insight into the complex nature of Witten's 
recent formulation of the Jones polynomial! and related in
variants. It is based on some previous unpublished work2 on 
"functional Fourier transforms" of quantum gauge field the
ories. It will be somewhat formal since we do not attempt to 
define the measure for path integration on the space .x£ I f§ of 
connections modulo gauge transformations. From the point 
of view of theoretical physics, Witten has indicated that his 
approach to knot invariants could be relevant to physics be
yond the Planck scale and indeed, in the case of non-Abelian 
gauge fields the dependence of the knot invariant on the 
framing appears to come out of conformal field theory.! 
There is a certain amount to be cleared up here even in the 
U ( 1) case that we look at in detail. 

Fourier transforms may be performed on arbitrary 
locally compact Abelian groups w as follows. Let W 
= Hom (w,S !) be the group of continuous characters of w. 

These form a group (the Pontryagin dual) by pointwise mul
tiplication and w<;;;!,w cfRef. 3.If/EC(W, C) (the C * algebra 
of continuous complex-valued functions on W that vanish at 
infinity), the Fourier transform of/is defined as 

(1) 

where dX denotes the left-invariant Haar measure on W. The 
Fourier transform map is an isomorphism between the C * 
algebra C(w, C) and C *(w, C) (the C* algebra associated to 
functions on w with convolution product). 3 

II. FOURIER TRANSFORM OF CHERN-SIMONS 
FUNCTIONAL 

In this paper we apply such a Fourier transform/ormal
ly to the following groups. Let Mbe an oriented three-mani
fold with H ! (M) = O. If M is not compact, we implicitly 
assume suitable boundary conditions for all fields. Let 

w = free Abelian group on oriented knots in M. (2) 
erasure of overlaps of opposite orientation 

We suppose that the knots are piecewise smooth. Let .x£ I 
f§ (U ( 1 » denote 

{(L,A) ;LEU ( 1) bundles over M, AEconnections on L } 

local gauge transformations 
(3) 

This forms a group under pointwise addition of connections 
and multiplication o/bundle transition/unctions. The group 

.x£ I f§ (U (1 » is essentia!!t.the dual of w [more precisely, 

.x£ I f§ (U (1) H;;w, w!;;;;;; I Y'(U (1»] according to the pair
ing 

(A,K) = exp t (1 A ). (4) 

We have adopted conventions in which the U( 1) connection 
is written tA so that A is real in local coordinates. These 
groups are not naturally locally compact, so there is, in fact, 
no left-invariant Haar measure. However, the measure 
!!iJ [A] formally used by physicists on .x£ I f§ , essentially 

!!iJ [A] = IIXEMdA(x) (5) 

(times a gauge-fixing factor to take care of the fact that we 
only wish to integrate over a quotient space of.x£) i.e., essen
tially a product of Lebesgue measures on the variables A (x), 
is designed to be formally left invariant for the pointwise 
addition on .x£ I f§ (U ( 1 ) ) described. 

We are, therefore, formally in a position to Fourier 
transform interesting functions on .x£ I f§ (U ( 1 » to func
tions on knots. Thus we have the following theorem. 2 

Theorem 1: The Fourier transform of the exponential of 
the Chern-Simons functional al2 SMA /\ dA is the exponen
tial of the self-linking number of the knot, 

~ 

= CS(¢)exp[ - (tI2a)link(K,K)], 

where ¢ denotes the empty set (the identity in w). 

Before giving our elementary proof of this, we need a 
lemma on the self-linking number. Note that the linking 
number link(K!,K2 ) is defined for disjoint knots K 1,K2' 

We define the self-linking number in R3 to be 
lim&->o [lIVol(B E )]SB,dElink(K,Kl ), where Kl denotes K 
displaced uniformly by the vector l and BE is the ball of 
radius €. One may expect that link (K,Kl ) is then defined for 
almost all l so that the integral is well defined. Further, ge
nerically, the limit link (K,K) exists. For a general manifold 
we envisage a similar definition using a metric connection. 
Note that link (K,K) is not necessarily an integer and not a 
diffeomorphism invariant. Of course, we can think of link 
(K,Kl ) as an invariant of the pair (K,l). Where defined, link
ing number behaves biadditively and self-linking number be
haves quadratically with respect to the group structure on w. 

Lemma 2: Let K be a knot in M. Consider an infinitely 
thin solenoid wound along the knot such that the magnetic 
field produced by the solenoid has unit strength (and points 
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A" 

FIG. 1. The vector potential A •. 

tangentially to the knot). This is depicted in Fig. 1. Let A K 

denote the vector potential for this electromagnetic configu
ration. [For concreteness, we suppose AK is fixed uniquely 
by the further condition d *AK = 0 (Coulomb gauge).] 
Then 

JM AK, /\dAK' = link(KI,K2), JM AK /\dAK = link(K,K). 

Proof: Mathematically, the magnetic field *FK (corre
sponding to curvature FK ) is characterized as the (distribu-

tional) form on M such that 

i B = 1M FK /\B, VBE/\ I(M) 

[cf. the Poincare dual of K (Ref. 4) except that we do not 
suppose dB = 0]. In particular, 

Vt/JE/\ o(M). 

Hence,dFK =O.IfHI(M) =OthenFK =dAKandifinaddi
tion, M is compact, AK is uniquely fixed by d *AK = 0 using 
Hodge theory. [In fact, one can see, in general, that 
[ FK ] en 2 (M,Z) so that there exists a U ( 1) connection A K 
with curvature FK.] Then, 

r dAK , /\ AK, = f. AK , = r dA K,. JM K. JspanKI 

Now dA K , is the curvature corresponding to a magnetic field 
along K2, with 8-function cross section: The only points in 
the span of KI that contribute to the integral are those at 
which K2 intersects span K I' which contribute ± I according 
to the orientation. D 

Proof of Theorem 1: Using this lemma and integration 
by parts, we have 

Cs(K) = 1 Pfl [A ]exp(t i A ) expe; L A I\dA ) = J Pfl [A ]exp(t 1M dAK I\A + ~ A I\dA ) 

= J Pfl [A ] exp [t; 1M( A + ; ) 1\ (A + ; )] exp( - 2~ JM AK 1\ dAK ) 
,... 

= CS(t/J)exp[ - (t/2a) link (K,K) ], 

where in the last line we used formal translation invariance 
of the measure Pfl [A] to change variable of integration, 
Pfl [A] = Pfl [A +AJa], and Lemma 2. D 

The proof given is a generalization of the familiar fact 
that the Fourier transform of a Gaussian e(,a/2)x

TQ
x is pro

portional to a Gaussian, e - (,/2a)pTQ -'p. Here Qis a symmet
ric invertible n X n matrix, XEW = R", pEW = R" and these 
two groups are dual according to the pairing (x,p) = e,xTp. 

III. FRAMING DEPENDENCE AND DISCUSSION 

In the language of Witten, I Theorem 1 says 
(Olexp(tSKA) 10) = (OIO)exp - (tl2a)link(K,K). If KI,K2 
both have vanishing self-linking number (e.g., if they are 
planar in R3

), then 

link(KI + K2,KI + K2) = 0 + 2link(KI,K2) + 0, 
so that 

(olexp(t LA) exp(t LA )1 0) 

= (olexp L +K, A 1
0) 
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(cf Ref. 1). However, it should be stressed that this is only 
true for K; of zero self-linking number: The function on knots 
constructed by the U ( 1) quantum field theory is the self
linking number, rather than a link invariant. 

The above now suggests an interpretation of the more 
general quantum field theory of &' / [1 with non-Abelian 
structure group G (connections on an associated vector 
bundle, associated by a representation of G) as studied by 
Witten. I Now KI-+ Tr exp (t S KA ) is not a character of w, but 
because of trace identities in particular representations of 
particular groups [such as SU(2)], there are relations be
tween Tr exp(t'SK,A)exp(tSK,A) and Tr exp(t SK,A), 
Tr exp(t f K,A). Second, &,/[1 is not a group. Third, even if 
we could put some kind of group structure on it, it would not 
be commutative. Thus w would not be its dual group: we 
should work with a suitable noncommutative analog. It is 
possible that these problems can be solved by putting a Hopf 
algebra structure on formal linear combinations of points in 
&' / [1 (a point consisting of a connection and a representa
tion). For Hopf algebras there is a dual Hopf algebra5 and 
notions of Fourier transform precisely generalizing those for 
Albelian groups referred to in Sec. I and used in Sec. II. 

Finally, the Chern-Simons functional is no longer 
Gaussian, having a cubic A 3 term, which further complicates 
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the approach of Sec. II. As a result of these complications, 
one does not obtain a self-linking number, but a generaliza
tion. In the case of G = SU(2) - spin!, we apparently ob
tain the Jones invariant.! Note however, that as it stands, 
even the self-linking number is not an actual invariant: rath
er, one must think of link (K,K1 ) as an invariant of the pair 
(K,E). 

As such, we do not need to work with uniform E. A pair 
(K,7j) is aframed knot if K is a knot and 7j is a nonvanishing 
nontangential vector field defined on K. To be concrete, we 
suppose that at each point on K, 7j has uniform norm 'T/ > 0 
and is orthogonal to k, both with respect to a fixed Rieman
nian metric on M. Witten then proposes! that the quantum 
field theory in the U ( I) case, and its generalizations, can be 
somehow modified by the chosen 7j, such as to obtain an 
invariant of framed knots. Thus in the U ( I) case we have 

(0 I exp(l 1 A ) 10) l} = (olo)exp [ - 2~ link(K,Kl}) ]. 

(6) 

Next it is claimed that the framing dependence of these 
framed knot inavariants is particularly simple and can be 
factored out to obtain something that depends only on the 
knot. We now analyze this issue in the case of G = U ( I) and 
knots in M = H3. 

Indeed, the self-linking number in H3 was previously 
studied in Ref. 6 (in another context), where it is called the 
writhing number. Reference 6 showed that for sufficiently 
small'T/ 

link (K,Kl) ) = twist (K,7j) + link (K,K) , 

where 

twist(K,7j) = I dt (~~~~'k 
JK 'T/ IK 

measures the twist of 7j about K. Note that the twist is 
not necessarily an integer and not a diffeomorphism in
variant. Thus increasing the twist of 7j by I changes 
(Olexp(l S KA) 10) l}1 (010) by a factor of q = e - ,/2a (cf. Ref. 
I with a = - k 141T). Unfortunately, any attempt to divide 
by qtwist(K,l}) results only in link (K,K) , This is not an invariant. 
It is not clear that the SU(2) case would work any better. 

Instead of starting with framed knots invariants, I 
would like to propose the following variation, motivated by 
Ref, 7. It was argued in Refs. 2 and 6 that the self-linking 
number in H3 coincides with the oriented self-crossing num
ber, cross (K,E), averaged over all projections E onto H2. 
Here E is again a uniform vector of norm E> O. Viewing the 
knot from a generic direction E we define the oriented self
crossing number as the number of points at which the knot 

T 

crosses itself, counted + I according to orientation; -+ is 
- I 

+ 1. Instead ofEq, (6), we suppose that the quantum field 
theory is modified according to E such that, 

for E> 0 sufficiently small. Again, this depends on E. Indeed, 
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link (K,K1 ) = cross(K,E) for E sufficiently small. Thus divid
ing (Olexp(l SKA ) 10)1/(010) through by rtr05S

(K,l) gives a 
knot invariant, the identity function. 

Similarly, in the caseofSU(2)-spin!, one may expect 
that (Olexp(l S KA) 10)11 (010) has a similar E dependence. 
Dividing through by rtross(K,l) one would then obtain a knot 
invariant, the Jones invariant, cf. the state models of Ref. 7. 

Thus the Jones invariant should be regarded as the ratio 
of the "exponentiated SU (2) -spin~-self-crossing number in 
projection €" to the exponentiated U ( 1 ) -self-crossing num
ber in projection E, obtained respectively by "Fourier trans
forming" on .PI I [§ (SU (2) ) and on .PI I [§ ( U ( 1 ) ), both theo
ries modified by a choice ofE, which cancels out in the ratio. 

Secondly, returning to framed knots, the above analysis 
also suggests that in the unmodified SU(2)-spin ~ quantum 
field theory, (Olexp(l S KA) 1°)/(010) gives a well-defined 
function on knots, the exponentiated SU(2)-spin ~ self-link
ing number, which can then be turned into a framed knot 
invariant by multiplying by an SU(2) analog of qtwist(K,l}). 

This is far from the line taken in Ref. 1, but presumably the 
definition of (Olexp (l SKA) 10)l}/(010) implicit in Ref. 1 
could be reinterpreted as a definition, coming out of confor
mal field theory, of such an SU (2) -spin! twist or G - P 
twist for general group G and representation p. 

IV. FOURIER TRANSFORM OF YANG-MILLS 
FUCTIONAL 

In the framework of Sec. I, we can consider the Fourier 
transform of other functions on .PI I [§. Thus we have the 
following theorem. 2 

Theorem 3: The Fourier transform of the exponential of 
the Yang-Mills functional ({3 12) S M *dA A dA is the expo
nential of the self-inductance of the knot, 

YM(K) = f ~[A ]exP(l 1 A )expC: fM *dAAdA) 

-= YM(¢)exp[ - (tl2/:1)ind(K,K)]. 

The mutual inductance of two disjoint knots in H3 is 
defined by the formula 

. d( )--1-1 d J. dt K!(S)'K2 (t) 1n K),K2 - S . 
41T K, K, IK! (s) - K2(t) I 

(8) 

This is analogous to the Gauss formula in H3 (Ref. 8), 

link(K),K2 ) 

=_1_ I ds l dt(K)(S) -K2 (t»·(K)XK2 ). 

41T J.-, J.-, IK) (s) - K 2 (t) 1
3 

Physically, ind(K),K2 ) is defined as the energy of interaction 
due the force between knots K) and K2 carrying unit electric 
currents. Like the self-linking number, we define self-induc
tance as the average inductance between K and K1 • Unlike the 
self-linking number, the self-inductance diverges as E-+O. 
This infinity is well known to radio engineers: The self-in
ductance diverges as the thickness of the wire goes to zero. 
The infinity can presumably be handled by a renormaliza
tion procedure analogous to the renormalization of the 
Yang-Mills action in quantum field theory,9 For our pur
poses we imagine an implicit finite E#O. One could also reg
ulate the infinity by introducing lE in the denominator ofEq. 

Shahn Majid 926 



                                                                                                                                    

AI< 

FIG. 2 The vector potential A K. 

(8), more closely in analogy with the quantum field theory. 
Note that ind is biadditive. 

Lemma 4: Let K be a knot in M. Consider a current of 
unit strength flowing around the knot. This is depicted in 

I 

Fig. 2. Let A K denote the potential for this electromagnetic 
configuration. [We suppose that A K is fixed by the condition 
d *A K = 0 (Coulomb gauge).] Then 

fM *dA K, 1\ dA K, = ind(KI ,K2 ), 

fM *dA K I\dA K = ind(K,K). 

Proof The proof is straightforward. The current in K I is 
a co-closed one-form, so by Hodge theory [e.g., if M is com
pact and using H I (M) = 0, H 2 (M) = 0] there is a magnetic 
field corresponding to a potential A K, such that *d *dA K, is a 
unit vector along K I with a D-function cross section. Explicit 
formulas exist for this. The force experienced by K2 due to its 
current is then given by the Lorentz force formula. 0 

Proof of Theorem 3: We first observe from the proofs of 
Lemmas 2 and 4 that *d * dA K = *dAK, so that *dA K = AK 
[plus an exact part, which we assume is forced to be zero 
since d * (*dA K) = 0.] We also assume integration by parts. 
Then we have 

YM(K) = f £t7 [A ]exp(t i A ) exp( t: fM *dA I\dA ) = f £t7 [A ]exp(t fM dAK I\A + ~ *dA I\dA ) 

= f £t7[A]exp(tfMd*dAKI\A+~ *dAI\dA) = f £t7[A]exp(tfM*dAKl\dA+~ *dAl\dA) 

= f£t7[A]exp[t: fM(*dA+ *~K)l\d(A+~K)]exp( - 2~ L *dAKl\dAK) 

= YM«(,b)exp( - 2~ ind(K,K»). 

where in the last line we used formal translation invariance 
of the measure £t7 [A] to change variable of integration, 
£t7 [A] = £t7 [A + AK 1,8], and Lemma 4. 0 

Rigorous definitions of the measure £t7 [A] are known in 
the U( 1) case for trivial bundles, so that Sec. II and IV can 
presumably be stated rigorously. The measures are then not 
exactly translation invariant so that the theorems above 
must be stated with somewhat more care. The non-Abelian 
cases are expected to present somewhat more difficulty. In 
any event, it is hoped that the elementary observations of this 
note help to put Ref. 1 into an interesting context. Other 
aspects of Ref. 2, related to speculation about high energy 
physics, are available in Ref. 10. 

Some of the results on Chern-Simons and linking-num
ber have also been obtained independently (in another con
text) in the recent work II cited in Ref. 1. 
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Spherically symmetric static SU(2) Einstein-Yang-Mills fields 
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The discrete family of global solutions of the static spherically symmetric SU (2) Einstein
Yang-Mills equations that were recently numerically obtained by Bartnik and McKinnon 
[Phys. Rev. Lett. 61, 141 (1988)] is studied in greater detail, both numerically and 
analytically. A similar discrete sequence of numerical solutions outside a regular event horizon 
is shown to exist for every radius of the horizon. 

I. INTRODUCTION 

Bartnik and McKinnon I have recently found numeri
cally a discrete family of globally regular static spherically 
symmetric solutions of the SU (2) Einstein-Yang-Mills 
(EYM) equations on]R3 X R for which the potential falls off 
asymptotically like lIr. These are most interesting solutions 
both physically and mathematically since, in view of Lich
nerowicz's theorem,2 the existence of such nontrivial global 
solutions of a fundamental field theory comes somewhat as a 
surprise. (See Ref. 3 for a detailed discussion). 

This phenomenon seems to result from the combination 
of the Yang-Mills with the gravitational equations because 
there are no pure static Yang-Mills solutions in the three
dimensional space.4 There also appear to be no simple topo
logical arguments for the existence of a discrete family of 
solutions as in the case of the monopoles ofthe Yang-Mills
Higgs equations. In fact, the solutions of this family are char
acterized by one "quantized" mass parameter. Moreover, 
these mass "eigenvalues" appear to converge to 1 (i.e., the 
limiting mass in relativistic units is equal to the radius of the 
"core," in which the mass-energy density is concentrated). 
They arise simply from the boundary conditions at the cen
ter and at infinity together with the considerable nonlinear
ity of the equations. 

The solutions of Bartnik and McKinnon suggest that 
also black hole solutions of this system might exist. Al
though a "no hair" theorem was recently extended by 
Galt'sov and Ershov5 to the SU(2) Yang-Mills fields in the 
"essentially Abelian" case, they left open the possibility that 
solutions which behave like those of Bartnik and McKinnon 
in the asymptotic region might form regular event horizons. 
Our numerical calculations strongly suggest that indeed a 
family of such solutions exists, characterized by a discrete 
mass parameter for every choice of the radius of the event 
horizon. This would answer in the negative Yasskin's6 con
jecture that all the black hole solutions of the EYM equa
tions that are asymptotically flat with a nonsingular event 

,horizon and with gauge fields that fall off like lIr at infinity 
are of the form of his family that generalizes the Reissner
Nordstrom solutions in a somewhat trivial way to higher
dimensional gauge groups. 

Of course, the existence of these classes of solution has 
not yet been proved rigorously. We do not know at the pres
ent time how difficult such a proof is going to be. Also, one 
might want to investigate the stability within the set of all 

static solutions or even dynamic stability, a problem that 
may be even harder. For the time being, we make a more 
modest attempt to explore at least some properties of this 
interesting system of equations, mostly under the assump
tion that solutions exist. 

In Sec. II we establish our notation and review the deri
vation of the basic differential equations in the static spheri
cally symmetric case. We then derive some elementary prop
erties in Sec. III, some of which have already been noted by 
Bartnik and McKinnon. I After a short report in Sec. IV on 
our numerical results, which qualitatively agree with those 
in Ref. 1, we derive in Sec. V a number of global estimates on 
the parameters that describe the solutions. Finally, in Sec. VI 
we show that to prove existence of a regular event horizon 
for an asymptotically flat solution amounts again to solving 
a singular boundary value problem. The numerical evidence 
supports our belief that there also exists a discrete family of 
solutions. 

II. STATIC SPHERICALLY SYMMETRIC FIELD 
EQUATIONS 

In a general static space-time whose metric we write in 
the form 

g = - V 2 dt®dt + rij dxi®dxj
, 

with at v = at rij = 0, where r is a Riemannian metric on a 
three-manifold ~, we consider a stationary Yang-Mills con
nection 

A = (A~ dt+A~dxi)Ek 
with atA ~ = ° and write 

F = 4DA = (E~ dt 1\ dxi + ~B t dxi 1\ dxi)Ek . 

[Here Ek denotes a basis vector of the Lie algebra of SU (2 ) 
and we may choose Ek = ( - il2)uk in terms of the Pauli 
matrices.] 

We consider here only magnetic type fields, i.e., we as
sume that A ~ and therefore E ~ vanish. The Yang-Mills 
field equations then are 

DrB~i + V-I arVB~i = 0, (1) 

where D now denotes the three-gauge-covariant derivative, 
e.g., on Lie Algebra-valued one-forms, 

Dict>r = Vict>~ - A ~~Im ct>j. 
The mass-energy density is given by 
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41Tp, = !IIB W = !B ~Bkij 
and the stress tensor 

41TTij =B~B~ -!rijIlBII2
• 

For general YM fields over arbitrary manifolds the no
tion of a symmetry group is not completely straightforward 
since first an appropriate action of the group on the principal 
bundle must be defined (see Ref. 7). Such a choice is not 
difficult, however, in the case of spherical symmetry of an 
SU (2) -gauge field with trivial principal bundle. There are 
natural bundle automorphisms by left actions of SU (2) on 
itself and via its projection onto SO (3) on the base manifold 
~. An invariant connection is then defined by a connection 
form A satisfying .~ 

.!fX.AI= -~kmAm 

for the three generators X k ofSO(3) on~. On a flat (~,r) 
the calculation leads to Witten's8 ansatz, which is easily 
adapted to curved spherically symmetric (~,r). 

If n is the outward pointing unit vector field orthogonal 
to the orbits of SO (3), r = f,€ ijk dXi 1\ dxi 1\ dxk the volume 
element on ~, and{ek} an orthonormal frame field on ~ 
serving as a basis of the Lie algebra of SO ( 3) with {O k} the 
dual frame field, then we can write A k = 0 ~A ~ dxi, where 
the A ~ are now the components of a tensor field on ~ and 
have the form 

(2) 

for scalar functions X, Y, Z of the curvature radius r only. 
This gauge potential (contrary to another one some

times used, e.g., in Ref. 1) will be globally regular on ~ in 
most cases. If one requires that it be C 2 at the center it follows 
easily that 

X=Xo +Xlr+ OCr), 

Y=Xo+Xlr+ OCr), 

Z = Zir + OCr). (3) 

Gauge transformations Ar-+A = adg -, A + g- I dg with 

g: ~ ...... SU(2): ~g(r)O~niak (4) 

preserve the structure (2) of A. In fact, if we let 

w: = 1 - rZ + irX = :lwleiY (5) 

and let g( r) = sin(!A (r)) the effect of ( 4) is 

A A A . ~ 
w=we', Y= Y+n'aiA= Y+-. 

dr 

We can thus choose A so as to make Y zero. The YM 
equations (1) now also decompose into three terms propor
tional to 8;, nini' and ~jknk and the nn term becomes 
dr/dr = 0 so that the remaining gauge transformation with 
constant A can be used to make w real. 

It now turns out that one of the Einstein equations be
comes a consequence of the others and the YM equations so 
that finally the whole system ofEYM equations reduces (in 
suitable units) tol 

S -IS' = 2r- lw,2, 

m' = NW'2 + !r- 2 W 2
, 

rNw" + (2m - W 2r- l )w' + Ww = 0, 
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(6) 

(7) 

(8) 

where we have put I: = d/dr, W: = 1- W, and 
S: = VN -1/2 and introduced the Schwarzschild type mass 
function mer) so that N = 1 - 2m/r, and where we write 
the three-metric now in the form 

r= N- I dr + r(d0 2 + sin2 o dr/i). 

The YM curvature is then given by 

F~ = OHBTE'ij + (BL -BT)n1€ij,n'], (9) 

where BL = - r- 2 W and BT = r- 1N I
/2w' are the radial 

and angular components. In terms of these the mass energy 
density becomes 

41Tp,=!Bi +B}=m'r 

and the radial and angular pressures become 

41TP, = B} - !Bi and 41Tp(J = ~BL 

respectively. Then T~ = - Jl + P, + 2p(J = 0, as it should 
for a pure gauge field. 

From Eqs. (3) and (5) it follows that 

w = I - pr + 0(,-3), for r ...... O. (10) 

Similarly, it is well known that for a spherically symmetric 
space-time with a regular center 

N(O)=l and S(O)=So>O, (11) 

whence also m(O) = O. 
For r ...... 00 we require asymptotic flatness so that 

N-.t and S ...... 1. (12) 

III. ELEMENTARY PROPERTIES AND LOCAL ANALYSIS 

Clearly the obvious singularities of the system (6)-(8) 
are where r = 0 or r ...... 00 or where N = O. The latter case can 
physically only occur when a black hole event horizon is 
being formed and will be examined more closely in Sec. VI. 

At r = 0 we require wand N to be of the form (to) and 
(11), respectively, for physical reasons. It is then easy to 
show that a formal power series in r for wand N can be 
constructed consistently to arbitrary orders and that both m 
and w depend only on the choice of p. In fact, it is straight
forward to adapt the textbook existence and uniqueness 
proof to obtain the following lemma. 

Lemma 1: There exists a unique solution (m,w) of (7) 
and (8) with the initial values 

w(O) = 1, W'(O) = 0, wIt (0) = - 2P, m(O) = 0 

for small enough r. This solution is analytic in rand p. 
Let us now assume that Nand ware smooth functions 

and that N>O on some interval Ie ]0,00 [. Then Eq. (8) 
shows that at a critical point of w the second derivative has 
the same sign as Ww. It follows that the critical points of w 
are (nondegenerate) maxima (minima) iff 0 < w < 1 
(0 > w > - 1). The function w will therefore oscillate in the 
strip [ - 1,1] and if it ever crosses ± 1 then Iwl will grow 
monotonically. If, on the other hand, w'(r.) = 0, 
w(r.) = ± 1, O<r. < 00, and N>O, then the standard 
uniqueness theorem for ordinary differential equations 
shows that w = ± 1 and m = const is the only solution. In 
summary we havel the following lemma. 
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Lemma 2: Where N> 0 the function w cannot have a 
minimum except where 0> w> - 1 and no maximum ex
cept where 0 < w < 1. 

Adopting the physical boundary conditions and requir
ing regularity for w we get a slightly stronger result. 

Lemma 3: If w is e 2
, w(ro) > 1, w'(ro);;;'O [or <0 

ifw(ro) < - 1] andO<N < I,S>OonI = [ro,oo [andifthe 
asymptotic conditions ( 12) hold, then w cannot have a finite 
limit as r ..... 00 (and, in fact, must grow at least linearly with 
r). 

Remark: The condition w'(ro);;;'O will always be satis
fied if w < 1 before it leaves the strip [ - 1,1]. 

Proof: By Lemma 2 we have w';;;.O on I. But one can 
write (8) [using (6)] in the form 

(NSw')' = - r- 2SWw, (13) 

so that 

NSw' =N(ro)S(ro)w'(ro) - L dss- 2SWw. 

Since w > 1 and hence W < 0 in the integrand, this shows that 
for large r, at least, w' (r) is thus bounded below by the value 
ofNSwatro' 

If w grows linearly in r, some components of the YM 
curvature (9) need not go to zero at 00, which is not the 
situation we wish to study. It is more reasonable to assume 
that w has a finite limit w co for r ..... 00. Lemma 3 then shows 
that I w co 1< 1. In fact, we assume that from now on 

w = w co + 0 ( : ). w' = 0 (~). w" = 0 (~ ), 

(14) 

then Eq. (8) shows that w co (1 - w:, ) = 0 so that 
w co = ± 1 or O. But the following argument of Galt'sov and 
Ershov5 shows that w co = 0 cannot occur: They integrate 
(13) from the largest critical point r. of w to 00 getting 

(CO dr r- 2SWw = o. 
J. 

Since Iwl < 1, hence W>O, w must change sign between 
r. and 00 unless it is identically zero. [The case Woo = ± 1 is 
sometimes l

,5 referred to as the one of vanishing magnetic 
charge, although this statement only makes sense if the two
form Fis integrated over a two-sphere at infinity in an appro
priate gauge (cf. Ref. 9).] 

In order to start a numerical integration at 00 we need 
the following lemma. 

Lemma 4: The system (7) and (8) admits a formal 
asymptotic series in powers of lIr, 

00 

m = mco - L mkr-k, 
k=1 

W= Wco [1-!!...+ i wkr- k ], 
r k=2 

(15) 

(16) 

where w co = ± 1 and all coefficients m k' W k are determined 
in terms of moo and a. 

The proof is straightforward. Observe that Eqs. (7) and 
(8) are invariant under the transformation w ..... - w, so that 
to every solution (m,w) also (m, - w) is a solution. There
fore m k and w k do not depend on w co • 
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We will also assume from now on that the function m (r) 
has a limit moo as r ..... 00. 

Next we consider the local behavior of solutions near a 
finite nonzero value ro of r. Not surprisingly, if wand m are 
assumed to be analytic in r near ro the power series are fully 
determin:ed by the values of w, w', and m at ro as long as 
N(ro) #0, i.e., 2m(ro) #ro> since a unique solution in a 
neighborhood of ro with these initial values is guaranteed by 
standard theorems .. 

If, however, N(ro) = 0 there is only a one-parameter 
family of regular analytic solutions. More precisely we have 
the following lemma. 

Lemma 5: The system (7) and (8) admits a formal pow
er series solution at roE]O, 00 [, where N(ro) = 0, provided 
that N'(ro) #0 and w(ro) #0. All coefficients of the series 
for m and w are then determined in terms of the value 
Wo = w(ro)' 

We will need this result to construct numerical black 
hole solutions. 

When integrating numerically upwards from r = 0 with 
the initial conditions ( 10) and (11) we see that w develops a 
singularity as NlO. It appears that wand m remain finite, but 
w' blows up. We try therefore solutions ofthe form 

y- 1-
W = Wo + t w, m = 2rO + m, 

where t = ro - r, 0 < r < l,and ill and in are regular func
tions. It turns out that for r = ! we can construct a formal 
series consistently. We have the following lemma. 

and 

Lemma 6: If 
co 

m = !ro - L mksk 
k=2 

where s = ~ro - r, all coefficients mk and Wk are well de
fined in terms of ro, wo, and w2 provided ti # (1 - ufo )2, i.e., 
N'(ro)#O. 

The proof is again straightforward but lengthy. In par
ticular, we find that 

w~ = ro#O, (17) 

showing that w' tends to 00 at ro like (ro - r) -1/2. 

Incidentally, if r tends to ro from aboveands = ~r- ro 
then Eq. (17) is replaced by w~ = - ro, which has no real 
solution. The function w behaves thus quite differently as it 
approaches ro from below or from above. 

We have not proved that the solution of the type given in 
Lemma 6 is the only possible singular one through a point ro 
with N(ro) = O. The numerical solution satisfying our 
boundary conditions at r = 0, however, exhibits exactly this 
behavior. 

Finally, it is interesting to speculate what happens if N 
has a higher-order zero at a finite value r o. This is the limiting 
case when the minimum of N is exactly O. So far, we have not 
been able to find any consistent analytic approximation to m 
and w in the neighborhood of such a point. The numerical 
experiments also show that this must be quite a horrible sin
gularity. 
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IV. NUMERICAL RESULTS 

We have repeated the numerical calculations reported 
by Bartnik and McKinnon 1 and find the same qualitative 
results shown by their graphs. Since our numbers differ 
somewhat we describe our method in a little more detail. 

For this singular two-point boundary value problem we 
use the method "shooting to a fitting point" as described in 
Press et al.1O using double precision and an accuracy of 
E<:;; 10- 12 in the adaptive step size Runge-Kutta method. 
The integration starts at r = 0.01 or less and at r;;. 106

, at 
which points we calculate the initial values of m and w using 
the asymptotic series to arbitrarily high terms until they con
verge within E. Starting with some values moo, a, and /3 we 
iterate until the total difference of m, w, and w' at the fitting 
point is less than about 10-9

• The actual errors in the "eigen
values" m k , are, of course, much greater than 10-9 since 
quite a few numerical cancellation errors occur in the sum
mation of the power series as well as the numerical integra
tion. The numbers obtained for the location of the zeros of w 
are very approximate. They were obtained by polling the 
function calculating derivatives for changes in the sign of w. 

Our results are as shown in Table I. 
From the graphs corresponding to Table I (cf. Ref. 1) it 

is also seen that the amplitude of the oscillations of w is very 
small where the zeros accumulate near r = 1 and gets bigger 
between the larger roots. 

On the basis of these numbers we are tempted to formu
late the following conjectures. 

There exists an infinite sequence of asymptotically flat 
globally regular solutions (mk' Wk) of the EYM equations 
on R3

, parametrized by the number of zeros of the potential 
component w. 

As k -+ 00 the total mass moo of the solutions tends to 1 
from below, the parameter /3 tends to a finite value of about 
0.7065, a tends to 00. 

The function N(r) has for all solutions only one mini
mum near r = 1. This minimum value approaches zero as 
k-+ 00. 

The zeros of solution w k accumulate near r = 1. 
For large k the function Wk approaches the value ro, 

where N has its minimum, qualitatively like ~ r - ro from the 
left and somewhat like (r - ro)sin(r - ro) -I from the right. 

B} and BLand hence the mass-energy density and 
stresses, fall off rapidly for r> 1. 

Clearly these numerical solutions pose interesting math-

TABLE I. Parameters of the solutions (mk (r), Wk (r» ofEqs. (7) and (8) 
satisfying the boundary conditions. 

k mro a (J Zerosofw 

I 0.8286 0.8934 0.4537 1.55 
2 0.9713 8.864 0.6517 1.10,3.70 
3 0.9953 58.93 0.6970 0.990, 1.67, 14.2 
4 0.9992 366.3 0.704 9 0.969, 1.15,3.69,77.2 
5 0.9999 2251 0.7062 0.966, 1.03, 1.69, 14.1,460 
6 0.99998 13 820 0.7064 0.965, 1.004, 1.15, 3.69, 74.9, 

2820 
7 0.999996 80300 0.70641 0.965, 0.999, 1.03, 1.71, 14.9, 

492, 18720 
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ematical problems, although it is not yet known whether 
they are stable and of physical importance. In the next sec
tion we begin such a study by deriving at least some bounds 
on the parameters moo and /3 analytically. 

V. SOME GLOBAL ESTIMATES 

In this section we show analytically that a regular solu
tion (m,w) satisfying the initial conditions (10) and (11) 
ceases to exist before w reaches 0.76 if f3> 15.4 (Theorem 1) 
and also establish an upper bound for the total mass moo 
(Theorem 2) for a regular solution of the boundary value 
problem. In view of the numerical results these values are 
probably not the best possible. 

Theorem 1: If (m,w) is a solution of the system (7) and 
(8) with the initial conditions (10), N(O) = 1 and if 
/3> 15.4, then Iw'l tends to 00 before w reaches 0.76, and 
hence no regular solution of the boundary value problem 
exists. 

We prove Theorem 1 using the next three lemmas. 
Lemma 7: Suppose on [0, ro] a solution of the system 

(7) and (8) with/3> 0 exists and that l;;.w;;.O and I;;.N> o. 
Then 

2(1- w);;.rNlw'l on [O,ro]' (18) 

Proof: We have by straightforward calculation 

(rNw')' + 2(W,2 - 1 )rNw' + Ww = o. (19) 

For a given r E[O,ro]' we integrate (19) and use 

l' w'3sN ds<:;;O 

and 

1'SNW' ds;;. 1'sw' ds = rw -1' w ds 

to obtain 

- 2rw + fW(3 - w2)ds + rNw';;.O. (20) 

But on ]O,ro], w is decreasing (Lemma 2) so that we have 
w(3 - w2)<:;;2. Thus (20) yields (18). 

Remark: In particular, ( 18) implies that if I w'l blows up 
in [O,ro], N tends to zero. The converse is also true as can be 
seen from 

(N Iwl')' + (2W,2r -1 - ~w(1 + w)r)N Iw'I;;.O, (21) 

which is obtained from (7), (8), and (18). Because (21) 
implies for so<:;;r, that 

N(r) Iw'(r) I ;;.N(so) Iw'(so) I 

X exp(L[ ~ w( 1 + w)s - 2W'2S- 1 ]dS) 

so that if N(r) tends to zero then Iw'(r) I blows up. 
Lemma 8: Suppose on [O,R] the solution exists with 

w;;.w(R) = 0.76. Then on [O,R] we have 

(22) 

Proof 1: Since /3> 0 it follows from the series expansion 
at r = 0 that there exists an r*, with 0 < r*<:;;R, such that, on 
[O,r*], (22) holds. Suppose, to the contrary, that, on 
]r*,r] C [O,R], 
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(23) 

Then using (23) and (7) and (8) we have, on ] r* ,r], 
rNlw'I' - rNlw'l > W 2r- Ilw'l- r-2(1- W)3. (24) 

We divide (24) by rN and estimate the right-hand side of the 
resulting inequality using (18). We thus obtain 

rlw'I' -lw'l >!W(1 + w)r- Ilw'1 2 - !(1- W)2r-2Iw'l· 
(25) 

Integrating (25) on [r*,r], we get 

rlw'l > r*lw'(r*) 1+ 2(w(r*) - w) 

- - (1 - w)2Iw'ls- 2 ds. 1 l' 
2 r* 

(26) 

Now using HOlder's and Cauchy's inequalities we have, for a 
positive constant C I , 

+ -- (1 - w) Iw'1 2
s-1 ds. 1 l' 

2CI r* 

(27) 

Since w is decreasing on [r*,r], the first term on the right
hand side of (27) is less than !CI (1- W)3(r*-2 - r-2); 
whence, from (27) and (26) and the fact that 

r*lw'(r*) 1= W(r*)w(r*) + r*-2(1- w(r*)f, 

we get that, for any r e [r*,r] , 

rlw'l> W(r*)w(r*) + r*-2(1- W(r*»3 + 2(w(r*) - w) 

1 - -CI C2 ( 1 - w)3(r*-2 - r- 2) 
4 

+ ~((1 + W)2 _.!2..) r (1 - w) Iw'1 2s- 1 ds 
2 CI J,.. 

+ (C2 - ! )L (1 - w)2Iw'ls-2 ds, (28) 

where C2 is a positive constant. For r e [r* ,R], now 

W(r*)w(r*) + 2(w(r*) - w);> W(r)w(r). 

Hence, choosing C I = ~(1 - w(r*»3(1 - w) -3 in (28) and 
C2 =~, we get 

rlw'l> Ww + r- 2(1 - W)3 

+ H (1 + W)2 - ~(I - w(r*»-3(1 - W)3] 

X L(1- w)lw'1 2
s-1 ds. 

But, since (1 + w)2;>3.0976 for r e[O,R], this equation con
tradicts (23) in a neighborhood of r*. 

Lemma 9: Let R be as in Lemma 8. Then 

R -1<7.536. (29) 

Proofi Given E> 0, let r = r( r,E) be the largest value of 
s e [ O,r ] such that 

W(r)<.r~E+ 2m(r)r I. (30) 
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Then on[r,r] (if r=.Fr), W(S»S~E + 2m(s)/s, so that on 
[r,r], sN' <. - E giving, by straighforward calculations, 

EfN- I/2 ds<. - f 2s(N I/2 )'ds<.4m(r). (31) 

On the other hand, for r<.R, we have 

w2(r) - w2(r) <.2w(r) f1w'ldS 

<.2w(r)(f1w'1 3N dSYI3U'N-1/2 dSYI3, 

(32) 

where in the last step we have used HOlder's inequality. 
Now, for r<.R, we have 

f1w'13N ds<.~m(r)r, (33) 

which follows because (19) yields 

2 fW'3N ds;> f( w'N - W ~) ds. 

Thus, by virtue of HOlder's inequality and w2<.1, we get 

2flw'13Nds<.[rfw'2NdSrl2 + [rfw2s-2dSrl2· 

Now, using theformula v'x + JY<.Ji~x + y and (7), we get 
(33 ). 

Using (33) and (31) in (32), we have 

w2(r) - w2(r) <.2(4/E)2/3(m(rW/6rI/6w(r). (34) 

For r=.Fr, we have, from (30), 

(35) 

We note that, for r = r, the left-hand side of (34) vanishes. 
Hence on [O,r], where r<.R, (34) and (35) coupled with the 
triangle inequality imply 

W(r)<.W(r) + 2(4/E)2/3(m(r»5/6rI/6 

X[1-~Er+2m(r)#]1/2 (36) 

Finally using (30) in (36) and the facts that 
W(R) = 0.4224 and 2m (R) <.R, we get 

0.4224<'~Er+ 2m(r)# 

+2JiRE-2/3[1-~Er+2m(r)#P/2. (37) 

Now we take E = 3.1 in (37). Then the two cases, namely, 

~3.1r+ 2m(r)#<. or ;>0.2424 give, considered separately, 
in either case 1 < 7.536R. Hence the lemma follows. 

Proof of Theorem 1: The idea is to integrate (22) to 
bound {3 in terms of R - I and then to use Lemma 9, in case a 
regular solution exists so far. In view of the complexities of 
the inequality (22) we integrate the following two inequal
ities implied by (22): On [0';:] such that w2(r) = 0.81, we 
use 

rlw'I;>Ww. 

On [r,R], we use 

rlw'I;>(1 - W)3r-2 + 10.445. 

Integrating (38), we get 

r- 2 ;> 8. 526{3. 
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Integrating (39) on p:,R] and using (40) and (29), we then 
get fJ< 15.4. The theorem now follows by virtue of the re
mark after Lemma 7 and the fact that w' <0 while w~O, 
which holds in view of Lemma 2. 

Theorem 2: There is no regular solution of the boundary 
value problem for total mass moo ~2.524. 

We first prove the following lemmas. 
Lemma 10: Let Cj and cj (cj > cj ) be two consecutive 

critical points of a globally regular solution w of the bound
ary value problem. Then, for any T> 1 and rE[cj,Cj ,] we 
have 

rTN(r)lw'(r)l< /i TI12(rT _ cr) - O'r WwsT- 2ds, 
3/3 Ji 

where 0' is the sign ofw' in ]cj, cj [ 

Proof: We have, for any T, 

(41) 

(rTNw')' - TrT-INw' + 2w'3NrT- 1 + WwrT- 2 = o. 
(42) 

Since HOlder's and Young's inequalities as well as N < 1 yield 

T flw'INST-1 ds 

<2 rlw'13NsT-1 ds + /i T1/2(rT - cn, 
Ji 3/3 

we get (41) from (42). 
We shall use the following lemma to estimate the inte

gral of W,2 N over some suitable interval such that w does not 
change sign on this interval. 

Lemma 11: For any r, a globally regular solution w(r) 
of the boundary value problem satisfies 

Nlw'I<0.93. (43) 

Proof: From (41), we have 

Nlw'l< /i TI/2+rTrWsT-2ds. 
3/3 Jo 

Using HOlder's inequality, 

for W 2S- 2 ds<2m, 

and 2m < r, we then have 

Now 

i 'W(S)' 1 1 5 
Wlwld Iwl = - W2(S) - - W4(S) --. 

11/3 2 4 36 

Also for SI<S, Iw(s)l<lIyj and (2I3yj)lw(s)l< 
~ + ~W2 (s) - !w4 (s) - ~. Hence (48) yields (46). 

Lemma 13: Let C > 0 be a critical point of a regular solu
tion w of the boundary value problem. Then, 
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Nlw'I«/i13/3)TI/2 + (2T - 1) -1/2. 

Choosing T = 4 we arrive at (43). 
Remark: In an interval [SI,s2] such that w does not 

change sign, (43) gives 

f'W'2N ds<0.93Iw(sl) - W(S2) 1<0.93, (44) 

since I wi < 1. However, if w changes sign then the following 
lemma leads to a better estimate than (44). 

Lemma 12: Let S2E[ cjtcj ] be such that W(S2) = O. 
Then, for T> 1, 

iCjNw'2 dr< /i TI/2 + _2_( T - 1) -IS 2- I 
S, 3/3 3/3 

(45) 

and for any S E [CjtS2]' 

rS
'NW,2 dr< /i TI/2Iw(s) I 

Js 3/3 

+ (T - 1) -IS- I [ -b + ~W2 (s) - AW4 (s) ] . 
(46) 

Proof: Letsl be such that Cj <SI<S2 and Iw(sl) 1= lIyj 
provided such S I exists. Our aim is to estimate the term in
volving Ww in (41). We note that 

sup Wlwl = 213/3, 
IwIE[O.I[ 

and the sup occurs at Iwl = lIyj Thus we have (depending 
on whether sgn(w') = ± Ion [cjtcj ]) 

+ f WwsT- 2ds 

{

W IW1
(T-1)_lrT_I, for rE[cj,sd, 

< (2I3/3)(T-1)-l rT-I, for re[SI,S2], (47) 

( 213/3 )( T - 1) - IS; - I, for re [S 2,Cj ] • 

Using the third condition of (47) and (41) we get 

iCjNw'2 dS« /i TI/2 + _2_( T - 1) -IS 2- 1)IW(Cj ) I, 
s, 3/3 3/3 

whence (45) follows. On the other hand, fors E[ Cj,S2]' us
ing the first two of (47) and (41), we get 

(48) 

NW,2ds<--. 1
00 4 

C 3/3c 
(49) 

Proof: We take T = 0 in (42) and then integrate on the 
interval between two consecutive critical points of w, name
ly, Ck and Ck+ I' SO, for rE[ Ck,Ck+ I]' we have 

N(r)lw'(r)l< rT 
Wlwls- 2 ds. Jk 

(50) 
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Using this and Wlwl..;;2/3vJ we get 

i
Ck 

+ 'NW,2 ds..;;_2_(~ _ _ 1_)iCk+ ',w' Ids. 
Ck 3/3 Ck Ck+ I Ck 

(51) 

Estimating the integral on the right-hand side of (51) by 2 
and then summing over all the critical points of C we get 
(49). 

Proof of Theorem 2: For c;;>2, we find, using (7) and 
m(2) < 1, 

m(c) <min[ 1.25 + fNW'2 ds - (2c) -I, ~ ]. (52) 

To estimate f~Nw'2 ds, we use Lemma 12 and the remark 
after Lemma 11. We puts = 2 in (46) andc = cj in (45). In 
case there exists 52E [2,c] such that W (52) = 0 we put 7' = 2 
in (46) and 7' = 2.5 in (45) to get, respectively, 

and 

I
s2 2 1 1 1 

NW,2 ds..;;--lw(2) I + -w2(2) - -w4 (2) +-
2 3/3 4 8 24 

(53) 

{Nw'2 ds";;0.5586. (54) 

As the right-hand side of (53) is less than 0.5432 for Iwl..;; 1, 
we have, adding (53) and (54), 

(55) 

In case no 52 exists in [2,c], then (44) applies, so that in 
either case (55) holds. 

But(7) and (49) imply that 

moo ..;;m(c) + (4/3/3 + pC-I. (56) 

Hence from (56), (52), and (55), we get 

moo <min(2.352,!(c + c- I » + (4/3/3)c- l
• (57) 

For c;;>2, both c + c- I and c + c- 1(1 + 8/3vJ) are increas
ing functions of c. Hence considering the two cases, namely, 
2..;;c..;;4.48 and c> 4.48, separately, we get that in either case 
(57) implies moo <2.524. 

VI. BLACK HOLE SOLUTIONS 

Yasskin6 formulated the conjecture that the only solu
tions of the EYM equations that are asymptotically flat and 
stationary with an 1/r fall otffor the potential and an event 
horizon with spherical topology were his generalizations of 
the Kerr-Newman solutions which are essentially Abelian. 
Very recently Galt'sov and Ershov5 proved nonexistence of 
SU(2)-EYM black hole solutions that are non-Abelian and 
satisfylimr _ 00 w(r) = Oin the notation of our Sec. III. They 
specifically leave open the possibility of black hole solutions 
when Woo = ± 1. We will show here that there are indeed 
such black holes if a similar kind of singular two-point 
boundary value problem as in the Bartnik and McKinnon 
case admits solutions. Numerical calculations indicate that 
solutions exist. 

Kruskal's coordinate construction for a static spherical
ly symmetric space-time consists of replacing the coordi
nates (t,r) by new coordinates (u,v) such that 
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(58) 

with :r =1= 0 where V = O. We assume that :r depends on U 

and v only via r. It follows that 

u = ekx cosh kt, v = ekx sinh kt, 

where k is a constant and x a new radial coordinate deter
mined by 

.!!!..- = VN 1/2 = NS = : .'7. 
dx 

Now, since S( 00 ) = 1, it follows from (6) that 

(59) 

is positive everywhere. The event horizon occurs where the 
timelike Killing vector field becomes null, i.e., where Vor, 
equivalently, Nor .'7, vanishes. Assume asymptotic flatness 
again and let rH denote the largest value of r for which 
N(r) = O. 

If N' (rH ) > 0, so that A : = .'7' (rH) > 0, then we can 
write 

.'7(r) =A(r- rH ) [1 +A(r- rH)X'] 

and hence 

x =A -Iln(r- rH ) +X(r), 

for small positive r - rH, where X(r) is a C I function of r 
satisfying X(rH ) = O. It now follows that 

In order that :r (rH ) =1=0, one chooses k = A /2. We have 
thus rederived the well-known result: For a regular event 
horizon to occur at the largest zero r H of N it is sufficient that 
N'(rH»O and S(rH ) < 00. [There is no need for 
S(rH ) = 1, as Galt'sov and Ershov5 seem to require.] 

Numerical experiments now show that it is the second 
condition that is hard to satisfy. As N decreases from 1 when 
r decreases from 00, w', and very likely also S, tend to blow 
up when N reaches zero. However, for a discrete set of values 
of the parameters moo and a this does not happen. To con
struct some numerical solutions that represent black hole 
solutions we can therefore require that w', and hence S, re
main finite at rHo We proceed as follows. 

(a) Pick values moo and a and compute m, w, and w' for 
a very large r from the asymptotic series of Lemma 4. 

(b) Pick a value rH ( <2moo) and a value WH (with 
0< IWH 1< 1) and calculate m, w, w' at rH + € using the 
power series of Lemma 5 (making sure that 

N'(rH) = ri/ 3 [rH - 0- W~)2] >0). 

(c) Shoot to a fitting point by numerical integration 
from both sides and improve the parameters moo, a, and W H 
by Newton's method. 

For every solution (m,w) thus obtained there will also 
be the solution (m, - w) for which the angular component 
BT of the YM curvature also has the opposite sign. 

There remain many questions to be investigated for this 
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black hole case. So far our numerical results indicate that, 
for every choice of , H' the following are true. 

There exists a discrete (infinite?) sequence of solutions 
(mk,wk) characterized by the number kofzeros ofwk in the 

interval ]'H'OO [. 
The parameters m"" for these solutions depend only 

slightly on k and seem, if 'H> 1, to converge to a limit 
greater than !'H' AS'H is chosen larger this limit itself tends 
towards!'H.For'H < 1 the total mass m"" alsogrowswithk 
and may converge to 1 again. 

The parameters a grow, apparently without bound, as 
k- 00. 

The values IWH I tend to zero as k- 00, for'H > 1, and to 
a limiting value greater than zero, if'H < 1 [since N'('H) 
must remain positive] . 

If 'H < 1, then N develops a minimum around, = 1 
whose value decreases towards zero as k increases. 

The mass-energy density is very small for,> 1 whether 
or not'H < 1. 

Solutions with large numbers of zeros are very difficult 
to obtain numerically. In fact, for W H = 0 the power series of 
Lemma 5 becomes trivial. Such a limiting black hole solu
tion, if it exists, is very difficult to approximate analytically 
since then N seems to develop a multiple root at the horizon. 
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Using a simple ansatz, Yang's K gauge equation for SU (2) gauge fields is reduced to a system 
of nonlinear ordinary differential equations. Exact solutions for the equations are obtaihed 
together with corresponding gauge potentials. 

I. INTRODUCTION 

In search of the SU (2) gauge fields in four-dimensional 
Euclidean space, Yang derived conditions of self-duality and 
obtained nonlinear partial differential equations that de
scribe gauge potentials. I His equations are divided into the 
two types according to the choice of the gauge. One is an 
equation with a Hermitian gauge or the K gauge, and the 
other is an equation with the R gauge. The latter equation 
has been studied extensively and various classes of exact so
lutions have been published.2

-
5 The investigation of the for

mer one, on the other hand, has scarcely been done. 
The purpose of this paper is to construct exact solutions 

of Yang's self-dual equation with the K gauge. Since the 
equation itself is a quite complicated nonlinear partial differ
ential equation for a vector field and hence it seems to be 
intractable, we shall introduce a simple ansatz that the fields 
depend only on one variable. Under the assumption, Yang's 
equation is reduced to a system of nonlinear ordinary differ
ential equations. Exact solutions for the equations are con
structed and corresponding gauge potentials are calculated 
explicitly. 

II. EXACT SOLUTIONS 

Yang's K gauge equation for a real vector field v is writ
ten in the form' 

!(1 - u2)v 1'1' + 2{v'v I')v I' - (v I"v I')v 

-2{V,XV2-V3XV4) =0, (v=lvl), (2.1) 

where the subscript I' indicates the differentiation with re
spect to the Euclidean coordinate xI' and the repeated greek 
index I' runs from 1 to 4, i.e., vI'I' = l:! = I a 2v/ax,!, for ex
ample. 

We shall seek solutions ofEq. (2.1) that depend only on 
one variable t/J, where t/J is a function of x I' (I' = 1 - 4 ). U n
der this situation, the fourth term on the left-hand side ofEq. 
(2.1) vanishes identically and Eq. (2.1) is reduced to the 
equation 

!(1- v2 )v'At/J + {!(1 - v2)v" + 2{v'v')v' - (v"v')v} 

X (Vt/J)2 = O. (2.2) 

Here, the prime appended to v denotes the differentiation 
with respect to t/J, and A and V are the Laplace and the gradi
ent operators in four-dimensional Euclidean space, respec
tively. Furthermore, we may decouple Eq. (2.2) into the 
following two equations: 

!( 1 - v2 )v" + 2(v'v')v' - (v"v')v = 0, (2.3) 

At/J = O. (2.4) 

These are the basic equations that we consider in this paper. 
We shall now integrate Eq. (2.3). First, it follows from 

the vector product ofv and Eq. (2.3) that 

!(1 - v2)(vXv')' + 2vv'vXv' = 0, 

which is readily integrated as 

vXv' = e( 1 - v2 )2, 

where 

C = (C I,C2,C3 ), C = lei 

(2.5) 

(2.6) 

(2.7) 

is a real constant vector. Denoting the components ofv by 

v= (F,G,H), (2.8) 

and introducing the functions/, g, and h through the rela
tions 

F= (1 - v2
)/, 

G = (1- v2 )g, 

H = (1- v2 )h, 

(2.9a) 

(2.9b) 

(2.9c) 

the vector equation (2.6) is equivalent to the following equa
tions: 

fg' - I'g = Cit 

gh ' - g' h = C2, 

hI' - h 'f = C3• 

(2.1Oa) 

(2.10b) 

(2.1Oc) 

From (2.10), one finds thatgand h are expressed in terms of 
fas 

J
t/> dt/J 

g= -cJ f2' (2.11 ) 

h= - :1 (C2 -C,C3 Jt/> ;~)f (2.12) 

Next, taking the scalar product of Eq. (2.3) and v gives 

!(1 - v2) (vv')' + 2(VV')2 -!( 1 + v2 )v',v' = O. (2.13) 

Substituting the relation 

(2.14 ) 

which stems from the square ofEq. (2.6), into (2.13), one 
obtains the following ordinary differential equation for v: 

!(1 - u2)(vv')' + 2{VV')2 - ~(1 + v2) 

X {V'2 + 2( 1 - V2)4/V2} = O. (2.15) 
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If we introduce the variable P by the relation 

v2 = 1- (2/(P+ 1», (2.16) 

then Eq. (2.15) is considerably simplified and it reads in the 
form 

(2.17) 

This equation is readily integrated to yield the solution 

P= d cosh(a<p + b), (2.18a) 

with 

(2.18b) 

where a and b are real integration constants. Therefore, we 
have 

v2 = 1 - 21 [d cosh (a<p + b) + 1]. (2.19) 

At this stage, the procedure to obtain v is straightfor
ward. First, substitution ofEq. (2.11) and Eq. (2.12) into 
the relation v2 = F2 + G 2 + H2 = (1 - V2)2X (f2 + g2 
+ h 2) yields 

IQ {( ~ + cD Q 2 - 2C2C3 Q + 1 + ~} - I dQ 
CI CI 

It/> (1 - V2 )2 
= d<p, 

v2 

R = {d cosh(a<p + b) + 1}-1, 

a=c-I~(ci +cD(d 2 cos2 0-l), 

(2.20) 

where we have put 

Q=[ d<p 
P 

(2.21) 

for simplicity. Integration ofEq. (2.20) is easily performed 
by noting (2.19). The result is 

(~ + cDQ = (C2c3ic l ) + C tan[tan- I {(1/I<F=!) 

xtanh(a<p + b)} + 0], (2.22) 

where 0 is a real constant. 
Finally, it follows from (2.9), (2.11), (2.12), (2.21), 

and (2.22) that one obtains, after some tedious calculations, 
the explicit expressions for the vector v = (F,G,H) as fol
lows: 

F= ± aR cosh(a<p + b - 8), 

G = ± {3R cosh(a<p + b + E), 

H = ± yR cosh(a<p + b -1]), 

where 

(2.23a) 

(2.23b) 

(2.23c) 

{3= c-I~{d2(C2C3COSO+CCISinO)2- (CC I)2- (C2C3)2}/(~ +~), 

y= c-I~{d2(CIC2 cos 0 - cc3 sin 0)2 - (C IC2)2 - (CC3)2}/(ci + ~), 
8 = tanh-I (tan o I,JCP=T) , 

(2.24a) 

(2.24b) 

(2.24c) 

(2.24d) 

(2.24e) 

It should be remarked that the arbitrary constants included 
in (2.23) are CI, C2, C3, a, b, and 0, while C and d are expressed 
by these constants [see (2.7) and (2.18b)] and hence (2.23) 
represents a general solution ofEq. (2.3). The solutions of 
Eq. (2.1) are then determined perfectly by (2.23) and solu
tions of Eq. (2.4). Although various classes of exact solu
tions exist for Eq. (2.4), we shall not discuss them here. 

III. GAUGE POTENTIALS 

The gauge potentials bp (p, = 1-4) in the K gauge are 
expressed in terms of v as follows I: 

bl = 2(vxv l + v2)(1 - V2 )-I, (3.1a) 

b2 = 2(VXV2 - v l )(l - V2 )-I, 

b3 = 2(VXV3 - V4) (1 - v2 )-1, 

b4 = 2(vxv4 + v3 )(1 - V2)-I. 

(3.1b) 

(3.1c) 

(3.1d) 

These quantities ar-e easily evaluated by using (2.6) and 
(2.23). The results are expressed in the form 
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b l = R(4<P lc + <P2B ) , 

b2 = R(4<P2C - <PIB ), 

b3 = R(4<P3C - <P4B ) , 

b4 = R( 4<P4C + <P3B), 

(2.24f) 

(2.24g) 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

where the components of the vector B = (B1,B2,B3 ) are giv
en by 

BI = ± aa{sinh(a<p + b - 8) - d sinh 8}, 

B2 = ± a{3{sinh(a<p + b + E) + d sinh d, 
(3.3a) 

(3.3b) 

B3 = ± ay{sinh(a<p + b -1]) - d sinh 1]}, (3.3c) 

and <pp = a<p1axw The field strengths fp", defined by 

abp ab" 
fp" = -- - -- - bp Xb", (3.4) 

ax" axp 
are then derived from (3.2), the explicit expressions of 
which are not written down here. One can observe from 
(3.2) and (3.3) that the gauge potentials take finite values 
provided that <p p (p, = 1 - 4) are finite. 
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Bargmann-Wigner equations in (3,2)-de Sitter space are found for all spinss;;d and all 
masses. The massless fields have gauge freedom; they can be extended to indecomposable 
representations of the form of Gupta-Bleuler triplets. 

I. INTRODUCTION 

Although there is no experimental evidence for elemen
tary particles with spin higher than 1, at least particles up to 
spin 2 are considered necessary by theoreticians for the de
scription of gravity. On the other side there is strong evi
dence from the various tests of general relativity for space
time being curved. Consequently, higher spin fields in 
curved space-time have been considered in the literature 
(see, e.g., Ref. 1). 

In flat space, spin is connected to the quantum numbers 
of the little group of the Poincare group, i.e., to SU (2) for 
massive particles and to E(2) for massless ones. We con
clude that group-theoretic techniques should be emphasized 
if possible. 

All the physically essential concepts of flat space can be 
generalized to (3,2)-de Sitter space with constant negative 
curvature. Its group of motion SO(3,2) is a deformation of 
the Poincare group SO(3,l )3J5)T( 4) (resp. a covering there
of). In this space, equations for arbitrarily high spin have 
been discussed by various authors,2 mostly using tensors or 
spinor-tensors. A detailed analysis has been given in the 
cases of massless spin-1 and spin-2 fields. 3

,4 As in flat space, a 
description using field potentials with gauge freedom is pos
sible in these cases. The particles are not described by an 
irreducible representation of the group of motions, but by an 
indecomposable one, of the type of a Gupta-Bleuler triplet. 
Now-in contrast to flat space-there are two inequivalent 
Gupta-Bleuler triplets, i.e., two inequivalent fields with 
gauge freedom in de Sitter space. They also differ with re
spect to a discrete reflection Yt. This doubling of fields corre
sponds to the two helicities of flat space. Two formulations 
for massive fields, which differ in their Yt behavior, are also 
possible, but they are equivalent under SO(3,2). 

Here we investigate multispinor fields for all spins :;;.1, 
integer or half-integer. Our notation as explained below fol
lows Refs. 5 and 6, which discuss spinor fields with and with
out gauge freedom. In Sec. III we treat the massive case, in 
Sec. IV the massless one, emphasizing their gauge freedom. 
In both cases we first use the second-order Casimir operator 
as a field equation. Stronger restrictions are obtained by em
ploying the Bargmann-Wigner field equations.7 They give 
us two fields of 2s-multispinors to each spin s:;;.1. In the 
massless cases their solution spaces carry inequivalent 
Gupta-Bleuler triplets. Appendix B gives some explicit 
states of these triplets. 

II. PRELIMINARIES AND NOTATION 

We consider fully symmetric multispinor fields 

'I'{A''''A
2
,} (u), r = 1,~ ,2, ... , (1) 

on (3,2)-de Sitter space. The coordinates Ua , a = 1,2,3,4,6, 
satisfy 

TJap uauP=. Ua u
a 

=,ui + u~ + u~ - u! - u~ <0, u =...1.u, ...1.>0; 
(2) 

the index 5 is omitted, to allow a straightforward extension 
to conformal space. The projective coordinates of this space 
of half-rays cover the de Sitter hyperbola only. All state
ments we make can be extended to the universal covering 
space, at the price of more involved expressions. The spinor 
indices Ai take values 1 to 4. , 

The reflection Yt maps Ua -+ - Ua ; fields symmetric 
(resp. antisymmetric) under Yt transform like 

'1'( - u) = ± 'I'(u). (3) 

The de Sitter Lie algebra so (3,2) ~ sp ( 4,R) acts on 
these fields as 

Jap = LaP + SaP' (4) 

where L is the orbital part acting on the coordinates, 

and S is the spin part, acting on the indices, 
2r (i) 

S= L S, (6) 
i=1 

(i) 

where S acts only on the index Ai by 

(i) (i) (i) 

(SaP)B,A; = Sap = (1I4i)(PaYp -PpYa)' (7) 

The 4 X 4 matrices P and Y satisfy 

PaYp +PpYa =2TJaP' (8) 

for each i. Where necessary, we use the explicit base 

iUj ) o ' for j = 1,2,3, 

o .), 
-I 

(9) 
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(10) 

Here uj are the Pauli matrices. Sometimes we will also need 

(11 ) 

The form Eq. (4) of the elements of the Lie algebra means 
that our fields carry the tensor product of a finite representa
tion described by the spin part and a scalar representation 
described by the orbital part: 

(12) 

The K subalgebra (Lie algebra of the maximal essentially 
compact subgroup) so(3) $ so(2) ofso(3,2) gives us three 
quantum numbers, which we call energy E, angular momen
tum I, and its third component 13 , We denote so(3) $ so(2) 
multiplets by their quantum numbers as (E,/); they form a 
(21 + I)-dimensional space which we call a (generalized) 
weight. Irreducible lowest weight representations can be la
beled uniquely by the quantum numbers of these lowest 
weights as D(Eo,s). 

The representations with Eo = 1 + sand D(2,0) are 
called massless, as D( 1 + s,s) for s>~ and D( 1,0) $D(2,0) 
can be extended to the conformal group; those with 
Eo> 1 + s [except D( 2,0)] we will call massive. With a de 
Sitter radius of 1026 m, the electron would have Eo'Z 1037

• 

For 

Eo + s = 0, - 1, - 2, ... , (13) 

the irreducible representations D(Eo,s) are finite [they are 
the unitary ones of soC 5)]. 

The second-order Casimir operator ~ J2 = ~ JapJap of 
so(3,2) has eigenvalues 

Eo(Eo-3)+s(s+l) (14) 

for the irreducible lowest weight representation D(Eo,s). 
The spinor t/l A carries the four-dimensional representa

tion, which is D( - ~,~) in our notation, the fully symmetric 
spinor t/l{A, ..... A

2r
} carries D( - r,r). The weight diagrams of 

these finite representations are 
1 

D( - r,r) = EB EB (E,/), (15) 
I=c E=-I 

with c = 0 for integer rand c = ! for half-integer r (see Fig. 
1). Their eigenvalues of the second-order Casimir operator 
are 

! S2 = 2r(r + 2). (16) 

The spinor t/l A has an indefinite invariant scalar prod
uct, which in our basis of /3 and r matrices is given by 
1: A ~ A t/l A' where ~ = t/lt r 4' Therefore the multispinor has an 
indefinite invariant scalar product 

(17) 

where 
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FIG. 1. Weight diagrams of D( - 1,1) and D( - M). 

Next we use the Casimir operator to get field equations 
for the scalar field t/J ( u ). We denote the lowest energy of the 
corresponding scalar representation by N. Then D(N,O) has 
the eigenvalues N(N - 3). So we get the second-order field 
equation 

!L 2t/J(U) ==~LapL aPt/J(u) 

= [ - u2 a 2 + (U a)( u a + 3) ] t/J (u) 

= N(N - 3)t/J(u). (19) 

We have to fix the behavior of the fields along the half-rays; 
this can be done by fixing the degree of homogeneity of the 
fields to 

(u a)t/J(u) == (ua aa )t/J(u) = nt/J(u). (20) 

On de Sitter space (but not on its spatial infinity), n is arbi
trary. We will discuss some choices later. 

The solution space of Eq. (19) carries not only D(N,O) 
but also D( 3 - N,O). For N > ~ the later representation is not 
unitarizable. We will not mention it further if it does not give 
unitarizable representations in the tensor products we con
sider later. In addition, there are negative energy representa
tions; all our statements hold for them also. 

The positive definite invariant scalar product of the field 
t/J(u) has the form 

-if d 3ut/J*(u)a,t/J(u), (21) 

where t is the de Sitter time, and the integration is over a 
spacelike hypersurface (see Ref. 3). 

We conclude that the field equation 

(!L 2 - N(N - 3»'II{A''''A
2r

} (u) 

= [_U2a 2+ (ua)(ua+3) -N(N-3)] 

X'll{A''''A 2r} (U) = 0 (22) 

of the symmetric multispinor carries on its solution space the 
tensor product 

D( - r,r) ®D(N,O). (23) 

This can be reduced by comparing weight diagrams if all 
terms of the Clebsch-Gordan series are away from reduction 
points. Reduction points appear if weights in the weight dia
gram are Weyl-equivalent to the lowest weight, i.e., if con
sidered as lowest weight, they give the same eigenvalues for 
all Casimir operators. At these points the weight diagram of 
the irreducible representation is reduced by the weights of 
the Weyl-equivalent one. In particular, we need the first re-
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duction points (reduction points with maximal energy), 
which appear at Eo = ! for the scalar representation, and at 
Eo = 1 + s, for s> 1. In the latter case the weight diagram of 
the massless representations D( 1 + s,s) is reduced by the 
weights of D( 2 + s,s - 1). If we do not mention otherwise, 
we will be away from reduction points. Then the weights of 
the finite representation, shifted by the energy N, become 
lowest weights in the reduction, i.e., in our case 

1 

D( - r,r) ®D(N,O) = EB EB D(N + E,l), (24) 
I=c E=-I 

with c = ° for integer rand c = ! for half-integer r (Ref. 5). 

III. FIELD EQUATIONS FOR MASSIVE FIELDS OF 
ARBITRARY SPIN 

We want to find field equations whose solution spaces 
carry anyone of the terms in the Clebsch-Gordan series 
[Eq. (24)], where we restrict ourselves to N> 1 + r, to stay 
away from reduction points. For this purpose we can employ 
again the second-order Casimir operator, this time of the 
tensor product. With Eq. (4) it takes the form 

(25) 

By fixing the factors in the tensor product [Eq. (23)], we fix 
the eigenvalues of !L 2 [see Eq. (19)] and of !S2 [see Eq. 
(16)]. AnytermD(Eo,s) in the Clebsch-Gordan series [Eq. 
(24)] has eigenvalues of ! J 2 given by Eq. (14). If all of 
these are different-which can be shown for the values of r 
and N under consideration-then we can obtain field equa
tions for each D(Eo,s) by choosing the eigenvalues of LS 
appropriately. We get explicitly 

LS\II(u) = [Eo(Eo- 3) +s(s+ 1) 

- N(N - 3) - 2r(r + 2) ]"'(u). (26) 

The solution space of this equation and Eq. (22) carries a 
unitary D(Eo,s); the scalar product is just a combination 

-i J d 3 ii'ii(u)at ",(u) (27) 

ofthe scalar products [Eqs. (17) and (21) ] . 
To each massive representation D(Eo's), with s> 1, 

Eo> 1 + s, which we consider here, there are infinitely many 
values r>s and N, which can be used to construct field equa
tions for it. But it would be unnecessarily complicated to use 
fields with more than 2s spinor indices, to describe spin-s 
objects. Even if we restrict ourselves to the cases r = s, we 
still have, in general, 2s + 1 possibilities to choose N for a 
given Eo and s. These possibilities are further restricted if we 
use Bargmann-Wigner equations, which we consider next. 

Bargmann-Wigner equations for massive fields: Using 
Eq. (6) we can decompose the term LS in the second-order 
Casimir operator into a sum 

25 (i) 

LS= L LS. (28) 
i=l 

We put r = s in the sequel. While LS commutes with L 2 and 
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(i) 

S2, the various terms LS do not commute among one an-

other, and with S2. So in general they will not have a com
mon set of eigenfunctions. Only for particular cases may this 
be the case. 

We want to consider the set of 2s equations for symmet
ric spinors, 
(i) 

LS"'{A .... A( .. A
2
,} (u) = m"'{A

o
"'A2,} , i = 1, ... ,2s. (29) 

A straightforward calculation, using Eqs. (7) and ( 8 ), 
yields 

(i) (i) (i) 

(LS) (LS) = ! L 2 - 3LS, i = 1, ... ,2s. (30) 

So we get, for our field "', 

! L 2", = m(m + 3 )"'. (31) 

Comparing with Eq. (19) of a scalar field ¢ shows that the 
solutions ofEq. (29) are a subset ofthe tensor product 

D( - s,s) ®D(N,O), (32) 

withN= - m, or N= m + 3. 
In these two cases we get 

LS\II = 2sm'" = - 2sN'l' [resp. LS\II = 2s(N - 3)"']. 
(33) 

Comparing with Eq. (26), we find that the first case requires 
Eo = N - s, and the second one requires Eo = N + s. 
(Further solutions Eo = s - N + 3 [resp. Eo = - (N 
+ s - 3)] are ignored as they lead to representations that 

do not lie in the tensor product [Eq. (24)] with r = s.) 
So a given set of 2s equations (29) can only describe 

D(Eo,s) with 

Eo = - m - s, if m < - (2s + 1), 

(34) 
Eo = m + s + 3, if m> - 2. 

The first case uses the term with the smallest lowest energy 
in the Clebsch-Gordan series [Eq. (24)], the second case 
uses the term with the largest one (see the circles in Fig. 2). 

We can bring Eq. (29) in a more traditional form by 
using 

(i) (i) (i) 

LS = - (/ruayPap ) + (ua)= - ({Jura) + (ua). 

(35) 

® • • • ® 

• • • 

v-') 

FIG. 2. Lowest weights in the tensor product D( - 2,2) flJD(N,O) (dots), 
and the terms used by the Bargmann-Wigner equations (circles). 
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By choosing the degree of homogeneity n = - N, we obtain, 
in the first case (Eo = N - s), 

(i) (i) 

(/3uya)~! = 0 or (ya)~! = 0, (36) 

and, in the second case (Eo = N + s), 
(i) 

(/3uya)~2 = ( - 2Eo + 2s + 3)~2' (37) 

We have not yet shown that there are any normalizable solu
tions of Eq. (29) at all. In the first case, the tensor product 
(24) can help us again. The lowest state of D(Eo,s) in this 
case has energy E = N - s, i.e., the lowest energy in the ten
sor product. The state with biggest third component of angu
lar momentum, 13 = S, is simply 

~1 ~@ x_ox @U+ N
' MID u± ~ Udiu" 

(38) 

where we have chosen the degree of homogeneity n = - N. 
It is easy to show that it satisfies Eq. (36) by using the explic
it expressions 

. ( 2 a _ 0'; a ;). a 
(ya) = I ; , With a ± = -- . 

- 0'; a - 2 a + au ± 

(39) 

Because of the invariance of the equations, they must carry a 
D(N - s,s) on the solution space. 

In the second case Eo = N + s, the corresponding low
est weight solutions look more difficult. If we introduce the 
shorthand notation 

Go = I, G = q 

then they are 

2s (i,) (iq) 

I (/3uys)'" (/3uys) , 
1<;. < ... <;q 

q = 1,2, ... , 

(40) 

(41) 

where the coefficients are given by the recursion relation 

Co= 1, cr +! = [(2r+ 1)/(l-2N-2r)]cr • (42) 

The solutions transform under !!It as 

(43) 

For integer spins, the two fields to a given representation 
transform the same way; for half-integer spins they differ in 
their sign. 

For spin 1 the two fields that carry the same representa
tion D(Eo, 1) are related by the invertible transformation 

[ 

(I) (2) ] 

~2(U) = (/3uYs)(/3uys) + u2/(3 - 2Eo) ~!(u); 

(44) 
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similar formulas hold for all spins. 
It may be esthetically pleasing to give yet another form 

ofthe Bargmann-Wigner equations. We obtain with 
(I) 

(u a)~; = - (2s + 1)~;: (/3uya)~; = (Eo - s - 1)~;, 

(45) 

in the first case, and with 
(i) 

(u a)~; = - 2~;: (/3uya)~; = - (Eo - s - 1 )111;, 

(46) 

in the second case. For spin-~ these equations are discussed 
in Ref. 5. They look particularly simple in the massless limit, 
which we consider next. 

IV. MASSLESS FIELDS 

A. Group-theoretic analysis 

Here we want to describe massless fields with spin s> 1 
using fully symmetric multispinors with 2s indices. So we 
consider only the biggest possible spins, which can be ob
tained with a given multispinor. As compared to our discus
sion of massive fields, the situation is complicated by terms 
on reduction points in the tensor product Eq. (24), and the 
appearance of indecomposable representations. Corre
spondingly we have massless particles with gauge freedom. 

The irreducible massless representations D( 1 + s,s), 
s> 1, are Weyl-equivalent to 

D( 1 + s,s)~D(2 + s,s - 1) 

~D(2-s,s,)~D(l-s,s-l) (47) 

(see Fig. 3). The second term is always a unitary representa
tion, the third one an infinite not unitarizable one, and the 
last one is finite dimensional. All of them are used below. 

The massless field can appear as an invariant subspace, 
or in a quotient space of an indecomposable representation. 
In such a representation, only the terms in Eq. (47) can be 
sub representations together with the massless one. As was 
mentioned before, the irreducible massless representations 
D( 1 + s,s) have a weight diagram, which is reduced by the 
weights oftheD(2 + s,s - 1), as compared with the general 

FIG. 3. The irreducible lowest weight representations that may appear in 
indecomposable representations with massless particles of spin s.;;3 are con
nected by fat lines. 
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case. Similarly, the weight diagram of the D( 2 - 8"Y) is re
duced by the weights of D(1 + 8"Y), and that of 
D(1 - 8"Y - I) is reduced by the weights of D(2 - 8"Y) 
(leaving only finitely many). 

The solution spaces of the scalar field equations (19) 
also require special considerations now. They carry a direct 
sum of the lowest weight representations D(N',O), with 
N' = Nand N' = 3 - N. Here we will need integer values of 
N. For N = 2 and N = 1 we have D(2,0) and D( 1,0) in the 
solution space. These are the two unitary massless represen
tations of the de Sitter Lie algebra. For nonpositive integer 
N',D(N',O) is finite. Acloserlook shows that it is the invar
iant subspace of an indecomposable 

D(1,1 - N') -+D(N',O), (48) 

which solves the scalar field equation (19). 
Keeping these complications in mind, we can find the 

values of N for which the tensor product [Eq. (23)] with 
r = 8> 1 can contain massless representations with spin 8 in 
the reduction, i.e., we consider 

D( - 8,8) ®D(N,O), for NEI:{O, - 1, - 2, .. .} 

(resp. D( - 8,8) ® [D(1, 1 - N) -+D(N,O)], 

for NE{O, - 1, - 2, ... }). (49) 

We find that N must be integer, and 

(2 - 28)<N<1 + 2s. (SO) 

For the case of spin 1, see Fig. 4. 
As in the massive case, we can use the second-order 

Casimir operator to find field equations for the various sum
I 

FIG. 4. The dots represent lowest weights in the reduction of 
D( - 1,1) ®D(N,O) for N = 3,2, I, and O. Terms Weyl-equivalent to the 
photon representation D(2,1) are encircled; lowest weights of invariant sub
spaces are not shown. 

mands in the decompositions of the tensor products, which 
have different Casimir eigenvalues. Again we do not want to 
discuss all possibilties, but restrict ourselves to Bargmann
Wigner-like equations (29), i.e., 

(i) 

LS'I1{A, ..... A ..... ,A,,} (u) = m'l1{A, .... ;42'} (u), i = 1,2, ... ,2s. (51) 

With the same steps as from Eq. (29) to Eq. (34), but ac
cepting all four solutions for the lowest energy N of the scalar 
representations, we get for the massless cases Eo = 1 + 8, 

8> 1, the values 

NE{1 + 28,2,1,2 - 28}. (52) 

The first and last one (resp. the values N = 1,2) have the 
same scalar field equations. 

Using the information above, we conjecture that the ten
sor products [Eqs. (49) ] contain in these cases the following 
Gupta-Bleuler triplets: 

D( - 8,8,) ®D(1 + 28,0)= D(2 + 8,8, - I) -+D(1 + 8,8) -+D(2 + 8,8 - I) al"', (53) 

D( - 8,8,) ®D(2,0)= DO + 8,8) -+D(2 - 8,8) -+D(l + 8,8) al"', (54) 

D( - 8,8,) ®D(1,O)= DO + 8,8) -+D(2- 8,8)-+D(1 + 8,8) al ... , (55) 

D( - 8,8,) ®(D(1,2s - I)-+D(2 - 2s,0» = D(2 - 8,8) -+{D(1 + 8,8) alD(1 - 8,8 - 1)}-+D(2 - 8,8) al'" . (56) 

In the first and in the last case, the massless representa
tions appear in the central part of the triplet; this we expect 
to give a field potential with gauge freedom. In the other two 
cases, we have the massless representation in an invariant 
subspace; these we want to use, to describe them irreducibly, 
as field strengths. 

B. Field equations 

As in the massive case, we first discuss equations that 
can be obtained from the second-order Casimir operator, 
and later use the explicit ground states from Appendix B to 
find the solution spaces of the Bargmann-Wigner equations. 

The eigenvalues of the second-order Casimir operator 
are 2(82 - 1) for the massless representation D( 1 + 8"Y); so 
we expect for it the equation 
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(57) 

which also holds for the invariant subspace of pure gauge 
states. For the field potential we choose the degree of homo
geneity 

u a'l1 = - (1 + 28)'11; 

then the scalar field equation is 

a 2'11 = O. 

For the solutions of this equation, we get 
25 (i) 

Q= - I (puya). 
;=1 

(58) 

(59) 

(60) 

In all our explicit cases given in Appendix B, the scalar 
modes are mapped by Q on gauge modes; then the full triplet 
satisfies only 

Q 2'11 = O. ( 61 ) 
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1. SpIn 1 

The description of massless spin-l particles using a vec
tor field gives in de Sitter space two inequivalent field poten
tials of electrodynamics,3 whose pure gauge states carry a 
D(1,I) [resp. a D(3,0)]. The corresponding inequivalent 
Gupta-Bleuler triplets also appear in our Bargmann
Wigner case here. In Appendix B 1 we give the states with 
lowest energy of the Gupta-Bleuler triplet of the (3,0)
gauge theory, and the leaks between them. We call it the high 
triplet. With the help of the explicit states we can find some 
more simple field equations for various subspaces. The states 
of the (1,1) -gauge theory look most simple if we choose de
gree of homogeneity 0 for them, as is done in Appendix B 2; 
they belong to what we call the low triplet. For our purposes 
here we want fields with u a'IJ = - 3'1'. To achieve this we 
can multiply the states of Appendix B 2 by (u2

) -3/2, i.e., we 
use'l'(u) = (U2)-3/2r/1(U). This does not affect the action of 
the raising and lowering operators, and the states satisfy 
both Eq. (58) and the wave equation [Eq. (59) ] . As we will 
discuss, with this choice of degree the same equations hold 
for invariant subspaces in both cases, the (1,1) - and the 
(3,0)-gauge theories. 

The pure gauge states satisfy for both triplets 
2 (i) 

L (Purs)'I' 8 = 0, (62) 
i= 1 

while the same operator on the physical ground state gives 

(I) (2) (v (v 2 (i) (Purs) + (Purs) 1 1 
L (Purs)'I'~ = 3 0 X 0 ' 
;=1 u+ 

o 0 

(63) 

in the case of the (3,0) theory, and 

2 (i) 

L (purs)(u2) -3/2r/1~ 
;=1 

(I) (2) (0) (v 16 (Purs)(Purs) - u
2 

1 1 
- - (U2 )-1/2 X 

{i u3+ 0 0' 
o 0 

(64) 

in the case of the (1,1) theory. The finite state [Eq. (B7)] of 
the (1,1) theory also satisfies Eq. (62). So the solutions of 
Eq. (62) are the invariant subspace of pure gauge modes and 
the finite state only. 

In the vector field description of massless spin-l parti
cles, the pure gauge states have the formAl' = al'A, i.e., the 
vector field is obtained from a scalar field. To find here 
a corresponding expression, we make the ansatz 
'1'8 (u) = M a aaA(u), where A(u) is a scalar field, and M a 

is a 4 X 4 matrix; we have to choose it in such a way that the 
transformation properties of the scalar and the two-spinor 'I' 
match. This condition requires 
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The explicit form stems from r a being antisymmetric for 
a = 1,3 and symmetric otherwise. It can also be checked by 
application on the ground states, e.g., A(u) = U:;.3 for the 
(3,0) theory. The same formula holds for the finite state 
[Eq. (B7)] with A(u) = (i/2)ln u+. 

The physical states satisfy the Bargmann-Wigner equa
tions (36): 

(i) 

(ra)'I'(u) =0, ;= 1,2; (66) 

the same must hold in the invariant subspace of pure gauge 
states, but it does not hold for the finite state [Eq. (B7)] of 
the (1, 1) theory. 

The full triplet satisfies, in addition to the wave equation 
[Eq. (59)], the conditions 

2 (i) 

L (Psr a)'I' = 0, (67) 
;=1 

which can be checked by explicit application on the states 
Eqs. (B4) and (B 14). If they are satisfied, the condition Eq. 
( 61) also holds. 

All the equations discussed here for spin 1 have solu
tions belonging to the two inequivalent indefinite Hilbert 
spaces of the (3,0)- [resp. the (1,1)-] gauge theories. These 
two solution manifolds differ also in their behavior under the 
reflection !!Ii. If we call the corresponding fields '1'1 (resp. 
'1'2)' then 

'1'1,2 ( -u) = +'I'I,2(U), (68) 

i.e., the minus sign holds for the (3,0) theory and the plus 
sign for the (1,1) theory. 

The usual formulation of electrodynamics not only has a 
vector potential AI" which describes photons with gauge 
freedom, but also a field strength Fl'v' which carries the pho
ton representation irreducibly. We discuss its analog next. 

Field. strength: The states on the right-hand side of Eqs. 
(63) and (64) are ground states of photon representations, 
which, because ofEq. (62) and the commutator [Jap,,8urs] 
= 0, do not leak into pure gauge states; they are the ground 

states of the irreducible invariant subspaces in the second 
(resp. third) tensor products Eqs. (54) and (55). Thecorre
sponding fields 

2 (i) 

XI,2 = L (PUrS)'I'I,2 (69) 
;=1 

are the field strengths of the electromagnetic two-spinor. 
The two field strengths are related by 

1 2 (i) 

XI = -2 (U2)-1/2;~1 (PUrS)X2' 

1 2 (i) 

X2 =- (U2)-1/2 L (purs)x" 
2 ;=1 

They satisfy the Bargmann-Wigner equations 
(i) 

(70) 

(ua)X= -2X, (ra)x=O, i=I,2, (71) 

and they differ in their behavior with respect to the discrete 
reflection !!Ii: 

Xu ( - u) = ±XI,2 (u), (72) 
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2. All spins 

For spin >~, we have explicit states only for the high 
triplet [Eq. (53)] given in Appendix B3. So the equations 
discussed below have been checked for these states only, al
though we conjecture that they also hold for the states of the 
low triplet in the tensor product [Eq. (56)]. The full triplet 
satisfies, in addition to the field equations (58) and (59), 

2s (i) 

L ({3sr a)'I1 = 0. (73) 
;=1 

The invariant subspaces of physical and gauge modes satisfy 
in addition the Bargmann-Wigner equations: 

(i) 

(ra)'I1(u) =0, ;= 1, ... ,2s. (74) 

If we use the shorthand notation of Eq. (40), then the pure 
gauge states satisfy the equation 

[s - 1121 

G'IIg = L (-u2YG2(s_r)_I'I1g =0. (75) 
r=O 

As for spin 1 we conjecture the same for the finite representa
tion of the low triplet. 

The 9P-quantum numbers of the states of the high tri
plets are given by 

'11 1 ( -u) =( _1)2s+I'I1 I (u), (76) 

while the fields '112 (u) oflow triplets have the opposite 9P
quantum numbers. 

Acting with the operator G from Eq. (75) on the lowest 
physical states, we obtain states with degree of homogeneity 
( - 2). The fields 

XI,2 = G'III,2 (77) 

are the field strengths ofthe spin s fields. They satisfy 
(i) 

(ua)X= -2X, (ra)x=O, ;= 1, ... ,2s. (78) 
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APPENDIX A: CARTAN BASIS 

In order to calculate explicit states, we use the explicit 
form of the Cartan basis. Here we give it in terms of the basis 
Jap ofthe Lie algebra so(3,2). With the energy raising and 
lowering operators 

Jl =Jj6 ± iJj4' j= 1,2,3, (AI) 

we use 

945 

HI =J46, 

H 2 =JI2, 

E±1l- = (lIv1)(J23 ± iJ3 ]), 
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(A2) 

(A3) 

(A4) 

E ± a, = ± UNl)J 3± , 

E ± a, = ± U/2)(J]± ± iJ l ), 
E ±P = =+= (i12)(J]± + iJ 2±)' 

(A5) 

(A6) 

(A7) 

where Ell- is the simple compact root vector, Ep the simple 
noncompact root vector, and Ea , and Ea , are noncompact 
root vectors. In a root space with Cartesian basis e],e2 corre
sponding to H I,H2' the roots have the following values: 
fl = (0,1),{3= (1, -1), a] = (1,0), anda2 = (1,1). 

APPENDIX B: SOME EXPLICIT STATES 

In this appendix we collect some explicit states, which 
are used in the text, and give the action of ladder operators 
on them. 

1. Spin 1, high triplet 

is 

The lowest state in the triplet 

D(3,0) -D(2,1)-D(3,0) (Bl ) 

(B2) 

It has quantum numbers (E = 2, 1 = 1, 13 = - 1). Acting 
with the raising operator 

EpE! + Ea,EI' + Ea" 
we get the state 

(I) (2) 

({3urs) - ({3urs) 
~ = 3;---2--:""4--

u+ 

with quantum numbers (E = 3, 1= 0). The state 

has the same quantum numbers. It is a relative lowest 
weight, for which 

E_a,'If;= - (3;/2)~ (B5) 

holds. 

2. Spin 1, low triplet 

Next we want to give states in the low spin-l triplet 

D(1,1)-{D(2,1) EllD(O,O)}-D(1,1). (B6) 

w. F. Heidenreich and M. Lorente 945 



                                                                                                                                    

The absolute lowest state in the triplet is 

(I) (2) 

({3urS) - ({3urS) 
f/Ij=-----

u+ 

(B7) 

with quantum numbers (E = 0, 1= 0). It belongs to the fi
nite representation, which here is the trivial one. Acting with 
the raising operator EfJ on it we get 

1 (\) (2) 1 1 [(~ (0)] VP, ~ u'+ [(PuY,)(Puy,)+ u'j ~ X ~ , 

(B8) 

with quantum numbers (E = 1, 1= 1, 13 = - 1). A cyclic 
state tIP. for the full triplet, with the same quantum numbers, 
is 

(\) (2) 

({3ur5) - ({3ur5) 
-;------

(B9) 

It can be constructed by taking the limit 

\. I -----,...--
(2s - 1) terms 

(2s - 1) terms 
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(BlO) 

where 1/Ig is the lowest weight of DO + E,l), with 13 = - 1, 
i.e., a deformation of "'II to a noninteger energy, and tift is the 
state at (E = 1 + E, 1= 1, 13 = - 1) which belongs to a rep
resentation D( E,O), i.e., a deformation of the finite one. The 
constant c is chosen such that limE_o (1/Ig - ctfIt) = O. 

From this cyclic state we get f/Ij = - E _ fJ tIP. and also a 
"physical state" with quantum numbers (E = 2, 1= 1, 
13 = - 1) by using the raising operators 

(Ea , + EfJEI')tIP. = t/fp. (Bll) 

Explicitly it is 

2; [ (I) (2)] 
+ v'1u2+ U

2 + ({3urs )({3urS) 

It satisfies E _ a, t/fp = !~. 
The two triplets are isomorphic to the triplets of de Sit

ter electrodynamics. 3 

3. All spins, high triplet 

In the case of the high triplet 

D(2 + s,s - 1) -DO + s,s) -D(2 + s,s - 1), (B13) 

we also found an expression for the ground states for all spins 
;) 1. A cyclic state with the quantum numbers (E = s + 2, 
1= s - 1, 13 = - S + 1) is 

(BI4) 
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Using a lowering operator on it, 

E _ a, 'f!? = - is( 4,r - 1~, 

we get the lowest "physical" state 

'1'0 =_1 (VI X ... X(VI 
p U2s + 1 ' 

+ \:0 ° 1 
'" 2s terms 

(BI5) 

(BI6) 

with the quantum numbers (E = s + 1,1 = s, 13 = - s). Acting on this one with the raising operators 

(BI7) 

we get a pure gauge state with the same quantum numbers as those of'l'?1t is explicitly 

(2s - 1)(~) X (!) x··· x(!) 
° \:0 01 

'" (2s - 1) terms 

~(V X (~) X (V x ... x(V- ... ~(V x ... x(V x@ +symm. 
(BI8) 

~~ __________________ ~~~ ______________________ -JI 

(2s - 1) terms 
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The geometric framework for N = 2 superconformal field theories are described by studying 
SUSY2 curoes-a nickname for N = 2 super Riemann surfaces. It is proved that "single" SUSY2 
curves are actually split supermanifolds, and their local model is a Serre self-dual locally free 
sheaf of rank two over a smooth algebraic curve. Superconformal structures on these sheaves 
are then examined by setting up deformation theory as a first step in studying moduli 
problems. 

I. INTRODUCTION 

Supersymmetric extensions of algebraic curves have 
been recently studied in the physical and mathematical liter
ature (see, e.g., Refs. 1 and 2). Among the physical motiva
tions, a complete understanding of N = 1 susy curves and 
their moduli spaces is needed in superstring theory in order 
to give meaning to computations in the Polyakov approach: 
Besides, they provide the natural arena for higher genus su
perconformal field theories. 

From the mathematical point of view, superalgebraic 
curves are the simplest candidates for testing "new direc
tions in geometry" in the spirit advocated by Manin.3 Al
though studying "two supersymmetries" may seem the most 
obvious step beyond N = 1, it is already a nontrivial matter, 
as noticed in some works.4,5 In fact, for N> lone is lead to 
consider locally free sheaves of rank greater than 1 on alge
braic curves, a topic that is not completely under control as 
compared to the complete understanding of invertible 
sheaves. Luckily enough, for N = 2, the superconformal 
structure to be imposed on such objects will bypass most of 
the subtleties related to moduli of vector bundles over vari
able curves: On the contrary, for N;;;.3, these enter the stage 
in a substantial way. Thus SUSY2 curves are in a way the last 
"easy going" supersymmetric extension of algebraic curves, 
a fact that deserves special attention. 

From the physical point of view, there is some "stringy" 
interest in the study of N = 2 superconformal models; for 
instance, a recent work6 has pointed out that space-time 
N = I supersymmetry requires N = 2 world-sheet super
symmetry. It is also widely believed that viewing N = I su
permoduli spaces as embedded in N = 2 supermoduli spaces 
could be a keen standpoint for investigating the peculiarities 
of the former (provided that one has a good control of the 
latter). 

The plan of this work is as follows. In Sec. II we investi
gate the geometry of SUSY2 curves in connection with the 
theory of rank two locally free sheaves over an algebraic 
curve. Some nice features due to the existence of a supercon
formal structure, such as the splitness of "isolated" SUSY2 
curves, are proved. We also show that isolated SUSY2 curves 
are the same thing as the datum of a Serre self-dual vector 
bundle on a curve and we classify such bundles completely. 
In Sec. III we set up a deformation theory and construct the 
local model for N = 2 supermoduli spaces. Finally, Sec. IV is 
devoted to a detailed discussion of the global structure of the 
reduced moduli spaces of untwisted SUSY2 curves. 

II. SUSY 2 CURVES 

This paper deals with SUSY2 curves from the point of 
view of the theory of Kostant-Leites supermanifolds. In this 
framework, N supersymmetry is encoded in a Z2-graded ex
tension .sf x of the structure sheaf of a (complex) manifold 
such that .sf x is locally isomorphic to the total wedge prod
uct of a rank N locally free analytic sheaf f6' [hereinafter 
called the characteristic sheaf of the supermanifold (X, 
.sf x)] over X (for a full definition, see, e.g., Ref. 2). 

Recall that susy 1 curves are Ill-dimensional super
curves that come equipped with a distinguished distribution 
fP in the tangent sheaf, spanned by the supersymmetry gen
erator. In the same way the structure sheaf .sf c of a SUSY2 
curve is quite special since it should embody the idea of the 
superconformal structure. In the physical literature this is 
realized in terms of coordinate transformations.4,5 Here we 
give a definition that naturally extends that of susy 1 

curves.7,s 
Definition 1: A family of susy 2 curves (C, .sf c ) parame

trized by the complex superspace (S, .sf s )-a SUSY2 
curve over S-is the datum of (i) a sheaf homomorphism 
1T# : 1T-

1 .sf s .... .sf c of relative dimension 112 over a proper 

surjective flat map C:S and (ii) a Ol2-dimensionallocally 

free distribution fP tr in the relative tangent sheaf Y tr such 
that the commutator mod fPtr' 

{,}~ :fP tr ® fP tr .... YtrlfP tr' 

is a symmetric nondegenerate bilinear map of sheaves of .sf c 
modules. 

In the following, a SUSY2 curve over the trivial super
space {*} will be called a single SUSY2 curve. The connection 
between Definition 1 and the usual coordinate approach, as 
given, e.g., in Ref. 9, is a simple generalization of the N = 1 
case (see Refs. 7-10). Indeed, one can easily prove that there 
exist generators y' for fP tr and a I az for Y trl fP tr such that 

{Di Dl} _~ij a 
, !/r- oz' 

A simple computation then shows that Di = a I ali 
+ Oi (alaz). 

Besides matching with physical applications, Definition 
1 allows an immediate characterization of single susy 2 
curves. 

Proposition 1: Let (C, .sf c) be a single SUSY2 curve with 
reduced canonical sheaf liJ. Then there exists a rank two 10-
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cally free sheaf 'C such that (i) ,p/ c c::! A 'C, i.e., ,p/ c is split; 
and (ii) 'C c::! 'C. ® tV, i.e., 'C is Serre self-dual. 

Proot Let (Ua , Za' (j a) be a canonical atlas with tran
sition functions 

Za = f aP (zp) + gaPE ij () i(}i, 

(}a i = [maP 1j ()/. 
The existence of the distribution ~ 11' is then equivalent to 
the superconformal condition 

. k· () k 
D'pza = () aD'p a 

(sum over repeated latin indiceS), which gives 

EijgaP +{jijf~p = [tmapmaP]ij' 

wheref~ = afaP/azp. Looking at the symmetric and anti
symmetric parts of this equation we have (i) gaP = 0, so that 
,p/ c splits to A'C, where 'C is locally generated by the (j a's; 
and (ii) tmaP maP = l·f~, where maP are the transition 
functions of 'C. Thus maP = tm;;pl f~, i.e., 'C c::! 'C. ® tV .• 

We want to remark at this point on the power of super
conformal structures. Indeed, a generic supercurve of di
mension 112 is by no means split, as opposed to the trivial 111 
case. Nevertheless, SUSY2 curves are split, a peculiarity that 
does not survive to higher supersymmetric extensions. 

According to the physical literature, a SUSY2 curve is 
called twisted whenever the 0(2) symmetry of the (anti) 
commutation relations for the local supersymmetry genera
tors D ~ cannot be reduced to an SO(2) symmetry.4 This is 
related to the vanishing of a class in H 2 (C, Z2) obtained by 
taking the determinant of the transition functions for the 
locally free sheaf 'C. Namely, since any rank two locally free 
sheaf can be represented as the extension of an invertible 
sheaf .Y I by another .Y 2 fitting the exact sequence 
O-+.Y 2-+ 'C -+.Y 1-+0, we have det 'C = .Y I ® .Y 2' How
ever, Serre self-duality implies det 'C = tV ®ff2, where ff2 
is a point of order two on the Jacobian of C. Then a SUSY2 
curve is untwisted whenever ff2 is trivial. 

From the holomorphic point of view, Serre self-dual 
rank two locally free sheaves are quite simple objects. 

Lemma 1: The characteristic sheaf 'C of untwisted SUSY2 
curves decomposes as the direct sum 'C = .Y I Ell .Y 2' with 
.Y I ®.Y 2c::!tV. 

Proot In a superconformal gauge the transition func
tions,uaP (zp )i j of'C satisfy tmaP . maP = f~p·l and hence 
can be given the form 

with a~ + b ~p = f~p. A simple computation shows that 
there is a one-cochain Aa with values in the sheaf of GL (2, 
C)-valued holomorphic functions that diagonalizes maP' 
showing that actually, 'C =.Y I Ell .Y 2' Imposing the Serre 
self-duality condition in this gauge gives 

.Y I Ell .Y 2 C::!.Y 11 ® tV Ell .Y 2- I ® tV. 

This completes the proof since .Y I Ell .Y 2 c::!.Y; EIl.Y i if and 
only if either .Y I "'" .Y; or .Y I"'" .Y i· • 

Proposition 2: Any twisted Serre self-dual locally free 
sheaf 'C of rank two on Cis holomorphically isomorphic to 
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the direct sum of two different () characteristics, i.e., 

'C = .!L'1 Ell .!L' 2' with .!L': = tV. 
Proot Recall that a rank two locally free sheaf 'C is 

called semistable if for any invertible subsheaf .Y C 'C, 

cl(.Y)<cl(det 'C)/2: 

it is stable ifthe above inequality holds in the strict sense. A 
classical result of the theory oflocally free sheaves over alge
braic curves II states that a stable locally free sheaf cannot be 
decomposable (i.e., it cannot be isomorphic to the direct 
sum of two invertible subsheaves). 

We first prove that a twisted semistable Serre self-dual 
locally free sheaf is strictly semistable, i.e., it admits only 
degree g - 1 invertible subsheaves. Notice that if 'C is un
twisted, by Lemma 1 it is not stable. If'C is twisted, there is a 
point JI of order 4 on the Jacobian of C such that 'C ® JI is 
untwisted in the sense that det ( 'C ® JI) = tV. Since 'C ® JI 
is stable if and only if 'C is stable, we are again in the above 
situation. 

Second, an unstable Serre self-dual locally free sheaf is 
strictly semistable as well. In fact, suppose that 'C is given as 
0-+.!L'I ..... 'C-+.Y2-+O, with c l (.Y I »g-1. Serre dualiz
ing, we obtain 0 -+.!L' i -+ 'C -+ .Y ( -+ O. Then, supposing 
CI(.Y I) >g - I,Lemma 15 of Ref. 12showsthat.YI"",.Yi 
and hence as det 'C = .Y I ® .Y 2 = tV we obtain a contradic
tion with the assumption of the twisting of 'C . 

We have only to discuss the case O-+.Y 1-+ 'C -+.Y 2-+0, 
withCI (.Y i) = g - 1, .Y I ® .Y 2 =/=tV. If 'C is not decompos
able, again Lemma 15 of Ref. 12 tells us that there would be a 
unique invertible subsheaf .Y C 'C of degree g - 1, contra
dicting the assumption that .Y 11:.Y i. Finally, given 
'C "",.Y I Ell .Y 2 the Serre self-duality condition implies that 
.Y:"",tV. • 

In summary, we have that superconformal structures 
force the characteristic sheaf 'C to be, in the twisted case, the 
direct sum of two nonisomorphic square roots of the canoni
cal bundle. The untwisted case has a richer structure since 
here 'C decomposes as .Y Ell tV ® .Y -I, .Y EPic C. As point
ed out in Ref. 13, this fact has interesting consequences both 
from the mathematical and physical standpoints. We simply 
notice that to ensure semistability of the sheaf 'C also in the 
untwisted sector, one has to be restricted to the case 
deg .Y = g - 1. Here a convenient and physically rea
sonable parametrization of 'C is 'C 
=.Y ®ff Ell tV ® (.Y ®ff)-I, withff E Pico(C) and.Y a 

() characteristic on C. 
Actually, this is not the whole story since for SUSY2 

curves the above analysis is somewhat blind. Indeed, we 
have to work in a finer category than the holomorphic one 
because two SUSY2 curves may very well be holomorphically 
equivalent, but by no means superconformally equivalent. 
This finer classification is entirely an outspring of physics 
and we wish to uncover it in full detail by studying deforma
tion theory of SUSY2 curves . 

III. DEFORMATIONS OF SUSYz CURVES 

The first step in studying moduli space of algebraic ob
jects is to find their local structure, as given by the base 
spaces of versal deformations. 
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Definition 2: A deformation of a susy 2 curve C over a 
pointed superspace (B, {.}) is a family ~:B of SUSY2 
curves together with an isomorphism 1/1 of C with the "cen
tral fiber" 1T- I ({.}) fitting the commutative diagram 

C '-+ ~ 

1 I1T' 
{.} '-+ B 

As usual, the starting point for setting up a deformation the
ory is to identify the sheaf of infinitesimal automorphisms of 
the object to be deformed. In our case this is the subsheaf T": 
of the relative tangent sheaf whose elements are germs of 
vector fields along the fibers which preserve Pfl : 

T~: = {X ET". I [D, X]E Pfl V DE Pfl}. 

In perfect analogy with the case of N = I susy curves we find 
the following lemma. 

Lemma 2: There is an isomorphism T'; "'" (T". ) red 

® .If c as sheaves of 1T-
I (.If B ) modules. 

Proof The condition for X to belong to T'; reads as 
[d, X] E Pfl, where Di are generators of Pfl . Introducing the 
canonical coordinates (z, ff), so that Di = a laff + ff (a I 
az), and setting X = a·a laz + bi ' Di, one has 

[Di,X] =Dia~- (-I)IXlbkl>ki~+Dibk·Dk. 
az az 

Therefore, X E T;: if and only if bi = ( - I) laiD ia and the 
isomorphism is given by a·a laz--a(a laz) 
+ (_ 1)laIDia·D i. • 

Thanks to this lemma we have, for g" semistable, the 
following proposition. 

Proposition 3: Versal deformations ofsusY2 curves exist. 
The dimension of the base of such deformations is 
3g - 3 + g - al4g - 4, with a = 0, I in the untwisted and 
twisted cases, respectively. 

Proof From the Kodaira-Spencer deformation theory, 
we know that possible obstructions lie in the second coho
mology group of the sheaf of infinitesimal automorphisms 
T';. By Lemma 2 one obtains 

T'; = w- I e II(w- 1 ® g") e det g" ® W-I, 

where the above sum is the direct sum of sheaves of {J c 
modules. (The parity change operator II has, strictly speak
ing, no effective meaning in this context; we just use it as a 
parity bookkeeper.) Then H2 (T';) = {O}, showing the ex
istence of versal deformations. The second part of Proposi
tion 3 follows from Serre self-duality of g" and Proposi
tion 2. Indeed, dim H I (w- I e det g" ® w- I ) 
= dimHI(w- 1 eJ1/), where J1/ = det g" ®w- I = {J for 
untwisted SUSY2 curves, while it is a point of order 2 in the 
Jacobian of C in the twisted case. As for the odd dimension, 
notice that dim H I(W- I ® (.2" le.2" 2» = dim H I (.2" I-I) 
+dimH I(.2"2- 1

). • 

Remark: As for the computation of the odd dimension q 
of the would-be moduli space of SUSY2 curves in the general 
untwisted case, one can argue as follows. Since 
g" "'" .2" e w ® .2" -I, H I (C, g") is invariant under the Kum
mer map .2" ~ ® .2" -I. Hence one can be restricted to dis
cussing the case deg .2" =.d>g - I only. By the Riemann-
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Roch theorem one has (i) if g - 1 <d < 2g - 2, then 
q = 4g - 4; (ii) if2g - 2<d<3g - 3 and .2" is generic, then 
q = 4g - 4; (iii) if3g - 3 <d<4g - 4and.2" isgeneric, then 
q = d + g - 1; and (iv) if 4g - 4 < d, then q = d + g - 1. 
Notice that in cases (ii) and (iii) the odd dimension of 
"moduli space" jumps on analytic submanifolds of the re
duced space, a fact that renders its structure quite subtle in 
the framework of Kostant-Leites supermanifold theory. 

From a more computative point of view, one can consid
er infinitesimal deformations, i.e., deformations over the su
perspace S = ({.}; C (t, 1J)/(t2, t;», as being given by de
forming the clutching functions of the central fiber. From 
Sec. II, we learn that these are of the form 

za =/ap(zp), 

{}~ = [map(zp)]J {}~, 

where the matrix ,uaP (zp) i j is of the form 

,uap(Zp)~=(gloap 0), 
g2aP 

with either 87 =/~Q or gl 'g2 =/~Q' 
afJ " afJ afJ " 

The most general deformation of such clutching func-
tions, le., those generated by a vector field in the whole Y"., 
over S is given by 

Za =/ap(zp) + t(bap(zp) + !Kap(Zp)Eij {}~ (}~) 

+ ;1JiafJ (zp)O~, 

{} ~ = [ma[3(zp)]J {}~ + t [/aP(zp) ]J {}~ + ;(tfaP(zp) 

+ ~yiapEjk {}~ (};). 

Imposing the superconformal condition shows that 
gaP (zp) = 0 (this fact can be also grasped by writing expli
citly the superconformal vector fields which generate the 
deformations) and the only independent data are bap (zp), 
1/1~ (zp ), and [laP (zap)]J. The cocycle condition leads easi
ly to the identification of {ba[3 (zp)·a laza} as a one-cocycle 
with values in the relative tangent sheaf w; I and {rP~ (zp)} 
as a one-cycle with values in g" •• 

As for the role of the matrix [laP (zp ) ]J, one can argue 
as follows. Since the even and odd infinitesimal deforma
tions give decoupled equations, one can be limited to discuss
ing a deformation of the form 

Za =/ap(zp) + tbap(zp), 

{}~ = [maP (zp) ]J'{l>i + t [m-I'lap(zp) ]U'{};' 
The superconformal condition translates into OaP 
+ 'OaP = (11/~p )(aba[3lazp )o1 for the matrix Oa[3 
=.m;;/·laP' Hence 

Oap =( Tap aap) 
- aap Tap 

and its only free part is the off diagonal 

o ap = ( _ a~p a~p ). 

This decomposition is obviously due to the fact that when 
deforming the underlying curve C according to ba[3' line 
bundles on C are deformed as well. The cocyle condition for 
Oa[3 gives 
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mafJOapmpy + mapmpyOpy = mayOay - haP m;.p mpy. 

Looking once again at the off-diagonal part of the above 
equation one has (multiplying on the left by m::r I) 

A simple algebra shows ~at Oapmpy = fpyldet mpy 'OaP, 
yielding (fpyldet mpy)OaP + Opy = Oay' Then consider
ing local generators {~a} of w- I ® det g' one readily identi
fies the collection {aap '~p} as a one-cocycle with values in 
w- I ® det g'. 

In summary, a complete infinitesimal deformation of a 
susy 2 curve consists of a deformation of the underlying alge
braic curve and the couple of line bundles that define the 
"single" object plus the deformation specified by laP' Since 
the latter is completely qualified by an element in 
HI ( C,W -I ® det g') we find complete agreement with the 
results of Proposition 3. As a final remark, we notice that 
this latter space, which can also be thought of as the space of 
superconformally nonequivalent SUSY2 structures on a fixed 
curve, coincides with the space of hoI om orphic ally nonequi
valent extensions of a 0 characteristic .!t'l by another one 
.!t' 2' 

IV. THE REDUCED MODULI SPACE OF UNTWISTED 
SUSY2CURVES 

We can now give a detailed description of the reduced 
moduli spaces of SUSY2 curves, which turns out to be com
plete in the untwisted case. According to Proposition 2, ho
lomorphic isomorphism classes oftwisted SUSY2 curves are in 
one-to-one correspondence with isomorphism classes of 
couples (C,.!t' 12)' where .!t'12 is an unordered couple of 
nonequivalent 0 characteristics. This sits inside the second 
symmetric power ~(2) o(the spin covering ~_~ of the 
moduli space (at some fixed genus), a space that has a nice 
mathematical status. 14 Besides, according to Lemma 1, the 
reduced moduli space of untwisted SUSY2 curves with a 

1 

~ ~ ~ 

semistable characteristic sheaf g' can be identified with the 
universal degreeg - 1 Picard variety Picg _ 1 -~ g over the 
moduli variety of genus g algebraic curves, modulo the 
Kummer map .!t' --cu ® .!t' - I. 

We next want to parametrize superconformal structures 
on a fixed curve C and a couple .!t'l Ell .!t' 2 of invertible 
sheaves fitting a Serre self-dual rank two locally free sheaf. 
The basic observation here is that the sheaf g' should be 
regarded not merely as a holomorphic sheaf because the su
perconformal structure amounts to saying that it is the sheaf 
of sections of a vector bundle E with, as its structure group, 
the conformal group 

G= {mEGL(2,C)l tm'm =A 1}=GoU77'Go, 

where Go is the identity component and 

77 = (~ _~). 
The map ~:G-C* given by ~(m) = t m'm gives rise to the 
exact diagram of complex groups: 

1 

~ 

- SO(2) - Go 
'1' 

C* 1 -
~ ~ 

G 
'1' 

C* I . (1) -1 0(2) --
~ ~ ~ 

Z2 - Z2 - 1 

~ ~ 

1 1 

Notice that the first row is an exact sequence of central sub
groups of the groups in the second row. This is vital at the 
level of exact sequences of sheaves of germs of group-valued 
functions associated to the above diagram. Indeed, 
pushing the induced cohomology sequences as far as possi
ble, we obtain an exact diagram: 

1 H 1(C,Y(J2) - HI(C,~O) - H1(C,(J*) 

~ ~ 

- H 1(C,(J2) HI(C,~) - H1(C,(J*) 

~ ~ 

HI(C,Z2) HI(C,Z2) -
~ ~ 

1 I 

Here we used some results of non-Abelian sheaf coho
mology and the following lemma. 

Lemma 3: The cohomology groups H * (C, (J *) and 
H * (C, Y tJ 2) coincide. 

Proof' The exact sheaf sequence 
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where the map m is defined by 

m(f) = ( cos(21T'if) Sin(21T'if») 
_ sin(21T'if) cos(21T'if)' VfEr{ U,tJ), 
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fits together with the standard exponential sequence into the 
commutative diagram of sheaves (of Abelian groups) 

o -+ z -+ tJ 

lid ~id 

o -+ z -+ tJ 

where 

(
",+",-1)/2 

m*(",) = _ ('" _ ",-1)/2i 

'Vf/Jer( U,tJ*). 

exp 
-+ 

m 
-+ 

tJ* 

~m* 

-+ 

(3) 

This gives rise to a long commutative sequence of cohomo
logy groups, proving Lemma 3. • 

Remark: Notice that the above sequence shows that the 
cohomology group H I ( C,Y fJ 2) is isomorphic to the group 
Pic C of invertible sheaves on C. 

The basic fact for our concern is the following lemma. 
Lemma 4: The action of HI (C,Y fJ 2) is transitive and 

free on the fiber of the bundle H I ( c, Y 0) -+ H I ( c, tJ *) over 
each class 'TEll I ( c, tJ * ). The same is true for the action of 
HI(C,YO) on the fiber of H I(C,Y)-+H I(C,Z2) over 
7'Ell I (C,Z2)' 

Proof: Since Y tJ 2 '-+ Yo and Yo '-+ Y are central and 
Abelian, we can apply a (simplified) argument ofnon-Abe
lian sheaf cohomology (see, e.g., Lemma 2.4 of Ref. to) to 
obtain the proof. This runs as follows. Given an exact se
quence of sheaves of groups 0 -+ &' -+ !!2 -+ f!lt -+ 0 in which &' 
is central and Abelian and f!lt is Abelian, one has the follow
ing results. 

I I), 2;7}J 
(i) There is a connecting map H (f!lt)-+H (;:;r), so 

that the sequence 
I), 

HI (!!2) -+H I(f!lt) -+H2( &') 

is exact. 
(ii) Whenever 1EKer 8 1, HI (&') acts transitively on 

the fiber of H I ( !!2 ) over 7, with the kernel given by the image 

of H ° ( f!lt ) : H I ( !!2 ). In our case Lemma 4 follows from the 

factthatH 2 (C,Y tJ 2) "",H 2(C,fJ*) = {O}and theobserva
tion that elements in HO(C,Z2) ((Ho(C,fJ*» are mapped 
into locally constant matrices by the connecting homomor
phisms 80 and thus are clearly trivial cocycles. • 

Using Lemma 4, we can give the following description 
of the (reduced) moduli space of untwisted SUSY2 structures 
over a fixed curve C. 

Proposition 4: Nonequivalent untwisted SUSY2 structures 
on a fixed (smooth) algebraic curve C are parametrized by 
the fiber of H I(C,YfJ2) 10 HI(C,Yo) over 
[w]Ell I (C,fJ*). 

Proof: This proof follows at once by noticing that the 
mapH I( C,Y) -+H I(C,fJ*) in diagram (2) is surjective and 
the map H 1( C,fJ 2) -+H I (C,Y) is injective. The last asser
tion follows by applying Lemma 4. • 

Remark: While in the general theory of supermanifolds 
the first infinitesimal neighborhood of M red is an "ordinary" 
vector bundle and thus its vertical automorphisms are auto
morphisms of the supermanifold structure, when consider-
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ing supermanifolds with contact structure, which are the 
most relevant to physics (see, e.g., Ref. 2), extra structures 
must be taken into account. Thus the classification of N = 2 
superconformal structures over an algebraic curve C is quite 
different from the classification of rank two vector bundles 
over C, which corresponds, as is well known, to the classifi
cation of all split supermanifolds of odd dimension 2 over C. 

v. CONCLUS.IONS AND OUTLOOK 

In this paper we have reconsidered some features of the 
geometry of N = 2 superconformal field theories in a proper 
geometric framework. We showed that most of the defini
tions and properties of N = 1 super Riemann surfaces carry 
over, with obvious modifications, to the N = 2 case. In par
ticular, we pointed out the relations of the theory of SUSY2 

curves with the theory of Serre self-dual rank two locally free 
sheaves over algebraic curves. 

This approach gives a full proof of the results that are 
usually obtained in the physical literature by studying de
grees offreedom and "gauge invariance" of the N = 2 super
symmetric action in two dimensions (see, e.g., Ref. 15). 
Namely, some pecularities of N> 1 supersymmetry, such as 
the existence of modular parameters for the U( 1) current 
mixing the gravitinos, have been given a sound geometrical 
picture. In addition, a complete description of the reduced 
moduli space of SUSY2 curves in the untwisted sector was 
given. 

A detailed study of the global aspects of N = 2 supermo
duli spaces, together with a setup of the theory of supercon
formal fields on SUSY2 curves along the lines of Refs. 16 and 
17, will be the subject of future work. 
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All finite-dimensional irreducible representations of the general linear Lie superalgebra 
gl (2/2) are written down in matrix form. The basis within each representation space is chosen 
in such a way that it makes evident the decomposition of gl (2/2) into irreducible 
representations of its even subalgebra gl (2) E9 gl (2). Special attention is devoted to the analysis 
of all nontypical representations and some indecomposible representations. 

I. INTRODUCTION 

In Ref. 1 (hereafter referred to as I) the finite-dimen
sional irreducible representations of the general linear Lie 
superalgebra g1( 2/2) were studied with an accent on the 
induced and the typical representations. In the present pa
per, we complete this investigation. Our final aim is to give 
explicit expressions for the transformations of all finite-di
mensional irreducible modules (fidirmods) of gl(2/2) in a 
matrix form. In other words, we wish to introduce a basis 
within each (typical and nontypical) gl(2/2) fidirmod and 
to show how the basis transforms under the action of the 
algebra's generators. 

The algebra g1( 2/2) can be defined as the set of all 
squared four-dimensional complex matrices. As a conven
ient basis in it we choose the Weyl matrices eij' i,j = 1,2,3,4, 
where eij is a matrix with Ion the ith row and the jth column 
and zero elsewhere. Assign to each index i a degree (i), 
which is zero for i = 1,2 and 1 for i = 3,4. Then eij is an even 
(resp. an odd) generator, if (i) + (j) is an even (resp. an 
odd) number. The multiplication ( = the supercommuta
tor) between eij and ekl is a commutator eijekl - ek1eij' if at 
least one of both generators is even and it is an anticommuta
tor eijekl + ek1eij' ifboth generators are odd. The even subal
gebra of gl (2/2) is isomorphic to the Lie algebra 
gl(2) E9 g1(2). For definiteness we set 

left: gl(2) =gl(2) I = lin.env.{eij li,j = 1,2}, (1) 

right: gl(2) =gl(2)r = lin.env.{eijli,j= 3,4}. (2) 

An important subalgebra of gl(2/2), which is a 15-di-
mensional ideal in it, is the Lie superalgebra s1( 2/2). The 
latter consists of all four-dimensional matrices, whose super
trace vanishes, i.e., 

s1(2/2) = {010Egl(2/2), 

str(o)=;tl (-1)(OOii =o}. (3) 

a) On leave of absence from the Institute for Nuclear Research and Nuclear 
Energy, Blvd. Lenin 72, 1184 Sofia, Bulgaria. 

The finite-dimensional irreducible modules of sl(2/2) [in 
the more general framework of the algebras sl(n/m)] were 
classified by Kac. 2 Each sl ( 2/2) fidirmod contains a highest 
weight vector. Its highest weight carries information about 
the fidirmod. In order to give more explicit description of the 
sl(2/2) fidirmods, introduce a basis in the Cartan subalge
bra Hsi of sl (2/2) in the following way: 

and denote by hi, h 2, h 3 the conjugate basis in the dual to Hsi 
space H~, i.e., 

h;(h j
) = D{. 

Let 11 be a subset of H ~ defined as 

11 = {a1h 1+ a 2h 2 + a 3h 3Ia l ,a3EZ+,a2EC}. (5) 

Proposition 1:2 The vector AEH ~ is a highest weight of a 
finite-dimensional irreducible sl (2/2) module, if and only if 
AE11. 

Thus the s1(2/2) fidirmods can be labeled with three 
numbers (a l ,a2,a3 ), which satisfy the conditions, stated in 
(5); these numbers are the coordinates of the corresponding 
highest weight in the basis (4). Denote by W(a l ,a2,a3 ) a 
finite-dimensional irreducible sl( 2/2) module with a highest 
weight 

(6) 

and a highest weight vector x A' The coordinates a; of the 
highest weight A are the eigenvalue of h; on x A, 

(7) 

In I, the finite-dimensional gl (2/2) modules, induced 
from the even subalgebra, have been considered. The con
struction goes as follows. Choose as an ordered basis in the 
Cartan subalgebra H of gl (2) I E9 gl (2) r the generators ell> 
e22, e33, e44. Denote with 

I 2 3 4; ; e ,e ,e ,e, e (e ii) = Dj , ( 8 ) 

the dual to its basisfromH* and let Vo( [ml3,m23,m33,m43]) 
be a fidirmod of gl (2) I E9 gl (2) r with a highest weight 

(9) 

Extend Vo( [ml3,m23,m33,m43]) to a module over the subal
gebra 
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P= g1(2)/ EDg1(2)r EDP +' 

P + = lin.env.{eJ3,e14,e23,e24}' 

postulating that 

P + Vo( [m13,m23,m33,m43]) = 0. 

(10) 

The gl (2/2) module W( [m 13,m23,m33,m43 ] ), induced from 
Vo( [m13,m23,m33,m43])' is defined to be 

W( [m13,m23,m33,m43]) 

= (U ® Vo( [m13,m23,m33,m43] »/10 ( [m13,m23,m33,m43]) , 

where U is the universal enveloping algebra of gl (2/2) and 

lo( [m13,m23,m33,m43]) 

= lin.env.{up® v - u ®PVIUEU,pEPC U, 

VEVo( [m13,m23,m33,m43])} . 

Each induced module is either irreducible or indecom
posible. It is important to point out that 
W( [m13,m23,m33,m43]) is gl(2/2) irreducible (resp. inde
composible), if and only if it is s1(2/2) irreducible (resp. 
indecomposible) [see Propositions 24 and 25]. Therefore, 
several of the definitions of the sl (2/2) modules 
W( [m13,m23,m33,m43]) can be generalized in a natural way 
to W( [m13,m23,m33,m43])' considered as gl(2/2) modules. 
In particular, we say that gl(2/2) module 
W( [m 13,m23,m33,m43] ) is typical (resp. nontypical), if con
sidered as an sl (2/2) module it is typical (resp. nontypical). 
We recall that a given s1(2/2) module is typical2 ifit is iso
morphic to an irreducible induced module. All other finite
dimensional irreducible sl (2/2) modules are called nontypi
cal. It turns out that any nontypical gl(2/2) module [and 
hence nontypical s1( 2/2) module] is a factor module of an 
induced module. More precisely, let V( [m 13,m23,m33,m43 ]) 
be a nontypical gl(2/2) module with a highest weight (9). 

Then the induced module W( [m 13,m23,m33,m43]) is inde
composible. It contains a maximal invariant submodule I so 
that up to an isomorphism 

V( [m13,m23,m33,m43]) = W( [m13,m23,m33,m43] )/1. 
(11 ) 

The following statement (I, Proposition 2) divides the 
induced modules into irreducible (and, hence, typical) mod
ules and indecomposible modules. 

Proposition 2: The induced module 
W( [m 13,m23,m33,m43] ) is gl (2/2) irreducible, if and only if 

m i3 +mj3 -i-j+5#0 

¢:} 1'3 + 1,3 + 3#0 V i = 1,2 and j = 3,4. (12) 

The authors of Ref. 1 have defined a basis within each 
module W( [m13,m23,m33,m43])' which was appropriate for 
a construction of both the typical and the nontypical mod
ules. To this end they decomposed every induced module 
W( [m13,m23,m33,m43]) into a direct sum of irreducible 
gl(2) I ED gl(2) r modules V(i), i = 1,2, ... and introduced a 
basis rei) in every V(i). As a basis r in 
W( [m13,m23,m33,m43])' which was called a reduced basis, 
they took the union of all r(l),re2), ... and wrote down 
expressions for the transformations of the reduced basis un
der the action of the generators. Whenever the conditions 
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(12) hold, the reduced basis is a basis in a typical gl(2/2) 
module. Therefore, the authors of! have found the transfor
mations of all typical gl ( 2/2) modules in a matrix form. 

In the present paper we solve the same problem for all 
nontypical modules. We hope this to be another small con
tribution, among the various other encouraging results, 3-28 

toward the developing of a general representation theory of 
the basic Lie superalgebras [including the algebras gl (n/ n ) , 
which are central extensions of basic Lie superalgebras]. We 
begin by recalling the notation, introduced in I, slightly 
modifying some of it. We write also the reduced basis and its 
transformations under the action of the generators in a 
somewhat more compact form. 

II. INDUCED REPRESENTATIONS OF gl(2/2) 

A. Some abbreviations and notation 

In order to make the exposition self-consistent, we list 
here some of the abbreviations and notation that are used 
throughout the paper. Most of them are the same as in I. 

LS, LS's-Lie superalgebra, Lie superalgebras, 
fidirmod (s ) -finite-dimensional irreducible module (s ), 
GZ basis-Gel'fand-Zetlin basis, 
lin.env. {X}-the linear envelope of X, 
Z-all integers, 
Z+ -all non-negative integers, 
N-all positive integers, 
C-the complex numbers, 
[m] = [m13,m23,m33,m431. 
lij = mij - i, for i = 1,2 and lij = mij - i + 2, 

for i = 3,4, 
W( [m] )-an induced gl(2/2) module, 
Ik-the maximal invariant subspace in W( [m]), corre

sponding to the class k, k = 1,2,3,4,5 [see (40)-

( 45) ]; for k = 1,2,3,4 it is irreducible, whereas Is is 
indecomposible module, 

Wd [m)) = W( [m))/Ik-the nontypical module, 

corresponding to the class k, k = 1,2,3,4,5, 

I-.. ,-bee,dl pq« '-as-SeC ,d'., I-a,-bre,d'. ~irreducible 

modules of gl(2) / ED gl(2) r with a signature, 
[m 13 - a,m23 - b,m33 + c,m43 + d)-see (47), 
(63), (64), 

(") = {O, if i is an even number, 
I 1, if i is an odd number. 

(13) 

By (m) we denote a table of 12 numbers, ordered as follows: 

m 13' m23, m33, m43 
(m) =m 12, m22, m32, m42 

m", 0, m31 , ° 
(14) 

Then (m) ± i
, 
j""" ± ikjk denotes a table, which is obtained 

from (m) by the replacements 

(15) 
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B. Transformations of the reduced basis 

The induced gl(2/2) modules W([m]) 
== W( [m13,m23,m33,m43]) are labeled with four in general 
complex numbers m 13,m23,m33,m43' which are the coordi
nates of the highest weight A in the basis (8), i.e., Eq. (9) 
holds. The coordinates m 13,m23,m33,m43 take all possible 
values, consistent with the conditions 

m13,m23,m33,m43EC, m l3 - m 23El+, m33 - m43El+ . 
(16) 

Thus the values of m13,m23,m33,m43 fix the induced repre
sentation space of the LS gl(2I2). The basis within W( [m]) 
is given with the set of all possible patterns 

which are compatible with the conditions 

( 1) p,qEl+, 2>p>q>0 ; 

(here are some new expressions for r, m 12, and m22 ) 

(17) 

(18) 

(2) s = 1, ... ,1 + min[p - q,m33 - m43 ] , 
(19) 

r = 1, ... ,1 + min [ (P) + (q),m\3 - m23 ] ; 

(3) m\2=m13-r-8(p-2) -8(q-2) + 1, 

m22 = m23 + r - 8(p - 1) - 8(q - 1) - 1 , 

where 8(0) = 1 , 

m32 = m33 + P - s + 1 , 

m42 = m43 + q + s - 1 ; (20) 

(4) m l2 - m 11El+, m 11 - m22El+ , 

m32 - m 3IEl+, m 31 - m42El+ . 
(21) 

The transformations of the reduced basis ( 17) under the 
action of the even generators read I: 

e11 [(m)]pq =m 11 [(m)]pq, 

e22 [ (m)]pq = (m 12 + m22 - m tt ) [(m)]pq , 

e33 [(m)]pq = m31 [(m)]pq, 

e44 [ (m)]pq = (m 32 + m42 - m31 ) [(m) ]pq , 

ed (m)]pq = 1 (/\2 -Itt) (/22 -/tt )II/2[ (m)tt]pq , 

e21 [(m)]pq = 1(/\2 -111 + 1)(/22 -111 + 1)1 112 

X[(m)-II]pq , 

(22) 

(23) 

(24) 

(25) 

e34 [(m)]pq = 1(/32 -/31 )(/42 -/3I W12 [(m)3I]pq, (26) 

e43 [ (m)]pq = 1 (/32 -/31 + 1) (/42 -/31 + 1)1 112 

(27) 

The transformations of the reduced basis under the ac
tion of the odd generators e32 and e23 were given in I. Here, 
we write the result in a somewhat more compact form. 
Throughout the equations below [(m) ]pq is a basis vector, 
written in the notations (17)-(21). In particular, each basis 
vector [ (m) ] pq depends also on the variables sand r, which 
take values as defined in Eqs. (19). 

Transformations under the action of e32: 

(28) 

2 4 

ed(m»)to= L L L 
i=lj=3 k=O,1 

(_1)(\-k)i+k(j+I) I (/,2 -/tt )(/7 - j ,2 -/31) 11/2 I 13 - i,3 -/i3 +2k_ 1 1(\/2)(i+r+1) 

(/12 - 122 ) (/32 -/42) (1 + k) (/\3 -/23) 
(r+i)<k«s+j) 

I
I -I +2k- 1 1(\/2)(s+j) 

X 7-j,3 j3 [em) -,2,J2,3I]2_k,k' 

(2 - k) (/33 - 143 ) 
(29) 

e32 [(m)]pq = 
min(2,r-q+ I) 

L 
min(4,6-q-s) L (_1)qi+(\-q)j 

p+q=2 i=max(1,r-q) j=max(3,5-q-s) 

I 
(/,2 -/tt )(/7 - j2 -/31) 11121 (/,2 -/3 - i2 - (r) + 1) I

q
/2 

X (/12 -/22) (/32' - 142 ) (2 - (r» [/i3 ~ 13 _ i,3 - ( - 1)'] 

Xl (lJ2 -/7 -j,2 + (s) - 1) 1 (\ -q)/2 [(m) - i2d2,31bl , 

(2 - (s» [lj3 -/7 -j,3 + ( - 1)S] 
(30) 

e
32

[(m)hl = - (_I)'+s ,3 - tt - s+2,3 - 31 [em) -r2,J2,31]22' I 
(I I 1) (I I + 2) 11/2 

(/13 -/23) (/33 -/43) 
}=5-s, (31) 

e32 [(m)h2=O, (32) 

Transformation under the action of e23 : 

[( )] ~ ~ '+'1 I I (/,J- /
tt- 1

)(/7-j,3-
/
31+

3) 1112 [(m)i2,-fl,-31]21' (33) 
e23 m 22="~_IJ'~_3 (-1)' J('J + JJ +3) 

(/13 - 123 ) (/33 -/43) 

955 J, Math. Phys., Vol. 31, No.4, April 1990 T. D. Palev and N. I. Stoilova 955 



                                                                                                                                    

2 4 

L L L (-1)(I-k)i+kj[/i3 +lj3 - (-1)k(i+j+s+r) +3] 
i=lj=3 k=O,1 

(s+j)<k«,+ i) 

x I (1,2 -/11 + I) (l7-j,2 -131 + I) 1112 1 /'2 -/12 + 2k - 21 (I/2)(i+,) 

(/12 -122) (132 -/d (2 - k) (/\3 -123) 

X 5-s,2 J2 [(m)'2,-J2,-31] I
I -I + 2k I (1I2)(s+j+ I) 

(1 + k)(l33 -143) l+k,l-k' 
(34) 

min(2,q-,+3) min(4,q+s+2) 

L L ( - 1)(q-l)i+ q(j+ I) 
i=max(I,q-,+2) j= max(3,q + s+ I) 

X (1,"3 + 1j3 + (S) _ (r) + 3) I (112 -/11 + 1)(/7_ j,2 -131 + I) 1112 
(/12 - 122 ) (132 - 142 ) 

I 

1,2-/3_i2+(r)-1 Iq/21 (lJ2- /7-j2-(s)+1) 1(I-q)/2 

X (2- (r»[/i3 ~/3-i,3 + (-1)'] (2- (s»[IJ"3 ~/7_j,3 - (_I)S] 

(35) 

1

( 1 I )(1 1+1)1 112 
e [em)] = - (I + I + 3) 3-,,3 - 11 5-s,3 - 31 [(m),2,-J2,-31] 

23 10 3 - ',3 s + 2,3 (I I) (I I) 00 , 
13 - 23 33 - 43 

i = 3 - r ,j = s + 2 , 

The expressions for the action of the other odd genera
tors can be derived from Eqs. (25)-(37) and the supercom
mutation relations, 

We improve a mistake that was done in I: The sign in 
front of the last term on the right-hand side ofEq. (3.77) has 
tobe +. 

III. NONTYPICAL REPRESENTATIONS OF gl(2/2) 

In Ref. 1 it was proved (see Proposition 2) that the 
induced module W( [m]) is irreducible, i.e., it is a fidirmod, 
if and only if 

1'"3 + IJ"3 + 3=t0 V i = 1,2 and j = 3,4. (38) 

Iffor certain i = 1,2 and j = 3,4 the conditions (38) are not 
fulfilled, then the representation of gl(2I2) in W( [m]) is 
indecomposible, i.e., the gl (2/2) module W( [m] ) contains 
a maximal invariant subspace Ik and in the same time there 
exists no compliment to I k subspace, which is gl (212) invar
iant. The factor module Wk ([m]) = W( [m])/Ik carries 
an irreducible representation of gl(2I2), which is called 
nontypical. We now proceed to determine all nontypical 
modules, to introduce a basis within each such module and 
to write down expressions for the transformation of the basis 
under the action of the generators. The relevance of this con
struction stems from the observation already stated above, 
namely that the set of all representations of gl (212) realized 
in all irreducible ( = typical) induced modules W( [m]) 
and in all factor modules Wk ( [m]) of the indecomposible 
induced modules exhaust the finite-dimensional irreducible 
representations of gl (2/2). 
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(36) 

(37) 

Taking into accountthat [see (16)] m\3 - m 23eZ+ and 
m33 - m43eZ+ or, which is equivalent, that 

1\3 -/23EN, 133 -/43EN , (39) 

we conclude that there exist five classes of indecomposible 
and hence also of nontypical gl(2I2) modules, namely: 

class 1 1\3 + 143 + 3 = 0 ¢:} m\3 + m43 = 0, 

123 + 133 + 3=t0¢:} m 23 + m 33 =t0; 

class 2 1\3 + 143 + 3=t0 ¢:} m\3 + m43=t0, 

123 + 133 + 3 = 0 ¢:} m 23 + m33 = 0 ; 

class 3 123 + 143 + 3 = 0 ¢:} m23 + m 43 - 1 = 0 ; 

class 4 1\3 + 133 + 3 = 0 ¢:} m\3 + m33 + 1 = 0 ; 

class 5 1\3 + 143 + 3 = 0 ¢:} m\3 + m43 = 0 , 

123 + 133 + 3 = 0 ¢:} m23 + m33 = 0 . 

(40) 

(41) 

(42) 

(43) 

(44) 

We denote by I k ([ m]) the maximal (nontrivial) g1 (212) 
invariant subspace in the indecomposible induced module 
W( [m]), corresponding to the class k, k = 1,2,3,4,5; then 

Wd[m]) = W([m])IIk ([m]), k= 1,2,3,4,5 (45) 

is the corresponding nontypical module, carrying an irredu
cible (nontypical) representation of gl (212) . 

The following proposition, which will be often used, is 
actually one of the definitions of the irreducibility. 

Proposition 3: Let V be a finite-dimensional 
gl(2)/ ED gl(2), module and Uo be the universal enveloping 
algebra of gl(2)/ EDg1(2),. Then V is an irreducible 
gl(2)/ ED g1(2)r module if and only if 
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UrY' = V'd 0i=XEV. (46) 

Consider an induced gl(2/2) module 
W( [m] ) == W( [m 13,m23,m33,m43] ) and let 
Vpq ([m12,m22,m32,m42]) C W( [m]), p,qEZ+, 2>p>q>0, 
be the linear span of all vectors ( 17) with a fixed second row 
[m12,m22,m32,m42]' From Eqs. (20) we conclude that 

[mI2,m22,m32,m42] 

= [m 13 - a,m23 - b,m33 + c,m43 + d] , 

where a,b,c,d are non-negative integers whose exact 
values are completely determined from p,q,r,s 
[see (20)]. Therefore, if Vpq ([mI2,m22,m32,m42]) 
= V pq ( [m 13 - a,m23 - b,m33 + c,m43 + d ] ), we set 

Vpq ([mI2,m22,m32,m42]) == I-a,-b,c,dl •• = lin.env., 

min( I,m." - m4J } 

{[:::: :::: :::: ::: 1 
mil' 0 , m31 , 0 pq 

Im12 - mll,m ll - m22,m32 - m31,m31 - m42EZ+}. 

(47) 
By construction Vpq ([m12,m22,m32,m42]) is a 
gl( 2 ) I ffi gl ( 2 ) r fidirmod with a signature 
[mI2,m22,m32,m42]' The labeling for the same subspaces in 1 
was different, namely Vi ([m12,m22,m32,m42]), i = 1, ... ,6. 
The one to one correspondence between pq and i reads: 

00 {::} 1, 10 {::} 2, 20 {::} 3, II {::} 4, 21 {::} 5, 22 {::} 6. 

(48) 

The gl( 2/2) module W([ m]) is a direct sum of all possible 
gl(2)/ ffigl(2)r modules Vpq([m12,m22,m32,m42]) (which 
are no more than 16). More precisely, 

L ffi VIO ( [m 13 - i,m23 + i - 1,m33 - j + 1,m43 + j]) 
j=O 

min(2.m" - m4l ) 

ffi ! . ffi V20 ( [m 13 - 1,m23 - 1,m33 - j + 2,m43 + j]) 
j=O 

min(2.m u - m 2 .,) 

ffi L ffiVII([m13-i,m23+i-2,m33+1,m43+1]) 
;=0 

min( 1.mn - m.,,) 

! . ffi V21 ( [m 13 - i-I ,m23 + i - 2,m33 - j + 2,m43 + j + 1]) 
j=O 

Proposition 4: Let Ik be the maximal gl(2/2) invariant 
subspace in the indecomposible induced module W( [m]), 
corresponding to the class k [see (40)-(44)], k = 1, ... ,5. 
Then 

== 1-2,-2,2,21
22 

elk' (50) 

Proof: We carry out the proof using the induced basis 
[1,(2.29)] in W( [m]). Suppose Oi=xElk. Then 

x = L L a(01,02,03,04;(m» 
6,,6,,6.,,64=0,1 (m) 

x (e31)6'(e32)6'(e41)6"(e42)64® (m) , (51) 

where the second sum is over all basis vectors (m) in 
Vo( [ml3,m23,m33,m43]) [see I, (2.29)]. Suppose that all 
coefficients a(01,02,03,04;(m» are equal to zero, 

if 01 + O2 + 03 + 04 < k, and that for certain 
O~,O~,O~,O~, O~ + O~ + O~ + O~ = k, and (mo) 
a(O~ ,0~,0~,0~;(mo»i=0. Then the first sum in (51) is over 
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(49) 

all 01,02,03,04 such that 01 + O2 + 03 + 04>k. One easily de
rives from [1,(2.29),(3.20)] and (49) that 

O 1 - 6?( 1 - 6 g( ) 1 - 6~( ) 1 - 6~ i= (e31 ) e32 ) e41 e42 x 

==yEe3Ie32e4Ie42 ® Vo( [m]) 

== V22 ( [m 13 - 2,m23 - 2,m33 + 2,m43 + 2]) . (52) 

Thus 

Oi=yelk n V22 ( [m 13 - 2,m23 - 2,m33 + 2,m43 + 2]) 

and, therefore, according to Proposition 3, (50) holds. 
Proposition 5: Any maximal invariant subspace Ik has 

zero intersection with V 00 ( [m 13,m23,m33,m43] ) 
== I 0,0,0,0 lao' • 

Proof: If 

Oi=XElk n V oo( [ml3,m23,m33,m43]) , (53) 

then, according to Proposition 3, we would have 

VOO([m13,m23,m33,m43]) elk' (54) 

Since [see I, (3.19)] V oo( [m13,m23,m33,m43]) 
= 1 ® Vo( [m]), then also 
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L'.82.8~4=O.1 (e31)8'(e32)82(e41)83(e42)84](1 ® Vo( [m]» 

I (e31 )8, (e32 )8'(e41 )83(e42 )84 ® VO([m]) 
6.,62,6;0..64 = 0,1 

= W([m]) elk' (55) 

Thus, if (53) was true, we would have obtained 
W( [m]) = lk' This, however, is impossible, since lk is a 
proper subspace of W( [m] ). • 

Let W( [m]) be an indecomposible induced gl(2/2) 
module, corresponding to one of the nontypical classes 
(40)-( 44) with a maximal invariant subspace lk' For every 
equivalence class 

5xeW([m])/lk' xeW([m]), (56) 

the mapping 1T: g-+1T(g), gegl(2I2), where 

(57) 

ture [m 13 - a,m23 - b,m33 + c,m43 + d], labeled with an 
index s (s could be pq, upper or lower case index or any other 
index). Then we write 

Vs ([m 13 - a,m23 - b,m33 + c,m43 + d]) 

== .-a,-Beccd'. 

if 

Vs ([m 13 - a,m23 - b,m33 + c,m43 + d]) C lk 

and 

Vs ([m 13 - a,m23 - b,m33 + c,m43 + d]) 

(63) 

== I-a,-b,c,dl. (64) 

if 

Vs( [m 13 - a,m23 - b,m33 + c,m43 + d]) n lk = 0, 

i.e., if the linear spaces Vs ([m 13 - a,m23 - b, 
m33 + c,m43 + d ]) and lk are linearly independent. In par
ticular [see (47)], if 

defines an irreducible nontypical representation of gl(2/2) I-a,-b,c,dl .. elk we set I-a,-b,c,dl .. =i-a,-D,c,dl.. (65) 

in Wk ([m]) == W( [m])/lk' Let W~ ([m]) be a compli-
mentto lk subspace in W( [m]), and if 

(58) 

Choose 

e1,e2, ... ,en to be a basis in W~ ([m]) , (59) 

(60) 

Then for any gegl( 212) 
n m 

gej = I Ajiej + I BkJ'k . 
j=l k=l 

(61) 

The equivalence classes 5 e, ,5 e, '''',5 en constitute a basis in 
Wk ([m]). From Eq. (57) one has that 

n 

1T(g)5e, = I Ajj5ej . 
j=l 

(62) 

Identifying W?([m]) with Wd [m]), W~ ([m]) 
== Wk ( [m] ), through the natural isomorphism 
x¢:} 5x 'f/ xeW?([m]) and comparing (61) with (62), we 
come to the following conclusion. 

Proposition 6: In order to obtain the transformation of 
the factor space Wk ([m]) == W( [m] )Ilk under the action 
of the gl (2/2) generators one simply has to replace in (61) 
all basis vectorsil,h., ... ,jm of the maximal invariant sub
space h by zero. 

Consider an indecomposible induced module W( [m]) 
with a maximal invariant submodule lk and let 

Vs( [m 13 - a,m23 - b,m33 + c,m43 + d]) c W( [m]) 

be an irreducible gl( 2) / ED gl (2) r submodule with a signa-
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I-a,-b,c,dl .. n lk = 0 then l-a,-b,c,dl .. =I-a,-b,c,d, .. 

(66) 

Certainly it could well be that for some I-a,-b,c,dl .. 

neither (65) nor (66) holds. So far we have shown [Proposi
tions 4 and 5] that 

1-2,-2,2,21 22 = .-2,-2,2,2'22 

I 0,0,0,0 I~ =1 0,0,0,0 I~ 
- (67) 

A. The class 1 nontypical representations 

In this section, we consider the indecomposible induced 
modules W( [m]), corresponding to the case 

113 + 143 + 3 = 0 ¢:} m13 + m43 = 0, 

123 + 133 + 3 =1=0 ¢:} m23 + m33 =1=0. 
(68) 

The induced modules from this class have signatures 
[m] = [m13,m23,m33' - m 13 ], i.e., 

W( [m]) = W( [m 13,m23,m33' - m 13 ]) . (69) 

In the cases 

m13 > m23 and m33 > - m13 

¢:}/13-123-l>0 and 113+/33+2>0 (70) 

we define two new irreducible gl(2)/ ED gl(2) r modules. To· 
this end we set 
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[

ml3 , m23 , m33 , 

[m Wm3IP=: ml3 - 1, m 23 - 1, m33 + 1, 
m ll , 0 , m31 , 

-m
13 1 - m13 + 1 
o 11 

m 23 , m33 
-ml3 1 

m 23 - 1, m33 + 1, - ml3 + 1 , (71 ) 
o , m31 o 20 

-ml3 1 
- ml3 + 1 

o 11 

m23 , m33 
-ml3 1 

m23 - 1 , m33 + 1, 
o , m31 

- ml3 + 1 
o 20 

(72) 

Let 

VI=: VI( [m l3 - l,m23 - l,m33 + 1, - ml3 + 1]) 

= lin.env. 

{[m w m 3I Plm l3 - mil - l,m ll - m23 + 1, 

m33 - m31 + l,m31 + ml3 - lEZ+}, (73) 

Vlnv =: Vj~V ([m l3 - l,m23 - l,m33 + 1, - m l3 + 1]) 

= lin.env. 

{[mwm3dlnv Im l3 - mil - l,m ll - m23 + 1 , 

m33 - m31 + l,m31 + ml3 - lEZ+}. (74) 

Each of the spaces V I and V lnv is an irreducible 
gl (2) I Ee gl (2) r module with a signature 
[m l3 - l,m23 - l,m33 + 1, - ml3 + 1]. 

Proposition 7: Let W( [ml3,m23,m33' - m l3 ]) be a class 
1 indecomposible induced gl(2/2) module with a maximal 
invariant subspace II such that 

ml3 > m23 and m33 > - ml3 . (75) 

Then 

V j
l
nv ([m l3 - l,m23 - l,m33 + 1, - ml3 + 1] ) 

(76) 

i.e., 

Vlnv ([m 13 - l,m23 - l,m33 + 1, - ml3 + 1]) ell 

and 

VI( [m 13 - l,m23 - l,m33 + 1, - ml3 + 1]) 

1-1,-1,1,11 1 (77) 

i.e., 

VI( [m l3 - l,m23 - l,m33 + 1, - m l3 + 1]) nIl = O. 

The decomposition of W( [m 13,m23,m33, - m 13 ]) into a di
rect sum of irreducible gl (2) I Ee gl (2) r modules reads: 

W( [m13,m23,m33' - m l3 ]) 

= -, 0,6,6,0 'ao 
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Ee£:I-!l;],o[:;:,ir.;,:[oJ'tO e 10,-I,I,d 'to E91-~,6,6ci '10 Eelo,-l,o,l 1
10 

el-i,-i,2,b'ao Ell .-i,-is6,2.2O EB .-2,0,1,1 'n EB 10,-2,1,1 '11 
EB.-i,-l,l,i':". EB '-1,-i,i,l,1 

EB .-2,-1,2,1'21 EBI-i,-Z,2,i'Zl EB'-z,-i,i,2'21 EB I i,-2,1,2'21 

e.-2,-2,2,2'22 ' (78) 

where 

.-1,-1,6,2(11) = 0, 

if ml3 > m23 + 1 and m33 = - ml3 + 1 , 

(79) 
.-2,6,1,1 itt = 0, 

ifml3 = m23 + 1 and m33> - m l3 + 1. 

(80) 

The maximal invariant subspace I I is an irreducible gl (2/2) 
module with a signature [m 13 - l,m23,m33, - m 13 + 1]. 

The proof of this proposition, which is of a rather techni
cal nature, is given in the Appendix. From (63) and (64) it 
follows immediately that II [resp. its compliment subspace 
WI ( [m ] ) ] is given with the sum of all I terms 
(resp. of all terms) in the decomposition 
(78). 

In order to write the transformations of the nontypical 
modules WI ( [m]) under the action of the generators of 
gl ( 2/2) one has (1) to express 

-m13 1 
- m13 + 1 

o 11 

and (81) 

[

m13 , m23 , m33 

m13 - 1, m 23 - 1, m33 + 1, 
m ll , 0, m31 

- m13 1 
- m13 + 1 

o 20 
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in terms of [mWm31 1 i~v and [mWm31 11, (2) to insert every
wherein (22)-(37) m 43 = - m 13, and (3) to apply Propo
sition 6, namely to replace all basis vectors from the maximal 
in variant subspace by zero. The action ofthe even generators 

on all nonzero vectors [(m) 1pq and on [mwm3d 1 is given 
with the same relations (22)-(27). 

[

m 13' 

e32 m 13, 

m l1 , 

[

m 13 ,m23, m33 , 

e 32 m13 - 1, m 23, m33 + 1, 
m l1 , 0, m 31 , 

+ (/23 + 133 + 3) 

(/13 + 133 + 4) (/13 - 123 + 1) 

[

m13' m23 ,m33, 

e32 m 13, m 23 - 1, m 33, 

mil' 0, m31 , 

-m13 ] 

- m13 + 1 
o 10 

960 J. Math. Phys., Vol. 31, No.4, April 1990 

Transformations under the action of e32: 

I 

m 23 ,m33 

m 23 - I , m33 + 1, 
o , m31 + 1, 

m 23 ,m33 

m 23 - 1, m33 

o , m31 + 1, 

m 23 ,m33 

m 23 ,m33 

m 23 - 1, m33 + 1, 
o , m31 + 1, 

m 23 - 1 , m33 + 2, 
o , m31 + 1, 

m 23 ,m33 

m 23 - 2, m33 + 1, 
o , m31 + 1, 

-m13 ] 

- mJ3 + 1 
o 10 

(82) 

(83) 

m 23 • m33 

m 23 - 1, m33 + 1, 
o , m31 + 1, 

- m13 ]1 

- m~3 + 1 

m 23 ,m33 

m 23 - 2, m33 + I. 
o , m31 + 1, 

- m13 ] 
- m13 + 1 

o II 

m23 ,m33 

m23 - 1, m33 + 1, 
o , m31 + 1, 

T. D. Palev and N. I. Stoilova 
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[

mn ,m23 ,m33 , 

en mn - 1, m23 - 1, m33 + 2, 
mll , 0, m31 , 

[

mn ,m23 ,m33 , 

e32 mn - 1, m23 - 1, m33 + 1, 
mll , 0, m31 , 

[

m 13' m23 ,m33 , 

e32 m n , m 23 - 2, m33 + 1, 
mll, 0, m31 , 

-m13 
] 

- mn + 1 
o II 

m 23 ,m33 

m 23 - 2, m33 + 2, 
o , m31 + 1, 

-mn 1 
-mn + 1 

o 21 

-mn 1 
- mn + 1 

o 21 

m23 ,m33 

m23 - 2, m33 + 2, 
o , m31 + 1, 

-mn 1 
- mn + 1 

o 21 

[

mn ,m23 ,m33 , 

en mn - 1, m23 - 2, m33 + 2, 
-mn 1 
-m I3 + 1 =0. 

mll , 0, m31 , o 21 

Transformations under the action of e23: 

[

mn ,m23 ,m33 , 

e23 mn - 1, m 23 - 2, m33 + 2, 
mll , 0, m31 , 

-mn 1 
-m I3 + 1 

o 21 

[m" . m23 , m33 -m" l X mn -1, m23 - 1, m33 + 1, - m~3 + 1 
m ll , 0 , m 31 -1, 

[m". m 23 , m33 -m" 1 e 23 m 13, m 23 - 2, m 33 + 1, - mn + 1 
mll , 0 , m 31 o II 
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m23 ,m33 

m 23 - 1 , m33 + 1, 
o , m31 -1, 

m 23 ,m33 

m23 -1, m33 

L 

-mn] 
-mn 
o 10 

-mn +l , 
o , m31 - 1, 

-mn ] 

o 10 
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[

m\3 ,m23 ,m33 , 

e23 m\3 - 1, m 23 - 1, m33 + 1, 
m ll , 0 ,m31 , 

[

m13 ,m23 ,m33 

e 23 m \3 - 1, m 23 - 1 , m33 + 2, 
m ll , 0, m31 

[

m \3, m 23 ,m33, 

e 23 m \3, m 23 - 1, m 33, 

m ll , 0, m31 , 

[

m\3' m23 ,m33 , 

e 23 m\3' m 23 - 1, m33 + 1, 
m ll , 0, m31 , 

m 23 ,m33 

m 23 - 1, m33 

o ,m31 - 1, 

m 23 ,m33 

m23 - 1, m33 + 1, 
o , m31 - 1, 

m 23, m33 

m 23, m33 

o , m31 - 1, 

~ _ (/" + I" + 3) 1 (/" -1")(/,, + I" + 2) 1 "'[ :::: 

m 23, m33 

m 23, m33 
(/ \3 - 123 ) (/\3 + 133 + 3) o , m 31 -1, m ll , 

r" , m 23 , m33 , 
-m" ] 

e23 m\3 - 1, m 23, m33 + 1, -m\3 

mll , o , m 31 , o 10 

- -I (/" -1")(/,, + I" + 3)(/" + I" + 2) !"'r'" - m~ 
1\3 - 123 

m ll , 

[

m\3' 

e 23 m\3' 

m ll , 

m 23, m33 

m 23, m33 

0 , m 31 -1, 

- m\3] 
-m\3 

o 10 

- m13 ] 
- m13 + 1 

o 10 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

(98) Proposition 8: Let W( [m\3,m23,m33, - m\3]) be a class 
1 indecomposible induced gl(2/2) module, corresponding 
to a signature [m13,m23,m33' - m 13 ], such that 

The structure of W( [m 13,m13,m33, - m 13 ]) with respect to 
g1(2)[ E&gl(2), reads: 
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= I 0,0,0,0 100 

$10,-1,1,0 1
'0 

$10,-1,0,1 1
'0 

ED 1-1 ,-1,2,0'20 ED l-i,-l,l,i'ao ED .-1,-1,6,2'20 

EB '6,-2,1,1 'u ED ,-1,-2,2,1'21 ED .-1,-2,1,2'21 

EB.-2,-2,2,2. zz (99) 

where 

1-1,-1,6,21.0 = 0, if m33 = - ml3 + 1 . (100) 

The proofs of this proposition and of all others that fol
low are similar to the one given in the Appendix. Therefore, 
we will skip them. To obtain the transformation of the basis 
under the action of e23 and of e32 one has to replace in Eqs. 
(28)-(37) [orin I, Eqs. (3.62)-(3.93)] all basis vectors of 
the maximal invariant subspace 

11 = .-1,-1,6,2'20 ED l-i,-2,1,2'21 ED .-2,-2,2,21 22 (101) 

by zero, m23 by m 13 and m43 by - m 13' 

Proposition 9: Let W( [ml3,m23,m33' - m 13 ]) be a class 
1 indecomposible induced gl(2/2) module with a signature 
such that 

(102) 

The structure of W( [m I3,m23, - m 13 , - m 13 ]) with respect 
togl(2)/ $gl(2)r reads: 

= I 0,0,0,0 100 

$10,-1,1,0 1
'0 

$1-1,0,1,0 1
'0 

EBI-i,-i,z,O'20 Eel-ie-l,l,l'" ED'-2,6,i,! 'tl 

(Blo,-iei,! '11 ffi'-l,-Z,z,i'zl Ell .-2,-1,2,£'21 

ED 1-2,-2,2,2'22 ( 103) 

I
I I 1 1112[ml3 , m23 , 

= 13 - 23 - m l3 - 1, m23 - 1, 
113 -/23 + 1 0 

mil' , 

where 

1-2,6,1 11 III = 0, ifml3 = m23 + 1. (104) 

To obtain the transformation of the basis under the action of 
e23 and ofe32 one has to replace in Eqs. (28)-(37) [or in I, 
Eqs. (3.62)-(3.93)] all basis vectors of 

11 = .-2,6,1,1 "1 EB .-2,-i,2,l'21 ED .-2,-2,2,2'22 (105) 

by zero, m33 by - ml3 and m43 by - m 13• 

We have not considered here the cases 

and 

ml3 = m23 + 1, m33 = - ml3 + 1 , 

(106) 

since they belong to the class 5 nontypical representations. 

B. The class 2 nontypical representations 

In this section, we consider the indecomposible induced 
modules W( [m] ), corresponding to the case 

(107) 

123 + 133 + 3 = 0 ¢:} m23 + m33 = 0 . (108) 

The induced modules from this class have signatures 
[m] = [m 13 ,m23, - m23,m43 J. i.e., 

(109) 

Proposition 10: Consider a class 2 indecomposible in
duced gl (2/2) module (109), corresponding to a signature 
[m 13,m23, - m23,m43 J. such that 

m 13 > m23 and - m23 > m43 . (110) 

Introduce a new basis in the gl(2)/ $ gl(2) r reducible mod
ule 

1-1,-1,1,11
311 

$ 1-1,-1,1,11" (111 ) 

setting 

(112) 

(113) 

Construct two new irreducible gl (2) / $ gl (2) r modules with a signature [m 13 - l,m23 - 1, - m23 + 1 ,m43 + 1], setting 
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V 2= V2( [m 13 - l,m23 - 1, - m 23 + l,m43 + 1]) = lin.env. 

{[mwm31]2ImI3 - mil - l,m ll - m23 + 1, - m 23 - m31 + l,m31 - m43 - lEZ+}, 

Vfnv = Vfnv ([m I3 - l,m23 - 1, - m 23 + l,m43 + 1]) = lin.env. 

{[mwm3dfnv Im l3 - mil - l,m ll - m 23 + 1, - m 23 - m 31 + l,m31 - m43 - lEZ+}. 

Then [see (63), (64)] 

(114) 

(115) 

Vfnv ([m 13 - l,m23 - 1, - m23 + l,m43 + 1]) = I-i,-i,i,l!~.. , (116) 

V2( [m 13 - l,m23 - 1, - m 23 + l,m43 + 1]) = l-i,-i,i,11 2 (117) 

The decomposition of W([ m l3,m23' - m 23,m43 ]) into a direct sum of irreducible gl (2) I EB gl (2) r modules reads 

W( [m 13,m23, - m23,m43 ]) 

= I 0,0,0,0 100 

EDI-i,o,I,O 'to e .6,-£,1.6 '10 ED 1-1,0« 0 c i i10 e 10« -1, 0, i '10 

Eln-i.-i ,2,bizo ED 1-1,-1,0,21 20 EB 1-2,0,1,1 '11 EB '0,-2,1,1 '11 
el-i,-i,i,il~ftY EB l-i,-l,l,iI 2 

EB.-i.-is2,!'Z1 ED .-1,-2,2,1'21 ED 1-2,-1,1,21 21 EB .-1,-2,1,2'21 

EB.-2,-2,2,2'zz 

where 

l-z,O,i,1 I" = 0, ifml3 = m 23 + 1 and - m 23 > m43 + 1, 

l-i,-i,0,21
2O 

= 0, ifml3 > m 23 + 1 and - m 23 = m43 + 1. 

(118) 

(119) 

(120) 

Replacing everywhere in (22)-(37) [orin I, (3.56)-(3.93)] the basis vectors from all terms in (118), i.e., 
from the maximal invariant subspace 12 by zero and m33 by - m 23, one obtains the transformations of the nontypical module 
W2( [m 13,m23, - m 23,m43 ]) under the action of the superalgebra. 

Transformations under the action of e32 : 

- m23' m43] 
- m 23, m43 

m31 , 0 00 

(121) 

- m 23 , m43 ]2 
- m 23 + 1, m43 + 1 , (122) 

m31 + 1, 0 
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- m
23

, m
43 1 

- m 23, m 43 + 1 

m 31 , 0 10 

[mn , m23 -m23 , 
m" J X m13 -1, m 23 - 1, - m 23 + 1, m~+ 1 

mil , 0 m 31 + 1, 

(123) 

[mn' m 23 , -m23, 

m" 1 e32 m 13, m 23 - 1, -m23, m 43 + 1 

mil' 0 , m 31 , o 10 

(124) 

- m
23

, m
43 1 

- m 23, m 43 + 2 

m 31 , 0 20 

(125) 

(126) 

(127) 

(128) 

Transformations under the action of e23 : 
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(129) 

- m23 ,m43 ]2 
- m23 + 1, m43 + 1 

m31 , 0 

112[ml3' m23 , 
+(1 1 1)1

2(/13-/11)(/43-/31+2)1 m m 1 13 - 23 - 13' 23 - , 
(/13-/23)(123+/43+3) 0 

mil' , 

(130) 

- m23 ,m43 ] 
- m23 + 1, m43 + 1 

m31 , 0 II 

(131) 

(132) 
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r'" 
m23 , -m23, 

m" 1 e 23 m13' m 23 - 1, -m23, m 43 + 1 
m ll , 0 , m 31 , o 10 

__ I (I" -1")(1,, + 1" + 2)(1" + 1" + 3) 1'''[ m", 
- m13' 

113 -/23 
m ll , 

[m" , m 23, -m23, 

m" 1 e 23 m13 - 1, m 23, -m23, m 43 + 1 
mll , 0 , m 31 , o 10 

~ _ (I" + 1" + 3) 1 (I" -1")(1,, + 1" + 2) 1 .,,[ :::: 
(/13 -/23) (/23 + 143 + 3) 

m ll , 

[

m 13, 

e23 m13' 

m ll , 

Proposition 11: Let W( [m 13,m23 , - m 23 ,m43 ]) be a 
class 2 indecomposible induced gl(2I2) module, for which 

m13 = m 23 and - m 23 > m 43 • (137) 

Then the structure of this module with respect to 
g1(2)/ EDgl(2)r reads: 

W( [m 13,m 13, - m 13,m43 ]) 

= 1 0.0.0.0 100 

G)'O,-I,llb '10 EEl 10,-l,O,! '10 

EBI-I,-l,z,d'2Q EB l-l.-1,1,1H
2O 

EBI-i,-i,o,zlza 

eltie-2ei,! '11 ED .-1,-2,2,1'21 EB .-1,-2,1,2'21 

( 138) 

where 

1-1.-1.0.21 20 = 0, if - m23 = m43 + 1 . (139) 

Replacing everywhere in (22)-(37) [or in I, (3.56)
(3.93)] the basis vectors from all I terms in 
(138) ( = from 12) by zero m 23 by m13 and m33 by - m13' 

one obtains the transformations of the nontypical module, 
corresponding to the case (137), under the action of the 
superalgebra. 

Proposition 12: Let W( [m 13,m23, - m 23,m43 ]) be a 
class 2 indecomposible induced gl(2I2) module, for which 

m13 > m 23 and - m 23 = m 43 . (140) 

The structure of the module with respect to gl (2) / ED gl (2) r 

reads: 
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m 23 , -m23 , m 43 

L m 23, -m23 , m 43 (133) 
o , m 31 -1, 0 

m23' -m23 , m 43 

L m23' -m23 , m 43 (134) 

0 m 31 -1, 0 , 

(135) 

(136) 

= I 0.0.0.0 100 

EB' 6,-i,1,6'10 ED 1-1,0,1,0 '10 
EB .-1,-1,2,6'20 E9 .-1,-1,1,1'11 EeI-ZeO,i,! '11 
'e.6,-2,I,1 '11 ED '-I,-2,2,1'at EBI-2,-1,2.1'

21 

EB .-2,-2,2,2'22 (141 ) 

where 

(142) 

Replacing everywhere in (22)-(37) [or in I, (3.56)
(3.93)] the basis vectors from all terms in 
(141), i.e., from 12 by zero, m33 by - m 23 and m 43 by 
- m23, one obtains the transformations of the nontypical 

module, corresponding to the case ( 140), under the action of 
the superalgebra. 

c. The class 3 nontypical representations 

In this section, we consider the indecomposible induced 
modules W( [m]), corresponding to the case 

123 + 143 + 3 = 0 ~ m 23 + m 43 - 1 = 0 . (143) 

The induced modules from this class have signatures 
[m] = [m 13,m23,m33, - m 23 + 1], i.e., 

(144) 
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Proposition 13: Consider a class 3 indecomposible in
duced gl(2/2) module (144), corresponding to a signature 
[m13,m23,m33' - m23 + 1] such that 

Introduce a new basis in the gl(2) I ED gl(2), reducible mod
ule 

l-l.-l.l.ll ao ED 1-1.-1.1.11" 

(145) setting 

[

m13 , m 23 , m33 , 

[mwm3d3= m13 - 1, m 23 - 1, m33 + 1, 
mil , 0 , m 31 , 

- m23 + 1]3 
-m23+ 2 

o 

I I 1 112[mI3 , m23 , m33 , 
13 - 23-

= I I m13 - 1, m23 - 1, m33 + 1, 
113 -123 + 1 0 mil' , m31 , 

II I 4
1

112[m13 , + 23 + 33 + m13 - 1, 
123 + 133 + 2 

mil , 

m23 , m33 

m 23 - 1, m33 + 1, 
o , m31 

m23 , m33 

m23 - 1, m33 + 1, 
o , m31 

m 23 , m33 

- m23 + 1] 
-m23+ 2 

o II 

- m23 + 1] 
-m23 +2 

o 20 

- m23 + 1] 
- m23 + 2 

o II 

m23 - 1, m33 + 1, 
o , m31 

- m23 + 1] 
-m23+ 2 

o 20 

{[mwm3d~nv Im13 - mil - l,m ll - m 23 + 1, 

(146) 

(147) 

(148) 

Construct two new irreducible gl( 2) I ED gl (2) , modules 
with a signature [m 13 - l,m23 - l,m33 + 1, - m 23 + 2]: m33 - m31 + l,m31 + m23 - 2eZ+} . (150) 

V 3= V 3( [m 13 - l,m23 - l,m33 + 1, - m 23 + 2]) 

= lin.env. 

(149) 

Vfnv = V~nv ([m13 - l,m23 - l,m33 + 1, - m 23 + 2]) 

= lin.env. 

= I bedfOrd 'oa 

Then [see (63), (64)] 

V~nv ([m 13 - l,m23 - l,m33 + 1, - m23 + 2]) 
(151) 

= 1-1,-1,1,11 3 (152) 

The decomposition of 

W([m]) = W( [m13,m23,m33' - m23 + 1]) 

into a direct sum of irreducible gl (2) I ED gl (2), modules 
reads 

$1-1,-1,2,01
20 

ED .-1,-1,6,2'20 EB '-2,o,!,1 '11 E9 16,-2,1,1 In 

ED.-i,-i,i,I.:,.. ED '-1,-1,1,11 3 

el-2,-I,2,1'21. Ell .-1.-2,2.1'1\ EB .-2,-1,1,2'11 EB .-i,-2,l,2'21 

(153) 

where 

968 

1-2.6.1.1 1,,= 0, ifm13 = m 23 + 1 and m33> - m13 + 3, 

l-l.-l.6.2I ao = 0, ifm13>m23 + 1 and m33 = - m23 + 2, 

l-l.-l,6,2Iao = 0, 1-2,6,1,1 I" = 0, ifm l3 = m23 + 1 and m33 = - m l3 + 3. 
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Replacing everywhere in (22)-(37) [or in I, (3.56)-(3.93)] the basis vectors from all 
( = from 13 ) by zero and m 43 by - m 23 + 1, one obtains the transformations 
W3 ( [m13,m 23,m33, - m 23 + 1]) under the action of the Lie superalgebra. 

terms in (153) 
of the nontypical module 

Transformations under the action of e 32: 

[

m I3' m23' m 33, - m 23 + 1] 
e32 m 13' m 23, m 33, - m 23 + 1 

m ll , 0 ,m31 , 0 00 

= _I (/13 -11l ){123 + 131 + 3) 1112[::: - 1: 
(/13 - 123) (/23 + 133 + 3) 

m ll , 

m 23, m33 

m 23, m33 + 1, 
0 , m 31 + 1, 

[

m 13 ,m23, m33 , 

e32 m13 - 1, m 23, m33 + 1, 
m ll , 0, m31 , 

- m23 + 1] 
- m23 + 1 

o 10 

[

mi3 ,m23, m 33, 

e32 mi3 - 1, m 23, m 33, 

mll , 0, m31 , 

- m23 + 1] 
- m 23 + 2 

o 10 

[

mI3' m23 ,m33 , 

e32 m 13, m 23 - 1, m33 + 1, 
m ll , 0 ,m31 , 

- m23 + 1] 
- m23 + 1 

o 10 

m 23, m33 

m 23, m33 

0 , m 31 + 1, 

m 23 ,m33 

m 23 -1, m 33 + 1, 

o ,m31 + 1, 

m23 ,m33 

m23 - 1, m33 + 2, 

o ,m31 + 1, 

m 23, m33 

m 23, m33 + 1, 
o , m31 + 1, 

m 23 ,m33 

- m23 + 1] 
-m23 + 1 

o 10 

- m23 + 1] 
- m23 + 2 

o 10 

- m23 + 1] 
- m23 + 1 

o 10 

(157) 

- m23 + 1] 
- m 23 + 1 

o . 20 

- m23 + 1] 
- m23 + 2 

o 11 

m 23 ,m33 

m23 - 1, m33 + 1, 
- m23 + 1]3 
- m23 + 2 

o , m31 + 1, o 

- m23 + 1] 
- m23 + 2 

o 11 

m23 ,m33 

m23 - 1, m33 + 1, 
o ,m31 + 1, 

- m23 + 1]3 
- m23 + 2 

o 

(158) 

(159) 

m 23 - 1, m33 + 2, 

o ,m31 + 1, 

- m23 + 1] 
- m23 + 1 

o 20 
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m 23 ,m33 

m23 - 1, m33 + 1, 
o ,m31 + 1, 

- m23 + 1]3 
-m~3+2 
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m23 ,m33 

m 23 - 1, m33 + 2, 
o ,m31 + 1, 

- m 23 + 1] 
- m23 + 2 

o 21 

m 23 ,m33 

m 23 - 1, m33 + 2, 
o ,m31 + 1, 

- m23 + 1] 
- m23 +2 

o 21 

[

m 13 ,m23, m33 , 

e32 m13 - 2, m 23, m33 + 1, 
- m 23 + 1] 
- m 23 + 2 

m l1 , 0, m31 , o 11 

m 23 ,m33 

m 23 - 1, m33 + 2, 

o ,m31 + 1, 

- m23 + 1] 
- m 23 + 2 

o 21 

m 23 ,m33 

m 23 - 1, m33 + 2, 
o ,m31 

- m23 + 1] 
-m23 +2 =0. 

o 21 

Transformations under the action of e23 : 

[

m13 ,m23 ,m33 , 

e23 m13 - 2, m 23 - 1, m33 + 2, 
- m23 + 1] 
- m23 + 2 

970 

m 11 , 0 ,m31 , o 21 

- m 23 + 1] 
-m23 + 2 

o 11 

m 23 ,m33 

m 23 - 1, m33 + 2, 
o ,m31 - 1, 

- m23 + 1] 
- m23 + 1 

o 20 

+ (/13 + 133 + 3) 12 (/13 -/11 - 1) (/13 -/23) (/23 + /31 + 1) (/23 + 133 + 3) 11/2 

2(/13 -/23 - 1)(/23 + 133 + 4) 

[

m13 ,m23 ,m33 

X m13 - 1, m23 - 1, m33 + 1, 
ml1 , 0 ,m31 - 1, 

- m23 + 1]3 
- m23 + 2 

o 
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971 

- m23 + 1]3 
-m23 +2 

o 
m 23 ,m33 

m23 - 1, m33 + 1, 
o ,m31 -1, 

- m23 + 1] 
-m23 + 1 

o 10 

- m23 + 1 
_1 2(/23 -/11)(/33 -/31 + 2) 1112[m13 ,m

23
, m33 , 

(/13- /23)(/23+ /33+ 3) m13-
1, m23' m 33+

1, 
m l1 , 0, m31 - 1, 

- m23 + 1] 
o 10 

+ (/23 + 133 + 4) 12(/23 -/11 )(/23 + 131 + 1) 11I2[m13 ,m
23

, 

(/13- /23)(/23+ /33+ 3) m13-
1
, m

23
, 

m l1 , 0, 

- m23 + 1] 
- m23 + 2 

o 10 

- m23 + 1] 
-m23 +2 

o 11 

= _ (/13 -/23) 1 (/13 -/11 - 1) (/33 -/31 + 2) 11I2[m13 ,m
23

, m33 

(/13 -/
23 

- 1)(/23 + 133 + 3) m13 - 1, m 23, m33 + 1, 
m l1 , 0, m31 - 1, 

- m23 + 1] 
-m23+ 1 

o 10 

-m23 +2 + (/13 + 133 + 3) 1 (/13 - 111 - 1) (/23 + /31 + 1) 1112[m13 ,m
23

, m33 

(/13 -/
23 

-1)(/23 + 133 + 3) m13 - 1, m 23, m33 
mil , 0, m31 - 1, 

- m23 + 1] 
o 10 

- m 23 + 1] 
- m23 + 1 

o 20 

- m23 + 1] 
- m23 + 1 

o 10 

- m23 + 1] 
- m23 + 2 

o 10 

= _I (/13 - 111 )(/33 - 131 + 1) (/13 
123 + 133 + 3 

123 ) 1112[m13' m13, 

m ll , 
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m23 ,m33 

m 23 - 1, m33 + 1, 
o ,m31 -1, 

m23' m33 

m 23, m33 + 1, 
o , m31 -1, 

- m23 + 1] 
- m23 + 1 

o 10 

- m23 + 1] 
- m 23 + 1 

o 10 

m 23, m33 

m 23, m33 

o , m31 -1, 

- m23 + 1] 
- m23 + 1 

o 00 

m 23, m33 

m23' m33 

o , m31 -1, 

- m23 + 1] 
- m23 + 1 

o 00 
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(169) 
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[

m13 , m 23, m33 , 

e23 m13 - 1, m23' m33 + 1, 
mll , 0, m31 , 

- m23 + 1] 
- m23 + 1 

o 10 

[

m 13' m 23, m 33, 

e23 m 13, m23, m 33, 

mll , 0, m 31 , 

- m23 + 1] 
- m23 + 1 =0. 

o 00 

Proposition 14: Replacing in (153) the subspaces 

B,6,1,6 '10 ,I -1,0,0,1'10 ,.6,-1,6,1 'to ,.-1,-1,6,2'10, 

1-2,b,1,1 In ,1-2,-1,2,1'21' .-2,-1.1,2'21 ' .-1,-2,1,2'21 , 

.-i,-i,!,i':"" ,1-1,-1,1,11 3 

m23' m33 

m23, m33 

o , m31 -1, 

- m23 + 1] 
-m23 + 1 

o 00 

(171) 

(172) 

(173) 

by zero, one obtains the decomposition of the class 3 indecomposible module W( [m 13,m13, - m13 + l,m 13 + 1]) with 
respect to gl(2)/ $gl(2)r' Replacing in (157)-(172) the basis vectors of the subspaces (173) by zero, one obtains the 
transformation of the nontypical module W3 ( [m 13,m 13' - m 13 + I,m 13 + 1]) under the action of e23 and e32. 

Proposition 15: Let W( [m]) = W( [m 13,m23,m33, - m23 + 1]) be a class 3 indecomposible induced gl (2/2) module, for 
which 

m 13 = m23 and m33 > - m 13 + 1 . (174) 

The structure of this module with respect to gl (2) / $ gl (2) r reads: 

W( [m]) = W( [m 13,m13,m33, - m13 + 1]) 

= I 0,0,0,0 100 

ED 16,-t,I,0 '10 EB Id,-l,u,l '10 

e1-i,-i,z,olaa ED .-1,-1,1,1'20 EB .-1.-1,6,2'20 ED .6,-2.1,1 In 

ED .-i,-2,z,ibl EB .-1,-2,1,2'21 

e 1-2,-2,2,2'22 (175) 

where 

1-1,-1,0,21 20 =0, ifm33 = -m 13 +2. (176) 

Replacing everywhere in (22)-(37) [orin I, (3.56)-(3.93)] the basis vectors from all terms in (175), i.e., 
from 13 by zero, m 23 by m 13 and m43 by - m 13 + 1, one obtains the transformations of the nontypical module, corresponding 
to the case (174), under the action of the superalgebra. 

Proposition 16: Let W( [m] ) = W( [m 13,m23,m33, - m23 + 1]) be a class 3 indecomposible induced gl (2/2) 
module, for which 

m 13 > m23 and m33 = - m23 + 1 . (177) 

The structure of this module with respect to gl (2) 1 $ gl (2) r reads: 

W( [m)) = W( [m I3,m23, - m23 + 1, - m23 + I)) 

= I 0,0,0,0 100 

$10,-1,1,0 1'0 $ 1-1,0,1,0 1'0 

e'-i,-i,z,OI2Q EB l-i,-i,l,lI11 EB 1-2,6,i,1 'II EB .6,-2,1,1 'n 
EB.-t,-2,z,i(n EB 1-2,-1,2,1'21 

EBI-2,-2,i,2'aa (J78) 

where 

l-z.O,l,l ' •• =0, ifm I3 =m23 + 1. (179) 

Replacing everywhere in (22)-(37) [or in I, (3.56)-(3.93)] the basis vectors from all terms in (178) 
( = from 13 ) by zero, m33 by - m23 + 1 and m43 by - m 23 + 1, one obtains the transformations of the nontypical module, 
corresponding to the case (177), under the action of the superalgebra. 
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D. The class 4 nontypical representations 

In this section, we consider the indecomposible induced 
modules W( [mJ), corresponding to the case 

II3+/33+3=0¢}m33= -ml3-1. (180) 

The induced modules from this class have signatures 
[mJ = [m 13,m23, - ml3 - l,m43 J, i.e., 

Proposition 17: Consider a class 4 indecomposible in
duced gl( 2/2) module (181), whose signature satisfies, in 
addition, the conditions 

m 13 >m23 and - m l3 - 1 >m43 . (182) 

Introduce a new basis in the g1 (2) I E9 g1 (2), reducible mod
ule 

1-1,-1,1,11.. E9 1-1,-1,1,11
11 (183) 

setting 

[m" . m 23 - ml3 -1, 
m" r [m W m3I J4= ml3 - 1, m 23 - 1, -ml3 m43~ 1 

m l1 , 0 m31 

11 -1 +rr' · m 23 - ml3 -1, 
m" 1 = _ 13 23 ml3- 1, m 23 -1, -m13 m43 + 1 

113 -/23 - 1 0 m31 o 11 m l1 , 

II" + 1" +41 ur" I' 

m 23 - ml3 - 1, 
m" 1 - ml3 - , m23 - 1, -ml3 m43 + 1 (184) 

113 + 143 + 2 0 m 31 o 20 m l1 , 

I
I -/ + 11112[ml3 , _ 13 23 ml3 - 1, 
113 -/23 - 1 

m l1 , 

- ml3 - 1, m43 1 
- m l3 , m43 + 1 , 

m31 , 0 20 

(185) 

Construct two new irreducible g1(2)1 E9 gI(2), modules with a signature [m 13 - l,m23 - 1, - m 13,m43 + 1 J: 

(186) 

(187) 

Then [see (63), (64) J 

(188) 

(189) 

The decomposition of W( [m J) = W( [m l3,m23' - m 13 - 1 ,m43 J) into a direct sum of irreducible gl( 2) I E9 gl (2), 
modules reads 
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= I 6,6,6,6 100 

E9 .-1,6,1,6 ho E9 16,-1.1,0 'so E9 I -1,6,0,1',0 E9 '6,-i,0,1 'to 

E9 .-1,-1,2,6'20 E9 1-1,-1,0,2'20 E9 1-2,6,1,1 'n ED 10,-z,i,1 In 

E9 I-i,-i,i,i'~m E9 l-i,-l,l,11· 

ED 1-2,-1,2,1'21 E9 l-i,-2,2,l'al E9 .-2,-1,1,28 21 EB .-1,-2,1,2'21 

ED .-2,-2,2,2'22 

where 

1-1,-1,0,21 20 = 0, ifm13>m23 + 1 and - m13 = m 43 + 2, 

1-2,6,1,1 1,,=0, ifm13 = m 23 + land -m13 >m43 +2, 

1-1,-1,6,21
20 

= 0, 1-2,6,1,1 111 =0, if m13 = m 23 + 1 and - m13 = m 43 + 2. 

Replacing everywhere in (22)-(37) [or in I, (3.56)-(3.93)] the basis vectors from all 
( = from 14) by zero and m33 by - m13 - 1, one obtains the transformations 
W4 ( [m 13,m23, - m13 - l,m43 1) under the action of the Lie superalgebra. 

Transformations under the action of e32: 

[

m!3' m23' 

e32 m !3' m23, 

m l1 , 0, 

- m13 - 1, m 43 ] 

- m13 - 1, m 43 

m3! , 0 00 

- m13 - 1, m 43 ] 

- m13 - 1, m 43 + 1 
m3!, 0 \0 

- m13 - 1, 
- m13 - 1, 

m3 ! + 1, 

- m13 -1, 

-m13 

m3! + 1, 

- m!3 -1, 
- m13 -1, 

m3 ! + 1, 

- m13 - 1, m43 ] 

- m13 - 1, m43 + 2 

m3! + 1, 0 20 

(190) 

(191) 

(192) 

(193) 

terms in (190) 
of the nontypical module 

(194) 

- m13 -1, 

-m\3 
m3! + 1, 
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- ml3 - 1, m 43 ] 

- m l3 ,m43 

m31 , 0 10 

= _I (/23 -III - 1)(/13 + 131 + 2) 1"2[:::: ::: - 2, 
(/13 -/23 + 1)(/13 + 143 + 3) 0 

mil' 

- ml3 - 1, m43 ] 

- m l3 ,m43 + 1 
m31 + 1, 0 II 

-ml3 -1, 

-ml3 (196) 
m31 + 1, 

- ml3 - 1, m43 ] 

- ml3 - 1, m 43 + 1 
m31 , 0 10 

- ml3 -1, 
- ml3 -1, 

m31 + 1, 

- ml3 -1, 

-ml3 
m31 + 1, 

- ml3 - 1, m43 ] 

- m 13 - 1, m43 + 2 
m31 , 0 20 

- ml3 - 1, 

-ml3 (198) 
m31 + 1, 

- ml3 - 1, m43 ]4 

- ml3 ,m43 + 1 
m31 , 0 

-m13 -1, 

-ml3 (199) 
m31 + 1, 

- ml3 - 1, 

-ml3 (200) 

m31 + 1, 

- ml3 - 1, m43 1 
- ml3 ,m43 + 2 

m31 , 0 21 

=0. (201) 

Transformations under the action of e23 : 
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- ml3 - 1, m43 ] 

- ml3 ,m43 + 2 
m31' 0 21 

(202) 

- ml3 - 1, m43 ] 

- ml3 ,m43 

m 31 - 1, 0 JO 

- ml3 -1, 

- ml3- 1, 
m31 -1, 

- mJ3 -1, 

- mJ3 -1, (203) 
m31- 1, 

- ml3 - 1, m43 ] 

- ml3 ,m43 + 1 
m31 , 0 II 

- mJ3 - 1, m 43] 

- mJ3 ,m43 

m31 - 1, 0 JO 

- mJ3 - 1, 

-mJ3-1, (204) 
m31- 1, 

- mJ3 - 1, m43 ] 

- mJ3 - 1, m43 + 2 
m31 , 0 20 

- mJ3 -1, 

- mJ3 -1, 

m31- 1, 

- mJ3 - 1, 

- mJ3 -1, (205) 
m31 -1, 
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- ml3 - 1, m43 ] 

- m l3 - 1, m43 + 1 

m 31 , 0 10 

- m l3 - 1, m43 ] 

- ml3 , m43 

m31 , 0 10 

- ml3 - 1, m43 ] 

- ml3 - 1, m43 + 1 

m31 , 0 10 

= _I (/13 -111) (/13 + 131 + 2) (/13 + 143 + 3) 

113 -123 

- ml3 - 1, m43 ] 

- ml3 - 1, m43 = 0 . 
m31 , 0 00 

Proposition 18: Replacing in (190) the subspaces 

1

112[m
I3

, 
m13' 

mll' 

'-1,6,1,6 '10 ,I -1,b,o,1'10' '0,-1,0,1 '10' 1-1,-1,0,2'20' 

'-isd,t,! I~l .-2,-1,2,1'21 ,.-2,-1,1,2'21 ' l-l,-2,i,2'll ' 

l-i,-I,!,1':,", ' '-i,-l,i,il t 

- ml3 -1, 

-m13 -1, (206) 

m31 -1, 

-ml3 -1, 
-m I3 -1, (207) 

m31 -1, 

-m13 -1, 
- ml3 -1, (208) 

m31 -1, 

(209) 

(210) 

by zero, one obtains the decomposition of the class 4 indecomposible module W( [m l3,m 13' - m 13 - 1, - m i3 - 1]) with 
respect to gl(2)/ EDgI(2)r' Replacing in (194)-(209) the basis vectors of the subspaces (210) by zero, one obtains the 
transformations ofthe nontypical module W4 ( [m 13,m 13' - m 13 - I, - m 13 - 1]) under the action of e23 and e32. 

Proposition 19: Let W( [mi3,m23, - m l3 - l,m43]) be a class 4 indecomposible induced gl(2/2) module, for which 

mi3 = m23 and - m13 - 1 >m43 . (211) 

The structure of this module with respect to gl (2) / ED gl (2) r reads: 

W( [m]) = W( [m 13,m13, - m13 - l,m43 ]) 

= I 0,0,0,0 '00 
ED 10,-1,1,0 '.0 ED 10,-1,6,1 '.0 
Ell 1-1,-1,2.6'20 ED 1-1,-1,1,1'20 ED 1-1,-1,0,2'20 ED ,O,-z,l,1 '11 

ED u-1,-2,2,111
21 

ED 1-1,-2,1,2'21 

ED 1-2,-2,2,2u
22 

(212) 

where 

1-1,-1,0«2'20 =O,if -m 13=m43 +2. (213) 

Replacing everywhere in (22)-(37) [or in I, (3.56)-(3.93)] the basis vectors from all terms in (212) 
( = from 13 ) by zero, m23 by m 13 and m33 by - m 13 - 1, one obtains the transformations ofthe nontypical module, corre
sponding to the case (211), under the action of the superalgebra gl (2/2) . 

Proposition 20: Let W( [m]) = W( [m 13,m23' - m l3 - l,m43 ]) be a class 4 indecomposible induced gl(2/2) 
module, for which 

m l3 > m23 and - m13 - 1 = m43 . (214) 

The structure of this module with respect to gl(2) / ED gl(2) r reads: 
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= I 0,0,0,0 100 

$10,-1,1,0 '10 ED .-1.6.1,6 '10 

EB 1-1,-1,2,6'20 ED 16,-2,1,1 'II ED .-I,-i,i,1'11 ED .-2,6,1,1 '11 

EB.-i,-2,z,i'21 e 1-2,-1,2,11
21 

EB.-2,-2,z,2· zz 

where 

.-2,6,1,1 '.. = 0, if ml3 = m23 + 1 . (216) 

Replacing everywhere in (22)-(37) [or in I, (3.56)
(3.93)] the basis vectors from all • terms in 
(215) ( = from 14) by zero, m 43 by - ml3 - 1 and m33 by 
- ml3 - 1, one obtains the transformations ofthe nontypi

cal module, corresponding to the case (214), under the ac-
tion of the Lie superalgebra. 

E. The class 5 nontypical representations 

In all nontypical cases considered so far, the maximal 
invariant subspaces Ii> i = 1,2,3,4, were irreducible. In the 
class 5 induced modules this is no more the case. The maxi
mal invariant subspaces are indecomposible; each Is con
tains several invariant subspaces. We first recall that the 
class 5 induced modules W( [m] ) are defined with the equa
tions 

_II" -I" - T,{[m" , m 23 

- ml3 - 1, m 23 - 1, 
113 -123 + 1 0 m ll , 

[m" , m 23 -m23 

- ml3 -1, m 23 - 1, - m 23 + 1, 
mil , 0 m 31 

[ P 1 113 - 123 _ 1 1112 
m ll,m31 inv = 113 _ /23 + 1 

W" , m 23 -m23 

X ml3 - 1, m 23 - 1, - m23 + 1, 
m ll , 0 m 31 

[m" , m 23 -m23 

+ ml3 - 1, m 23 - 1, - m 23 + 1, 
m l1 , 0 m 31 

113 + 143 + 3 = 0 ~ m 43 = - m 13 , 

123 + 133 + 3 = 0 ~ m33 = - m23 • 

(215) 

(217) 

The induced modules from this class have signatures 
[m] = [ml3,m23' - m 23, - m 13 ], i.e., 

W( [m]) = W( [m 13,m23' - m23' - m 13 ]) • (218) 

Proposition 21: Consider a class 5 indecomposible in
duced gl(2/2) module (218), whose signature satisfies, in 
addition, the condition 

ml3 > m23 + 1 . (219) 

Introduce as in the previous cases a new basis in the 
gl (2) I E9 gl( 2), reducible module 

I-i,-i,i,il... E9 !-1,-i,i,i!" (220) 

setting 

-m23 -m" 1 - m 23 + 1, - m 13 + 1 
m 31 o 11 

-m" l} - ml3 + 1 , 
o 20 

(221) 

-m" 1 - ml3 + 1 
o 11 

-m" ]} - ml3 + 1 . 
o 20 

(222) 

Construct two new irreducible gl(2) I E9 gl(2), modules with a signature [m 13 - l,m23 - 1, - m 23 + 1, - m l3 + 1]: 

(223) 
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vrnv:;: vrnv ([m\3 - l,m23 - 1, - m 23 + 1, - ml3 + 1 J) 

= lin.env. {[mwm3drnv Im\3 - mil - l,m ll - m23 + 1, - m 23 - m31 + l,m31 + m l3 - lEZ+} , (224) 

Then [see (63), (64) J 

vrnv == V~nv ([m 13 - l,m23 - 1, - m23 + 1, - m\3 + 1]) = .-1,-1,1,11:... ' (225) 

V 5( [m\3 - l,m23 - 1, - m23 + 1, - ml3 + 1]) = 1-1,-1,1,115 
• (226) 

The decomposition of W( [m] ) = W( [m l3,m23' - m23, - m \3] ) into a direct sum of irreducible gl (2) I Q) gl( 2) r mod
ules reads 

= I 0,0,0,0 100 

ES'-lebeled 'to EB 16,-1,1,6 'to E9 .-1,6,6,1 '10 E9 10,-i,O,l '10 

EB.-i,-i,z,b. ao ES'-I-i,o,z 'ao E9 '-2.0,1,1 '11 E9 16,-2,i,1 '11 
E91-i,-iri,il~.. ED l-i,-i,i,i'S 

EB.-z,-isz.i. zs E9 .-1,-2,2,1'21 E9 .-2,-1.1«2'21 E9 .-1,-2,1,2'21 

EB .-2,-2,2,2'22 

The maximal gl(2I2) invariant subspace Is is a sum of all 
terms in (227). It is indecomposible and con

tains the following invariant subspaces: 

I~ = l-i,-i,i,i'~1n' 

E9.'-2,-i,z,i'Zl EB .-1,-2,1,2'21 

ED .-2,-2,2,2'22 (228) 

I~ = I~ E9 16,-1,1,6 '10 

E9 .-1,-1,2,6'20 E9 '6,-2,1,1 '11 

EB '-I.-2r2:1'as 
(229) 

E9 .-i,-t,o,2'm E9 .-2,6,1,1 '11 

E9 .-2,-1,1,2'2\ (230) 

The subspace I~ is irreducible and nontypical, 

[

m 13' m 23, - m 23, 

e32 m 13' m 23, - m 23, 

mil' 0, m31, 

-I (/" -1")(1,, + I" + 3) I"f"" I' 
m23, 

= m 13 - , m 23, 
(/13 -123) (/13 - 123 ) 

0 mil , , 

_I (/" -I,,) (/" + I" + 3) 1 "'[ m", m23 
m 13, m23 - 1, 

(/13 -/23) (/13 -/23) 0 mil' 
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(227) 

I~ has a signature 

[m\3 - l,m23 - 1, - m23 + 1, - m\3 + 1] . (231) 

The subspace I ~ and n are indecomposible; each one con
tains as a maximal invariant subspace I~. The factor spaces 
n/I~ and IVI~ carry nontypical (irreducible) represen
tations ofthe LS gl(212), namely 

n/I~ has a signature [m\3,m23 - 1, - m 23 + 1, - m\3J , 

(232) 

n/I~ has a signature [m 13 - l,m23, - m 23, - ml3 + 1] . 

(233) 

Replacing everywhere in (22)-(37) [or in I, (3.56)
(3.93)] the basis vectors from all • terms in 
(227) (= from Is) by zero, m33 by - m23 and m43 by 
- m 13' one obtains the transformations of the nontypical 

module W( [m\3,m 23, - m 23, - m 13 ]) under the action of 
the Lie superalgebra. 

Transformations under the action of e32 : 

-m23 -m,,] 
-m23+ 1, -m13 

m31 + 1, o 10 

-m23 -m" ] -m23 - ml3 + 1 
m31 + 1, o 10 

(234) 
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-m13 1 
- m13 + 1 

o 10 

Transformations under the action of e23 : 

[

m I3 , 

e23 m 13, 

m 11 , 

Proposition 22: Consider class 5 indecomposible induced 
16-dimensional gl(2/2) modules (218), whose signatures 
satisfy the condition 

(242) 

980 J. Math. Phys., Vol. 31, No.4, April 1990 

-m23 

- m 23 + 1, (235) 
m 31 + 1, 

-m23 

- m23 + 1, (236) 
m31 + 1, 

(237) 

-m23 

- m23 + 1, (238) 
m 31 -1, 

(239) 

(240) 

(241) 

The decomposition of 

W( [m]) = W( [m 13,m13, - m 13, - m 13 ]) 

into a direct sum of irreducible gl( 2) I E9 gl( 2) r modules 
reads 
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= I 0,0,0,0 100 

ED 16,-1,1,6 '10 

ED .-1,-1,2,6'20 E9 10,-2,1,1 '11 
ED .-1,-2,2,1'21 

Ell I 2,-2,2,2'22 (243) 

The maximal gl(2/2) invariant subspace Is is of dimension 
15 and is a sum of all terms in (243). It is 
indecomposible and contains as an invariant subspace the 
one-dimensional nontypical module .-2,-2,2,21.. . The 14-
dimensional factor module lsi .-2,-2,2,21.. is also non
typical and 

lsi .-2,-2,2,21 .. has a signature 

[m 13,m 13 - 1, - ml3 + 1, - ml3] . (244) 

The factor module 

Ws( [m 13,m 13, - m13' - m 13 ]) 

= W( [m 13,m13, - m13, - m 13 ] )/15 

carries a trivial one-dimensional representation of gl(2/2). 
Proposition 23: Consider class 5 indecomposible induced 

64-dimensional gI(212) modules (218), whose signatures 
satisfy the condition 

ml3 = m23 + 1. 

The decomposition of 
- ml3 + 1, - m13 ]) into a direct 

gl(2)/ Ell gl(2)r modules reads 

W( [m l3,m 13 - 1, 
sum of irreducible 

W( [m 13,m 13 - 1, - m13 + 1, - m13]) 

= I 0,0,0,0 100 

EBI-1,0,1,0 '10 E9 .6,-1,1,6 '10 ED I 1,6,6,1 '.0 
ED ,o,-i,6,1 '10 EB'-i,-i,z,b'zoe E9 16,-z,i,1 '11 
E91-ic-icisil~n. EBI-i,-i,i,i,5 

ED .-2,-1,2.1'21 EB.-i.-2,i,i.
zt 

ED .-2,-1,1,2' a1 

e .-1,-2,2,1'21 e.-2,-2,z,2. zz · (245) 

The maximal gl (2/2) invariant subspace Is is of dimension 
50 and is given with the sum of all terms in 
(245). It is indecomposible and contains the following in
variant subspaces: 

I~ = '-i,-iri,il~ .. 

EB .-2,-1,z,l':ll E9 .-2,-1,1,2'21 E9 .-1,-2,1,2'21 

Ell 1-2,-2,2,21.. (246) 

I~ =I~ ED 10,-1,1,0 '10 

ED .-1,-1,2,6(20 EB'b,-z,i,i '11 
Ell '-i,-2,2,1I., (247) 

n =I~ EIlI-i,b,b.i 1,0 (248) 

The module I~ is a 15-dimensional nondecomposib1e sub
space. It contains a 14-dimensional nontypical subspace 
with a signature 

[ml3 - l,m 13 - 2, - ml3 + 2, - ml3 + 1] . (249) 
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The subspaces I ~ and I ~ are indecomposible of dimensions 
49 and 16, respectively; they contain as a maximal invariant 
subspace I~. Each of the factor spaces IVn and nlI~ 
carries a nontypical (irreducible) representation of the LS 
gl(2/2), namely, 

nlI~ has a signature [m 13,m 13 - 2, - ml3 + 2, - m13 ] , 

(250) 

nln has a signature [m 13 - l,m 13 - 1, - m13 + 1, 

-m 13 +1]. (251) 

Replacing everywhere in Eqs. (234)-(241) m 23 by m13 - 1, 
one obtains the transformations of the nontypical 14-dimen
sional modules 

Ws( [m 13,m13 - 1, - ml3 + 1, - m13 ]) 

= W( [m 13,m 13 - 1, - m13 + 1, - m 13 ] )/15 (252) 

under the action of the odd generators en and e23. 

IV. FINITE-DIMENSIONAL IRREDUCIBLE 
REPRESENTATIONS OF gl(2/2) 

Denote by g: the class of finite-dimensional irreducible 
gl(2/2) modules W( [ml3,m23,m33,m43]), which were de
termined in I and in the present paper. The modules from 
this class are labeled with all possible complex numbers 

ml3,m23,m33,m43' such that m13 - m 23eZ+ , 

m33 - m43eZ+ . (253) 

If m l3,m23,m33,m43 obey one of the conditions (40 )-( 44), 
then the corresponding module is nontypical: it carries a 
nontypical representation of gl (2/2). The transformations 
of all nontypical modules under the action of gl (2/2) are 
completely defined from the Eqs. (22)-(27) and the action 
of the odd generators e23, en [see Propositions 7-23]. If 
m l3,m23,m33,m43 satisfy none of the conditions (40 )-( 44), 
then the corresponding module is typical. The transforma
tions of these modules are determined from Eqs. (22 )-( 37). 
In all cases the numbers m 13,m23,m33,m43 give the signature 
of the gl (2/2) fidirmod W( [m l3,m23,m33,m43] ), i.e., these 
numbers are the coordinates of the highest weight A in the 
basis el,e2,~,e4 [see (9)], 

A = m13e1 + m 23e2 + m33~ + m 43e4 . (254) 

The highest weight vector corresponding to 
W( [ml3,m23,m33,m43]) is 

[

m 13' m 23, m 33, m43 1 
XA = m13, m 23, m 33, m43 

m13, 0, m33, 0 

eV oo( [ml3,m23,m33,m43]) (255) 

and it is simultaneously a highest weight vector of the 
g1(2)/ Ell gI(2), fidirmod Voo( [mJ3,m23,m33,m43])' Each 
coordinate m,'3 of A is an eigenvalue of ejj on XA' 

ejjxA = m,'3xA' i = 1,2,3,4. (256) 

We now proceed to show that the class g: contains all fidir
mods of the LS gl( 2/2). 

Proposition 24: Let Wbe a finite-dimensional irreducible 
module ofgl(2/2). Then Weg:. 
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Proof: The Cartan subalgebra 

H = lin.env.{e llJe22,e33,e44} (257) 

of g1( 212) is a Cartan subalgebra of g1( 2 ) I Ell g1( 2 ) " The 
basis el, ... ,eN in any finite-dimensional gl(2) I Ell gl(2), mod
ule and in particular in W can be chosen in such a way that H 
is diagonal, 

hei = Ai (h)ei , Ai Ell * , V hEll. (258) 

Take any two elements x,)IE W, 

x = aIel + ... + aNeN . (259) 

The irreducibility of W implies that there exists a polyno
mial Q of the gl (212) generators, such that 

y= Qx. (260) 

According to the Poincare-Birkhoff-Witt theorem29 Q can 
be represented as 

M 

Q=IQjHj , (261) 
j=1 

where Qj (resp. H j ) is a monomial of the g1(2I2) root vec
tors eij' i=/=j = 1,2,3,4 (resp. of ell,e22,e33,e44)' From (258)
(261) one derives that 

y = Qx = QoX , (262) 

where Qo is a polynomial only of eij' i=/=j= 1,2,3,4. These 
generators are also root vectors of sl (2/2). Therefore, (262) 
yields that Wis also an sl(2I2) fidirmod. Each sl(2I2) fidir
mod has a unique (up to a multiplicative constant) highest 
weight. 2 Let x i\ e W be the sl (212) highest weight vector, i.e. 
[see (4), (7)], 

eijxi\ =OV i<j= 1,2,3,4, 

hixi\ = aixi\ . 

Consider the vector 

(263) 

(264) 

y = e4x A , e4 = ell + e22 + e33 + e44egl(2/2) . (265) 

From the supercommutation relations and (263) one con
cludesthat yis also an sl(2I2) highest weight vector. There
fore, y = ax i\, i.e., e4x A = ax i\' Thus, x i\ is an eigenvector 
of the Cartan subalgebra H = lin.env.{e4,h l ,h2,h3} 
= lin.env.{ellJe22,e33,e44} ofgl(2/2), i.e., 

(266) 

From (263) and (266) it follows thatxi\ isagl(2I2) highest 
weight vector of W with a highest weight of 

(267) 

-Hence W is a gl (212) fidirmod with a signature 
[m l3,m23,m33,m43]' Let Uo be the universal enveloping alge
bra of gl(2)1 EIlgl(2),. Then Voo = UoXi\ is an irreducible 
gl(2)1 Ell gl(2), module with the same highest weight vector 
XA and with the same signature [ml3,m23,m33,m43]' The 
gl (2) I Ell gl (2), module V 00 is a tensor product 

(268) 

e23 V22 ( [m 13 - 2,m23 - 2,m33 + 2, - ml3 + 2]) ell' 

Equation (33) [see also I, (3.77)] yields 
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of gl (2) fidirmods VI ( [m l3,m23] ) and V, ( [m33,m43 ] ), each 
one with a signature [m l3,m23 ] and [m33,m43 ], respectively. 
It is well known that a gl(2) irreducible module 
V( [m 12,m22 ]) with a signature [m I2,m22] is finite dimen
sional if and only if m 12 and m22 are complex numbers, such 
that m l2 - m22eZ+. Therefore, 

ml3,m23,m33,m43eC, ml3 - m23eZ+, m33 - m43eZ+ . 

(269) 

We have shown that any finite-dimensional irreducible 
gl(2I2) module W is a module with a signature 
[mI3,m23,m33,m43]' for which (269) holds. Hence [see 
(253)] WeiJ. • 

According to Proposition 24, every gl (212) fidirmod 
W( [ml3,m23,m33,m43]) is also an sl(2I2) fidirmod. The in
verse also follows from the proof of Proposition 24: every 
s1(2I2) fidirmod W can be extended to (several inequiva
lent) g1(2/2) modules, simply setting e4xi\ = aXi\ for the 
highest weight vector x i\' From (4), (7), and (256) one 
concludes that the gl(2I2) fidirmod 
W( [ml3,m23,m33,m43])' considered as a sl(2/2) fidirmod, 
corresponds to labels (see Proposition 1) 

(270) 

Therefore, whenever the gl(2/2) labels ml3,m23,m33,m43 
take all values consistent with (253), then the triple 
(a l,a2,a3) runs over all labels for the sl(2I2) fidirmods. 
Thus we have the following result. 

Proposition 25: The sl(2I2) modules from the class iJ 
contain all finite-dimensional irreducible sl(212) modules. 

From the results obtained so far one can go further and 
write down all irreducible representations of the basic LS 
A(1/1) [see I, (1.7)] in a matrix form. We shall return to 
this problem elsewhere. 
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APPENDIX: PROOF OF PROPOSITION 7 

First of all we observe that the statements (79) and (80) 
follow immediately from the decomposition (49). 

The subspace V22 ( [m 13 - 2,m23 - 2,m33 + 2, 
- ml3 + 2]) is in all cases different from zero and accord
ing to Proposition 4 

V22 ( [m 13 - 2,m23 - 2,m33 + 2, - ml3 + 2]) 

= .-2,-2,2,2'22 C I} . 

Therefore, also 
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[

m13 , m 23 , m33 

x(mW m 31 ) ==e23 mJ3 - 2, m 23 - 2, m33 + 2, 

mil , 0 , m 31 , 

-mJ3 ] 
- mJ3 + 2 

o 22 

m 23 , m33 
-m" 1 m 23 - 1, m33 + 2, - mJ3 + 1 

0 , m31-1, o 21 
[

mJ3 , 

= a l (m ll ,m31 ) mJ3 - 2, 

mil , 

m 23 m33 
-m" 1 m 23 - 1, m 33 + I, - mJ3 + 2 

0 , m31-1, o 21 
[

mJ3 , 

+ a2(m ll ,m31 ) mJ3 - 2, 

mil , 

m 23 , m33 
-m" 1 m 23 - 2, m 33 + 1, - mJ3 + 2 ell' (AI) 

0 , m 31 -1, o 21 
[

mJ3 , 

+ a3(m W m 31 ) mJ3 - 1, 

mil , 

where the coefficients a l (m W m 31 ), a2(m ll ,m31 ), and a3(m ll ,m31) depend (apart from mJ3,m23,m33' which are fixed 
numbers) on mil and m 31 . In particular, 

a l (m ll ,m31 ) = 0, iff mil = m 23 - 2, 

a2 (m Wm31 ) = 0, iff at least one of the equalities mil = m 23 - 2, m 31 = - m 13 + 2 hold, 

a3(m W m 31 ) =0, iffm31= -m 13 +2. 

Setting in (AI) mil = m 23 - 2 and taking into account (A2) and (A3), we have 

[

m13 , m 23 , m33 , 

x(m23 - 2,m31 ) = a3(mn - 2,m31) m13 - 1, m 23 - 2, m33 + 1, 
m 23 - 2, 0 , m31 - 1, 

(A2) 

(A3) 

(A4) 

(AS) 

Since m33 > - m 13, for m 31 = m33 + 2 we have m 31 > - mJ3 + 2. Therefore, [see (A4)] a3(m23 - 2,m33 + 2) #0. Thus 

0#x(m23 - 2,m33 + 2)ell n V21 ([m 13 - l,m23 - 2,m33 + 1, - m13 + 2]) 

and according to Proposition 3 

(A6) 

V21 ( [m 13 - l,m23 - 2,m33 + 1, - m13 + 2]) == 1-1,-2,1,21., ell' 

In the case m 31 = - m13 + 2 (AI) reduces to 

(A7) 

Since m13 > m 23, if m l1 = mJ3 - 2, then mil> m23 - 2 and 
according to (A2) a l (m 13 - 2, - m13 + 2) #0. Therefore, 

m33 

m33 + 2, 
- m13 + 1, 

-m13 1 
- mJ3 + 1 

o 21 

Applying Proposition 3 to (A9), we conclude that 

== .-2,-1.2,1'21 ell' 

(A9) 

(AW) 

Under the condition (75) V21 ([m 13 - 2,m23 - 1, 
m 33 + 1, - mJ3 + 2])#0. For 
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m33 

m33 + 2, 
- m13 + 1, 

we have that 

(AS) 

(AlI) 

and, therefore [see (A3 ) ] , the coefficient 
a2(m 13 - 2,m33 + 2) #0. Then Eqs. (AI), (A7), and 
(AW) yield 

[

m13 , mn , m33 

ml3 - 2, m 23 - 1, m33 + 1, 
m13 - 2, 0 , m33 + 1, 

- m13 1 
- m13 +2 

o 21 

EV21 ([m 13 - 2,m23 - l,m33 + 1, - m13 + 2]) nIl' 

(A12) 

Hence (Proposition 3), 

V21 ( [m 13 - 2,m23 - l,m33 + I, - m13 + 2]) 

== .-2,-1,1,2'21 ell' 
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Suppose Then also 

Vl1 ([m 13 - 2,m23,m33 + 1, - m13 + 1]) 

#0 ¢:> m13 - 2;;;'m23 • (AI4) 

I 

V21 ([m 13 - 2,m23 - l,m33 + 2, - m13 + 1])#0. (AI5) 

From (34) [or I, (3.73)] and (AlO) we compute 

-m13 1 
-m 13 +1 

o 21 

[

m13 ,m23 , m33 

X m 13 - 2, m 23 , m33 + 1, 
m l1 , 0, m 31 - 1, 

-m13 1 
- m13 + 1 

o 11 

m 23 , m33 
-m" 1 

m23 - 1, m33 + 1, - m13 + 1 
0 , m31 -1, o II 

m 23 , m33 
-m" 1 

m23 - 1, m 33 + 1, - m13 + 1 ell' (AI6) 
0 , m31 -1, o 20 

where 1113 - 111 - 111/2 cannot vanish and 

(AI7) 

(AI8) 

The coefficients b l (m31 ) and b2 (m31 ) are independent on m II and 

(AI9) 

Similarly, from (34) and (24) we obtain 

[

m13 , 
1 

m m = e e m -2 Y2( II> 31) - (/ I) II I 11/2 12 23 13 , 
13 - 11 23 - 11 m

l1 
_ 1, 

m23 ,m33 

m 23 - 1, m33 + 2, 
o ,m31 

-m13 1 
- m13 + 1 

o 21 

(/23 + 133 + 3 )(123 -111 + 1) 1 (/13 + 131 + 1) (/13 -111 - 1) 1112 

113 -111 (/23 -111 )(/13 -123 -1)(/13 + 133 + 3) 

[

m13 ,m23, m33 , 

X m13 - 2, m 23, m33 + 1, 
m l1 , 0, m31 - 1, 

-m13 1 
-ml~ + 1 

o II 

m 23 ,m33 

m 23 - 1, m33 + 1, 
o ,m31 -1, 

-ml3 1 
- ml3 + 1 

o II 

m 23 ,m33 

m 23 - 1, m33 + 1, 
o ,m31 -1, 

-m13 1 
- m13 + 1 ell' 

o 20 

(A20) 
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where (/13 -111 )1123 -11111/2#0. Evaluating Y1(m W m 31 ) 

- Y2(m ll ,m31 ) for 

(A21) 
X(I+ 113 -/23 -3 ) 

2(/13 - /23 - 2) . 
(A23) 

In view of the conditions (40) and (A 14) a # O. Therefore, 

we have 

= a[::: -2: :::: 
EVil ([m 13 - 2,m23,m33 + 1, - ml3 + 1]) nIl' 

m l3 - 2, 0, 

(A22) 

where 

[

ml3 , m 23 , m33 

v(m W m 31 ) ==bl (m31 ) ml3 - 1, m 23 - 1, m33 + 1, 

mil , 0 , m31 - 1, 

[

ml3 , m 23 , m33 

+ b2(m31 ) ml3 - 1, m 23 - 1, m33 + 1, 
mil , 0 , m31 - 1, 

and applying Proposition 3 we conclude that 

VII ([m 13 - 2,m23,m33 + 1,_ - ml3 + 1]) 

== .-2,6,£.1 'It C I •. 

From (AI6) and (A25) it follows also that 

-ml3 1 
- ml3 + 1 

o II 

(A24) 

(A25) 

(A26) 

Inserting the expressions for bl (m31 ) and b2(m31 ) in (A26) one easily shows that up to a multiple v(m ll ,m31 ) is equal to [see 
(72)] [m W m3I Hnv, i.e., that 

Vlnv ([m 13 - l,m23 - l,m33 + 1, - ml3 + 1]) == I-i.-i.i.il: •• C II . 

If 

V20 ( [m 13 - l,m23 - l,m33, - ml3 + 2]) #0 , i.e., if m33> - ml3 + 2, 

then also 

V21 ([m 13 - l,m23 - 2,m33 + 1, - ml3 + 2]) #0. 

From (34) and (A7) we obtain 

[

ml3 , 

11 11 211/2 e23 ml3 - 1, 
33- 31 + m 

II , 

m23 , m33 

m 23 - 2, m33 + 1, 
o , m31 

[

ml3 , m23 , m33 

X ml3 - 1, m23 - 1, m33 

mil , 0 , m 31 - 1, 

-m13 1 
- ml3 + 2 

o 20 

-ml3 1 
- ml3 + 2 

o 21 

m 23 , m33 

m 23 - 1, m33 + 1, 
o , m31 -1, 

-m13 1 
-m I3 + 1 

o II 

[

ml3 , 

+ c2(mll ) ml3 - 1, 
mil , 

m 23 , m33 

m23 - 1, m33 + 1, 
o , m31 -1, 

985 J. Math. Phys., Vol. 31, No.4, April 1990 

(A27) 

(A28) 

(A29) 

(A30) 
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where always 1133 -131 + 21112#0 and 

( ) _ (I -/ + 1) 1 (/13 -123 - 1) (/23 -III - 1) 1112 
CI mil - 13 23 ' 

2(/13 -123)(/13 + 133 + 3)(/13 -/23 + 1) 

( ) -(1 -/ 1)1 (/13+ /33+ 4)(/23- 111- 1) 1112 
C2 mil - 13 23 - . 

2(/13 - 123 ) (/13 + 133 + 3) (/13 + 133 + 2) 

The coefficientsct(m ll ) and c2 (m ll ) are independent on m31 and 

Similarly, from (34) and (26) we have 

[

mJ3 , 
1 

z m m = e e m -1 2( '" 31)- (I I + 3)11 I 11/2 3423 13 , 
33 - 31 13 + 31 m II , 

m 23 ,m33 

m 23 - 2, m33 + 1, 
o ,m31 - 1, 

- mJ3 1 
-m I3 +2 

o 21 

= (/23 + 133 + 3)(113 + 131 - 1) I (/23 -III - 1)(/33 -131 + 2) 1112 
(/33 -131 + 3) (/13 + 133 + 2)(/13 -123 )(/13 + 131 ) 

-m13 1 
- mJ3 + 2 

o 20 

[mu , m23 , m33 -mu 1 + cl(m ll ) m13 - 1, m23 - 1, m33 + 1, - mJ3 + 1 

mil , 0 , m31 -1, o II 

[mu , m 23 , m33 -mu 1 + c2 (m ll ) m l3 - 1, m23 - 1, m33 + 1, - mJ3 + 1 Ell' 
mil , 0 , m31 -1, o 20 

where (/33 - 131 + 3) 1113 + 131 11/2#0. Setting in (A30) and (A34) 

mil = m13 - 1 ¢} 111 = 113 - 1, 

m31 = m33 + 1 ¢} 131 = 133 + 1, 

we get 

m23 ,m33, 

m23 - 1, m33, 

o ,m33, 

From (40) and (A28) one concludes that the constant ,8 never vanishes, i.e., 

2,8= (/ + I + 3) 1113 + 133 + 21112 #0. 
23 33 113 + 133 + 1 

Therefore 

m23 ,m33, 

m 23 - 1, m33' 

o ,m33, 

Hence (Proposition 3), 

-mJ3 1 
- ml3 + 2 

o 20 

Now from (A30) and (A38) it follows that the maximal invariant subspace contains all possible vectors 
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(A32) 

(A33) 

(A34) 

(A35) 

(A36) 

(A37) 

(A38) 

(A39) 
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[

ml3 , m23 , m33 

W(m l1 ,m31 ) = CI (m l1 ) ml3 - 1, m23 - 1, m33 + 1, 

m ll , 0 , m 31 - 1, 

[

ml3 , m23 , m33 , 

+ c2(m l1 ) m13 - 1, m23 - 1, m33 + 1, 
mll , 0 , m31 - 1, 

(A40) 

Inserting in (A40) the expressions for c I (m 11) and C2 (m 11 ) one concludes also in this case that w( m II,m31 ) is proportional to 
[mwm3111nv, i.e., that w(m ll ,m31)e 1-1.-1.1.11: ... 

In a similar way one shows that 

e23 .-2,-1,1,2'21 C l-i,-i,i,il~IlY E9.-1,-1,6,2'2O ED .-2,6,1,1'11 (A41) 

In order to show that b .• d. d. 1 ... ell we observe that 
the equalities 

m33 = - m13 + 1 and m13 = m23 + 1 (A42) 

cannot be fulfilled simultaneously. Indeed, if both Eqs. 
(A42) hold, since also m43 = - m 13, we would obtain an 
induced module with a signature 

[m13,m23,m33,m43] = [m 13,m13 - 1, - m13 + 1, - m 13 ] , 

which belongs to the class 5 representations. Suppose that 
m33> - ml3 + 1. Then [see (A28) and (A39)] 

0# V20 ( [ml3 - l,m23 - l,m33, - m13 + 2]) ell (A43) 

and, therefore, also 

e23V20( [m 13 - l,m23 - l,m33, - m13 + 2]) ell' (A44) 

From (35) we have 

[

m 13 , m 23 , m33, 

e23 ml3 - 1, m 23 - 1, m33, 

mll , 0 , m31, 

- m13 ] 
- m13 + 2 

o 20 

X m13 - 1, 
[

m13 , 

mll , 

= ::: + 1] 
o \0 

where the coeflicient 

k(m W m31 ) 

= (/23 - 113 ) 1 (/23 - 111 )(133 - 131 + 1) 1112 
(/13 -123) (/13 + 133 + 2) 

(A45) 

= 0 iff m l1 = m23 - 1 . (A46) 

Since m 13 > m23 [see (70) ], for m 11 = m 13 - 1 we have that 
ml1>m23-I.Hencek(m13-1,m31)#Oandfrom (A45) 
we obtain that 

[

m 13 , m 23, m33 , 

m13 - 1, m23, m33 , 

m13 - 1, 0, m31 - 1, 

eV\O( [m13 - l,m23,m33, - m l3 + 1]) nIl' 

Hence (Proposition 3), 

if m33 > - m 13 + 1 , 
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(A47) 

V\O( [m 13 - l,m23,m33, - ml3 + 1]) ell' 

If m33 = - m13 + 1, then m13 > m23 + 1 and, therefore, also 

0# VII ([m 13 - 2,m23,m33 + 1, - m13 + 1]) ell' 

In a similar way as before one shows that 

0#e23 Vl1 ([m13 - 2,m23,m33 + 1, - m13 + 1]) 

c V\O( [m13 - l,m23,m33, - m13 + 1]) C II . 

Therefore, in all cases 

V\O( [m 13 - l,m23,m33, - m13 + 1]) 

== '-i,6,6,1 '10 C I •. (A48) 

From (50), (A7), (AW), (A13), (A25), (A27), 
(A39), and (A48) we conclude that 

1== .-1.6,6.1 '10 

EB .-1,-1,6,2'20 ED l-i(-i(i,il~D. EB 1-2.6,£.1 '11 

ED i-i,-2,i,21~ ED .-2,-1,1,2'21 E9 1-2,-1,2,1'21 

Ell l-i l -i.2.2I u ell' (A49) 

Now it is a maher of a direct computation to show that: 
( 1) The subspace I is gl( 2/2) invariant. This follows 

from the results obtained so far and the observation that 

CI (A50) 

for every term on the right-hand side of 
(A49). 

(2) The subspace I is an irreducible gl (2/2) module 
with a signature ( = with coordinates of its highest weight 
vector [see (9)]) [m 13 - l,m23,m33, - m13 + 1]. Note that 
this representation is also nontypical. 

(3) Acting appropriate times with e23 on each 
I I term in the right-hand side of the decomposi-
tion (78) one ends in 10.0,0.0 I ... 

From (1 )-(3) it follows immediately that (a) lis the maxi
mal gl(2/2) invariant subspace in 

W( [m13,m23,m33' - m13]), I = II, (A5t) 

(b) The compliment "to II subspace 
WI ( [m 13,m23,m33, - m 13]) in W( [m 13,m23,m33, - m 13] ) 
[ which is isomorphic to the factor space 
W( [m 13,m23,m33, - m 13))1 Id is given with the sum of all 

terms in the right-hand side ofthe decompo-
sition (78). (A52) 
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This paper evaluates the determinant of a Dirac-like operator, for a system of fermions 
confined to a region of two-dimensional Euclidean space and subject to bag-like boundary 
conditions. In the framework of the ~-function regularization method, use is made of Seeley's 
developments for the resolvent of such operators. A relation is derived between the Green's 
function and the finite part ofthe diagonal element of the kernel ofthe power z of the operator 
for z = - I, which amounts to having information about the whole Seeley's series. 

I. INTRODUCTION 

Chiral bags 1 are well known to model confinement with
out violating chiral symmetry. They employ quarks and 
gluons at short distances and light mesons at larger ones, the 
bag wall dividing both descriptions in space. The observed 
approximate independence of the radius of the bag shown by 
some physical observables in four dimensions, together with 
the exact equivalence of bosonic and fermionic theories in 
two dimensions, gave rise to the Cheshire cat hypothesis,2 

according to which the bag wall has no physical significance, 
merely separating two regions where different descriptions 
of the same physics are used. Testing this hypothesis in the 
path integral formalism amounts to the calculation of fer
mionic determinants in a region of space (n), with local 
(bag-like) conditions at its boundary (an). 

While the definition of determinants of Dirac operators 
on boundaryless manifolds (compactified space-time) has 
been extensively studied,3,4 the presence of boundaries poses 
some extra difficulties: in particular, the knowledge of the 
Green's function is needed. 

In previous work,5,6 we evaluated the Dirac determi
nant for massless fermions coupled to a bosonic background 
field, confined to a region of two-dimensional space-time, 
and satisfying bag boundary conditions. In doing so, we used 
an ad hoc regularization scheme aiming at avoiding possible 
singularities on an. There, we found that the quotient of 
determinants of the operator with and without a background 
field was given by the volume integral over n of the same 
density as in the boundaryless case, plus an integral on an. 
This last contribution was seen to vanish for static bosonic 
configurations while, in the general case, it could be related 
to the determinant of the free Dirac operator, with "chirally 
transformed" boundary conditions. However, this interpre
tation was established by combining the previously men
tioned regularization with a point splitting one for boundary 
terms. 

In this paper, we evaluate the same quotient, both in the 
Abelian and non-Abelian cases, consistently using a unique 

regularization scheme: the ~ function one. We make use of 
Seeley's7 definition of complex powers of differential opera
tors acting on functions that fulfill given boundary condi
tions. We look for the kernel of the relevant operator, satisfy
ing the right conditions on an, which amounts to obtaining 
two sets of Seeley's coefficients, those common to the case 
with no boundaries plus a new set adjusting the behavior of 
the kernel on an. The main ingredient in our calculation will 
be the derivation of an expression for the finite part of 
D ~ (x,x) I z = _ it the diagonal element of the kernel of the 
inverse of an elliptic invertible operator of order lI) on a v
dimensional compact manifold with boundary, This expres
sion generalizes the one presented in Ref. 8 for the case with 
no boundaries. This method also allows us to compare our 
result to the determinant of the free Dirac operator with 
chiral boundary conditions in the framework of a consistent 
regularization, thus confirming the relationship remarked in 
Refs. 5 and 6. 

II. THE FERMIONIC DETERMINANT 

We consider a theory of massless fermions, confined to a 
region n of two-dimensional Euclidean space, interacting 
with a scalar background field qJ, taking values in the Lie 
algebra of a compact Lie group, whose action is given by 

S = r d 2X '¢IeM'iieM't/I + ~ r d IX '¢I(1 - ") t/I. (1 ) Jo. 2 Jao. 
[Our convention is 

ro = e ~ '). rl = (~ ~), rs = (~ ~.) , 
and" is the exterior normal to an, ] 

In order to obtain the effective action for rp, resulting 
from its interaction with fermions, we evaluate the func
tional integral: 

(2) 

This model is classically equivalent to a free fermion model 
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with chiral bag boundary conditions, through the transfor
mation X = er.'P t/r, i = ~er.'P; however, this analogy is no 
longer true at the quantum level due to the noninvariance of 
the measure. 

Since the integral over ~(an) selects those trajectories 
satisfying bag boundary conditions, we must consider the 
differential operator defined as: 

DBt/J = UiIJUt/J = er,tj'ilJer''''t/J, in n (3) 

if 

Bt/J= (l-It)t/J=O, onan. (4) 

By developing t/J in eigenfunctions (generalized eigen
functions, if necessary) of DB' and ~ in eigenfunctions of 
D I, which constitute a biorthogonal basis in Hilbert space,9 

we define the functional integral as 

- r(lP) = log Z = log Det DB = TrIog DB . (5) 

These are just formal equations, which require a regu
larization; we choose the Riemann ,·function scheme: 

10gDetDB =-.!!..../ Tr{DBs}, (6) 
ds .=0 

the trace converging for Re(s) large enough, and the result 
being analytically continued to s = 0. 

As usual, we introduce a parameter l' by changing 
lP-+1'q:;. Notice that the resulting DB (1') acts on a domain 
that is 1'independent. We evaluate the l' derivative of (5) and 
recover r by integration: 

d
d r[lP] -.!!....I s Tr{ [YslP( UilJU) 
l' ds .=0 

+ (UilJU)YslP]D B S
-

I
}. (7) 

An integration by parts of the second term allows us to write 
this expression as: 

.i£.r[lP] A(1')+B(1'), 
d1' 

with 

(8) 

A(1') = dd I s f d 2x tr{2YslP(x)D B$(X,X)} (9) 
s 3=0 Jo 

and 

B(1') = -.!!....l sf dlxtr{iItYslP(x)DBS-I(x,x)}, 
ds $=.0 Jan . 

(10) 

where tr means sum over group and Lorentz indices. 
Although Eq. (9) has the same form as in the boundary· 

less case, the integral is limited to n and, as we will see in the 
next section, the boundary conditions will give rise to some 
extra terms. 

Equation (10) introduces an additional complication: 
one needs the diagonal element of the kernel for powers of 
the operator close to minus one. 

III. EVALUATION OF A(1') 

The power z of DB for Re(z) < 0 is defined as 

DB =~fdA,tz(DB _,1,)-1, 
211' 

(11) 
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where the integral is evaluated on a path encircling the spec
trum of DB' We use Seeley's expansion for the resolvent in 
terms of pseudodifferential operators.7

•
10 It can be verified 

that DB and B in Eqs. (3) and (4) constitute an elliptic 
boundary problem, satisfying Agmon's condition on the 
positive imaginary A axis. 

In terms of Seeley's coefficients, the resolvent is ap· 
proximated by 

(DB - A) I (x,y) 

- f _l_fd1'seis(X-Y) 
j=O (211')1' 

xc_ w _ j (X,S,A)(12(S,A) - f ~fd1'-ISII 
J=0(211') 

xelSl/(X-Y)u,L w _ j (xn,xUSII'Yl,A)6t (s,A) , (12) 

where II (1) stand for directions parallel (orthogonal) to the 
boundary, v is the dimension of the space-time, and Ct) is the 
order of the differential operator (in our case, v 2 and 
Ct) = 1). Here, 61 (S n ,A) { ( ()2 (s,A ) ) is a smooth function, van
ishing for small Is nl2 + 1,1, l2/w (Is 12 + 1,1, 12/«», and 
identically 1 when this quantity is greater than one. 

The coefficients in this expansion are defined through 
iterative relations. In the case of the e's, they are algebraic 
equations. while the evaluation of din 

d _ W-j(xu,Xl,SIPYl,A) 

f:"" dS1 e is.lYld_w_j(XII,xl.Sn,Sl,A) (13) 

amounts to solving a differential equation in the normal co
ordinates.7 

In order to evaluate A ( 1') in (9), one needs the diagonal 
element of the kernel D ~ (x,x) , for z near zero. As shown in 
Ref. 7, the asymptotic expansion obtained by replacing ( 12) 
in ( 11 ) has only a single pole at z = 0; therefore, the presence 
of d Idsl s = oS amounts to taking the finite part of this analyt
ic extension at z = 0. From the same reference, it is easy to 
see that (due to its homogeneity properties) the only c coeffi
cient contributing to A ( 1') is e _ 3' Taking into account the 
extension of Seeley's method given in Ref. 10, which is neces
sary due to the arbitrary dependence of q:; on Xl' it turns out 
that one needs also d _ I and d_ 2• 

The resulting expression for A (1') is 

A(1') -2~FPz=0! {tr Ld
2
X YSq:;(X) 

X f diS C_ 3 (x,s,z) - tr f d IX Ys Jlsl = I Jan 

X l: f'" dXl [lP(xu.0)D_2(xu.XUSn,xl;Z) 
SII= ±I Jo 

+ allP(xli ,0)xlD_ 1 (XII ,xl ,511 ,Xl;Z)]} , (14) 

where 

(15) 
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(16) 

and the integral is taken on a curve coming from 00 along the 
positive imaginary axis to a small circle around the origin, 
then clockwise around the circle and back to infinity along 
the same axis. 

The c coefficients, which are independent of the pres
ence of boundaries, have been evaluated for a similar prob
lem in Ref. 4, from which we take 

LI (x,S,A.) = (A, - t)/(S2 - A, 2) , (17) 

C-2(X,S,A.) = - [1I(S2 - A, 2)2] (A, - t)A(,1, - t) , 
(18) 

L3(X,S,A.) = [1I(S2 - A, 2)3] (A, - t) (A + i8) 

X (A, - t)A(,1, - t) , (19) 

where 

A = U(i8U) = AI' YI' . (20) 

In order to simplify our calculations, we will consider 
that the region n is the half-plane XI >O(Xl = xI;xlI =xo). 

The coefficient d_ 1 is the solution of the differential 
equation: 

(21 ) 

d (x~ S 2) =e- p(2+x,) i7r(iA,+So-p) 
-2 ,~o,"" 4,1,s<p2 

satisfying 

(l,l)(d_ I -L I )lx,=o =0. 

In Eq. (21), Mis the matrix 

M = SoYs - iA,YI . 

(22) 

(23) 

Solving (18) and (19), one gets for d_ 1 [see Eq. (13)], 

_ i7re - pIx, + s) ( iA ) 
d_ 1 (x,So,s,A.) = p(iA, + So + p) \p + So 

® (I,1)(M +p)Yto (24) 

where 

P= +(S~_,1,2)1/2. (25) 

Concerning d_ 2, it satisfies 

(26) 

and 

x._ + co 

(I,1)(d_ 2 - L2) lx, =0 = O. (27) 

From these two equations, one obtains for d_ 2 : 

X{~: S)® (1,1) [yIA(M +P)YI + (M +p)yIAYI - (s+ ;)(M +p)yIA(M +P)YI] 

+ [xl(P - M) + (iA, ~~~ -p) (_ !) ® (iA,So -p) ]YIA ~ ~ S) ® (I,I)(M +P)YI} . (28) 

The presence of the trace over Lorentz indices greatly 
simplifies the awful expression resulting from the replace
mentof(l9), (24), and (28) in Eq. (14) (giving, in particu
lar, a vanishing contribution from d_ I ). The final result is 

A(1') = __ 1_ r d 2xtr{YsfP8(U28U2)} 
41r In 

where tr g means trace over group indices. 
In the last term, coming from d -2' 

trg {fPAo} = l' trg {fPalfP} , 

leading to a trivial l' integration. 

(29) 

(30) 

With respect to the first term in (29), taking into ac
count that 

tr{YsfP8( U 28U2)} = tr{2YsfPU8( U 28u)} , (31) 

its l' integral is as given in Ref. 6. The final result is 
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f d1' A(1') 

= Wn [u=e2<P] __ 1_ r dxotrg{q;alfP}(.>;,.O) 
21T Jan 

+ _1_ r dxo trg {fPalfP}(Xo,O) , (32) 
21T Jan 

where 

Wn[u] = _1_ r d 2x trg [(u-Ial'u)(u-Iapu» 
81T In 
--,-' t d1' r d 2xEpy trg[(u;-larur ) 

41T Jo In 
.x (ur-lapuT)(uT-layUT» , (33) 

with UT = e2T<P, has the form of the Wess-Zumino--Witten 
action, II but restricted to the region n of space-time. 

Notice that there is a cancellation between the d contri
bution and a boundary term coming from an integration by 
parts in the c contribution. 
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In the simple Abelian case, Eq. (33) reduces to 

Wn [u] = _1_ r d 2x(arp)2. (34) 
21T In 

One sees that the final expression is the volume integral 
over n. of the same density as in the boundaryless case. 

IV. EVALUATION OF B(T) 

Since the kernel D~ (x,x) has only a simple pole at 
Z= -1 (Ref. 7), 

(35) 

In calculating B ( r) one is faced with an extra complica
tion: it cannot be expressed in terms of a finite number of 
Seeley's coefficients; rather, the knowledge of the Green's 
function is needed. In the Appendix, we show the relation
ship between the finite part of the relevant kernel and the 
Green's function of DB ( G). When replaced in (35), it gives 

B(r) = __ 1_2 tr r dXoYofP(Xo.o>{(21T)2G(XO,0;Y0,0) - r d2seiso(X-Y)0Isl-IC_I(xo,0,s/lsl;z= -1) 
(21T) Jan JR' 

+ r dso eiso(X-Y)oD_I(xo,O,sollsol,O;z = -1) -1 d2seiso(X-Y)oC_2(XO,0,S;Z=-1) 
JR 151>1 

+1 dso e'So(X-Y)oD_2(xO'0,so,0;z= -1) -1 d I
S !£C_2 (xO,0,s;z)lz=_1 

1501>1 151=1 dz 

+ I !£D_2(XO,0,so,0;Z)lz=_I}1 . 
50= ± I dz y"=x,, 

The evaluation of the C terms is similar to that of Ref. 8. 
One gets 

(2~)2 L, d2s eiS(X-Y) Is I-IC_ I (x,s lis l;z = - 1) 

= (l/21Ti)(t - t)/lx - YI2 , (37) 

( _1_)21 d2seis(X-Y)C_2(X,S;Z=-1) 
21T Is 1>1 

= - 1!41T[A - 2A1J (x - Y)IJ (t - t)/lx _ YI2] , 
(38) 

(_1 )21 diS C_ 2(x,s;z) 
21T 151=1 

= (z+ 1)A/4?T{1 +o(z+ I)}. (39) 

Notice that, between the last two contributions coming 
from C _ 2' there will be a cancellation of the continuous 
parts, leading to the subtraction of a "minimal" nonregular 
zero order term to G. 

Concerning D contributions, it is easy to obtain 

D_I (XO,xI'SO'XI;Z = - 1) 

_. -21~ I (1 - sgn So 0) (40) 
- me ~o XI 0 1 + sgn ~ , 

from which it follows that 

tr{YoD_I(xo,xl,so,xl;Z = -1)} = o. (41) 

In the case of D -2' an otherwise complicated calcula
tion is greatly simplified by first evaluating 

tr{ Y iJ -2 (xo,O,so,O,A. ) } 

= 21TAoisH -A. +A. 41p 3 + 2S~A.2Ip3] , (42) 

which leads to 

tr{yoD -2 (xo,O,So,O;Z)} = 0 . (43) 

Replacing (37) to (43) in (36) one obtains 
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+ ! trg f dxo rp(xo.o> [il(xo - Yo) 

- Ao + o(xo - Yo) ] } . 

(36) 

(44) 

In order to evaluate (44), we need the explicit expres
sion for G: 

G(x,y) = U-I(x)g(X,y)U-I(y) . 

For the simple Abelian case, we found in Ref. 5: 

g(x,y) = V(x) [go(xo,xl;y) - YIgo(xo, - xI;Y)] 

(45) 

XYI V-I(y)YI' (46) 

where 

go(x,y) = (1!21Ti) (t - t)/lx _ yl2 (47) 

and 

V(x) = diag(e2T'P+ (x. - iX'),e - 2T'P ~ (x" + ix, l) , ( 48) 

with rp + (xo) being the positive frequency part of 
rp(XO,x I = 0) such that rp+ (xo) + rp ~ (xo) = rp(xo,O). 

It can be seen that the second term in (46) gives a van
ishing contribution to the trace. By developing U(y) and 
V(y) in powers of (x-y) one easily obtains 

II dr B( r) = _1_ f dxo rpalrp(xo,O) 
o 21T 

+-,-' fdXorp(Xo,o)ao(rp~ -rp+)(xo)' 
21T 

(49) 

The first term in this expression can be written as the 
volume integral over n. of a total divergence, while the sec
ond one is a complicated nonlocal function of rp(XO,x1 = 0), 
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vanishing for static configurations. 
The effective action r is 

r[tp] = __ 1_ r d 2xtpa 2tp+_l_ r dxotpao 
21T In 21T Jan 

X (tp '!.- - tp+) -log Det(i8h , (50) 

where the last term is the "Casimir energy" offree fermions 
inside the bag, being (i8) B defined by Eqs. (3) and ( 4), with 
tp=O. 

This result coincides with that found in Ref. 5, up to the 
volume integral of a total divergence (due to the different 
regularization method employed), so that the same com
ments concerning the relevance of the model for testing the 
Cheshire cat hypothesis made in that reference still apply. 

For the non-Abelian case, one can employ a multiple 
reflection expansion 12 for g, given in detail in Ref. 6 

g(x,y) =go(x,y) +gl(x,y) + ag(x,y) , (51) 

where go is given by (47), g 1 is the one-reflection contribu
tion (explicitly evaluated in Ref. 6), and ag (the multiple 
reflection contribution) is regular for Xo -+ Yo' 

When replacing (51) into (44), g 1 is easily seen to give 
no contribution due to the null value of the trace over Lor
entz indices. By developing U -I (y) in powers of (x - y), 
the remaining terms in (44) add to 

(I dr B( r) = _1_ I dxo trg {cpaICP} (xo,Q) 
Jo 21T 

-f dr I dxo tr{tp(xo,O)Yoag(xo,O)}. 

(52) 

As in the Abelian case, the first term can be cast in the 
form of a volume integral over n of a total divergence, while 
an interpretation of the second one (a nonlocal function of tp 
on an) will be given in the next section. 

The resulting effective action is 

r[tp] = Wn [e2q:>] __ 1_ ( d 2xtrg[a
p

(cpa
p

tp)] 
21T In 

-f dr Ian dxo tr[tpyoag] -log Det(i8h . 

(53) 

Again, we find the same result as in Ref. 6 even though, 
as a consequence of the different regularization employed, 
there is an extra volume integral of a total divergence. 

v. COMPARISON WITH THE CHIRALLY 
TRANSFORMED OPERATOR 

As mentioned in the Introduction, we suggested in pre
vious work,s,6 that the nonlocal expressions under boundary 
integrals in Eqs. (50) and (53) could be related to the deter
minant of the operator chirally transformed from DB: 

(i8hu-' t/J = i8t/J, in n (54) 

for functions satisfying 

BU-1t/J = 0, on an. 
It is easy to establish the relation 13 

Det(i8)BU-' = Det( U- 1i8Uh , 
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(55) 

(56) 

from which one can proceed as earlier, introducing the pa
rameter r and taking the r derivative. The difference is that, 
in this case, there is no volume contribution. One gets 

~log Det(i8)BU-' = ~I str ( dxu U-1iltUystp(x) 
dr ds s=O Jan 

X (U- 1i8U)il I-s(X,X) . (57) 

It is not difficult to establish the following relation 
between the resolvents of the operators appearing in (56); 

[(U- 1i8U)B -A. ]-1 = U- 1[(i8)BU-' -A. ]-IU. 
(58) 

By means ofEq. (11), 

(U-li8U)~ = U-l(i8)~u-' U. (59) 

Replacing (59) in (57), it follows that 

{
Det(8)BU-' } II i' log '8 = dr FPz = - 1 tr dxu ,ltyscp(x) 

Det(, )B 0 an 

X (8)~u-' (x,x) , (60) 

where we have used the fact that the asymptotic expansion of 
this kernel has only a single pole at z = - 1. 

One can check that (54) and (55) define an elliptic 
boundary problem satisfying Agmon's condition on the neg
ative imaginary A. axis. 7 

In order to evaluate (60), we have to look for the See
ley's coefficients appearing in Eq. (AW) in the Appendix. 
While CI has the same form as before [Eq. (17)], 
C_2=C_ 3 =···=0. 

Concerning d _I' it satisfies 

(~-M)d_1 =0, 
aX I 

lim d_ 1 =0, 

(u-I,1)[d- 1 -cdlx,=0 =0, 

where u = ~1'q:>(x.,,0) • This leads to 

d_l(xo,xI'So,s = XI;A.) 

= i1Te- 2px, [uu- I + So + p]-I 

(61) 

(62) 

X(so~p)®(U-I'I}(M+P)/PYI' (63) 

with M and p defined in Eqs. (23) and (25), respectively. It 
follows that 

= i~u(1 -osgn So) ° ) (64) 
11\ u- I (1+sgnso) , 

which gives a vanishing contribution to the trace in (60). 
The remaining coefficient is determined by 

(~-M)d_2= -iys ad_I, 
aX I axo 

lim d_ 2 = 0, 

(u- I,l)d_2 Ix, =0 = 0, 

from which it follows that 
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tr{YotP(xo,O)d -2 (xo,O,So,O;,.t)} 

= _i1T~{P+SO T~ 
axo p dT 

X ~ trg[Uu-l+p+so]-I}. 

(67) 

Being a total Xo derivative, this expression gives no con
tribution when integrated over the boundary. Therefore, we 
obtain 

{
Det(iD)Bu-, } 

log ----
det(iDh 

= t dT f dxo lim {tr[ YotP(xo,O)g(xo,O;,vo,O)] Jo Yo-x. 

+ i/1T trg [tp(xo,O)/(xo - yo)]} . (68) 

We will compare this result with Eq. (44). Making use 
of ( 45), we easily get 

tr{yotP(xo,O) [G - g] (xo,O;,vo,O)} 

= tr{YotP(xo,O)g(xo,O;,vo,O) (Yo - xo) 

X [aoU-1U](xo,0)} + O(xo - Yo) . (69) 

Both in the Abelian [Eq. (46)] and non-Abelian [Eq. 
(51)] cases, (69) equals to 

i/21Ttr{tpaoU- 1U}(xo,0) + o(yo - xo) ..... O. (70) 

This allows us to give a nice interpretation to nonlocal 
boundary terms in Eqs. (50) and (53), thus confirming our 
conjecture of Refs. 5 and 6: In the framework ofthe t-func
tion regularization we can write 

1 {Det( UiDU) B} 
og Det(iDhu-' 

= Wo [e2tp ] __ 1_ r d 2xap, tr{tpap,tp}. (71) 
21T Jo 

That is, by chirally changing both the differential opera
tor and boundary conditions, this quotient is given by the 
volume integral, restricted to 0., of the same density as in the 
boundaryless case, up to a total divergence. 

VI. CONCLUSIONS 

In summary, we have developed a regularization meth
od for the definition of determinants of Dirac-like operators 
with local (bag-like) boundary conditions. In the frame
work of the t function regularization, we have made use of 
Seeley's development for complex powers of elliptic bound
ary systems. We have shown that, while volume contribu
tions can be written in terms of a finite number of Seeley's 
coefficients, there are also boundary contributions, which 
require the knowledge of the whole series, or equivalently, of 
the Green's function (G) of the problem. In the Appendix 
we have established the relation (which also involves a finite 
number of Seeley's coefficients) between the finite part of the 
z power of the operator for z = - 1, and this Green's func
tion. For that reason, we restricted fermions to be confined 
to a half-plane, a simple situation for which we have derived 
G in previous work, exactly in the Abelian case and in a 
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multiple reflection expansion in the non-Abelian one. 
In this way, by evaluating the relevant Seeley's coeffi

cients, we have obtained for the logarithm of the fermionic 
determinant, a Wess-Zumino-Witten-like functional in 0. 
(up to the volume integral of a total divergence), plus a 
complicated nonlocal term, depending only on the values 
taken by the background field at the boundary. We have 
established, in the framework of this regularization, that this 
last term (which vanishes for static configurations of the 
background field) can in general be related to the determi
nant of the free Dirac operator with chiral bag boundary 
conditions [Eqs. (68)-(70)]. This allowed us to give a sim
ple interpretation to our result, confirming the suggestion 
made in previous work: by chirally changing both the differ
ential operator and boundary conditions, the logarithm of 
the quotient of determinants turns out to be the volume inte
gral over 0. of the same density as in the boundaryless case, 
up to a total divergence. From the path integral point of 
view, this amounts to saying that, by means of the present 
regularization scheme, the Jacobian due to the noninvat
iance of the measure under a chiraI change offermionic vari
ables is given by a Wess-Zumino-Witten-like functional (up 
to the integral of a total divergence), with no additional 
boundary contributions. 

The relevance of this results in modeling a Cheshire cat 
behavior has already been discussed in Refs. 5 and 6, and we 
will not go over to those arguments here. 

Our result in the Appendix was established for arbitrary 
dimension of the space-time (and order of the differential 
operator), so this method could be directly applied to a more 
realistic four dimensional case, although that would require 
(an approximation to) the Green's function of the problem. 
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APPENDIX 

In order to deduce an expression for the finite part of the 
kernel of the operator DB for z = - 1, we must remark on 
the following properties of such a kerneF: 

For Re(z) < 0, it can be developed as 

with C _ '" _j and D _ '" _ j defined as in Eqs. (15) and (16). 
Moreover, 
(i) For Re(z) < - 1 + 11m, R(x,y;Z) is a continuous 

function of its arguments, even at the boundary an of the 
manifold n. 
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(ii) C -w-j (x,s;z) is a homogeneous function of S of 
degree (o)z - j), for Is 1>1. 

1 
= G(xil ,O'YII ,0) --

(21T) v 
(iii) D _ w_j(xil ,O,SII ,O;Z) is a homogeneous function of 

S II of degree (o)z - j + 1), for Is III > 1. (Observe that it is so 
only at an.) 

Then, we have 
X viw [r dVs C _w_j(XIl ,0,s;Z = _ l)eiSIl (X-Y)U 

j=O JR' 

R(xlI,O,xIl'O;z) =D~(xlI,O,xIl'O) __ 1_ 
(21T)V 

X :~~ [L. dVsC_w_j(xlI'O,s;z) 

- r d v-
I sliD _w_/xil ,O'SII'O;Z)] , JR"-1 

(A2) 

- r dV-1SII D_w_j(xlI,O'SII'O;Z= -I) )R'II-l 

xeiSU(X-Y)U] , 

where the Green's function is defined as 

DBG(x,y) = 8(x - y) , 

BG(x,y) = ° , for xEaO . 

(A3) 

(A4) 

and, for YII #xlI ' 
Because of the homogeneity properties of C _ W _ j and 

D _ W _ j' we can write, for O<j < v - 0): 

lim r dVs[C_w_j(xlI'O,s;Z= -1) -lsl-w-jC_W_j(xlI,O,s/lsl;z= _1)]eisu(X-Y)u 
Yu-xu JR' 

= r dVsC_w_j(xlI'O,s;z= -1) _ 1 . r dV-1sC_W_j(xlI'0,s;Z= -1) 
J Isl0 (- 0) - J + v) J isl = 1 

= lim r dVsC_w_j(xlI'O,s;Z) , 
z_ -1 JRV 

(AS) 

where the limit is taken from values ofRe(z) < - 1. 
A similar equation holds for D _ W _ j; 

= r dv-lsD_w_j(xlI,O'SII'O;Z= -I) - 1. r d v
-

2S
11 

D_w_/xlI,O,SII'O;Z= -1) 
Jlsul<1 (1 - 0) - J + v) J isul = 1 

= lim r dV-1SII D_w_j(xlI,O'SII'O;Z). 
z- -1 JR"-I 

(A6) 

'Forj = v - 0): 

lim r dVsC_v(xlI'O,s;Z= _1)/su(X-Y)u 
YU-xil JR' 

= r dVsC_v(XII'O,s;z= -1) + lim r dVsC_v(XII'O,s;z= _l)isu (X-Y)u 
Jlsl<1 Yu-xu Jlsl>1 

(A7) 

where the last term includes a (x-y) homogeneous function of degree zero and (possibly) a logarithmic term. (For a little 
more explicit expression, see Ref. S). 

On the other hand, 

An analogous analysis holds for the term involvingD_ v in (A2) and (A3). 
Finally, taking into account that 

lim R(x,y;z) = lim R(x,y;z = - 1) 
z_ -1 y-x 

[property (i)], we have 
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(A9) 
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z~ 1 {DB (xII ,O,yll ,0) 

I [_ I f dv-1SC_v(XII,0,S;-I)+ [ 1 V] f d V- 2S D_ v(XII,0,SIl,0;-I)]} 
(z + 1) [W(2'17Y] Jisl = 1 W(21T) Jlslll = 1 

_ 1 f dV-1S~C_v(XII,0,s;Z)lz=_1 + [ 1 V] f d V- 2SD_ v(xlI,0,SIl,0;z)lz=_1 
[W(21TV] Jisl = 1 dz W(21T) Jlsill = 1 

+1im {G(XII ,O'YII ,0) - V-i-
1 
~ [f dVSC_",_j(xlI,O,S/lsl; -l)lsl-",-jisll (.X-Y)1I 

y_x j= 0 (21T) JR V 

-i dv-1l:D .(x 01:111: 10'-1)11: 1-",-j+leiSIl(X-Y)II] 
~ - '" - J II"~ II ~ II ' , ~ II 

R v - I 

which is the required expression relating the finite part of the 
diagonal element of the kernel of D B for z = - I with the 
Green function of DB' 
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Generalized Luneburg canonical varieties and vector fields 
on quasicaustlcs 

s. Janeczko8 ).b) 
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Some aspects of a particular class of bifurcation varieties which are provided by simple and 
unimodal boundary singularities are studied. Their correspondence to diffraction theory is 
established. The generic caustics by diffraction on apertures are derived and their generating 
families for the corresponding Lagrangian varieties are calculated. It is proved that the 
quasicaustics associated to simple singularities are smooth hypersurfaces or Whitney's cross
caps. The procedure for calculating the modules of logarithmic vector fields is given, and the 
minimal sets of the corresponding generators are explicitly calculated. The general boundary 
singularities are constructed and the structure of quasi caustics defined by parabolic 
singularities is investigated. 

I. INTRODUCTION 

Let F: (en + I XCP,O) --+ (C,O) be a germ of a holomor
phic function. By (S, 0) C (Cn + 1,0) we denote a germ ofa 
some hypersurface in (en + 1,0). The quasicaustic Q(F) ofF 
is defined as 

Q(F) = {aECP; F(o, a) has a critical point on S}. 

Let F represent the distance function from the general wave 
front in the presence of an obstacle formed by an aperture 
(cf. Refs. I and 2) with boundary S. The corresponding qua
sicaustic Q(F) is build up from the rays orthogonal to the 
given wave front and touching the boundary of the aperture 
(see the example of the quasicaustic illustrated in Fig. 1). 
The quasicaustic is a subvariety of the usual caustic (also 
called the bifurcation set3.4) 

{aECP; F(-,a) or Flsxcp(-,a) haveacriticalpoint}, 

and represents the structure ofshadows formed by the com
mon, pecular positions of aperture and incident wave front. 

In this paper we investigate the structure of generic 
caustics and quasicaustics by diffraction on smooth obstacle 
curves and apertures (optical instruments). We use for this 
the classical phase space for general optical instruments, i.e., 
the space of pairs of rays (/,1), where I is an incident ray and 1 
is a transformed ray (produced by I and the optical instru
ment), endowed with the canonical symplectic structure. 
This space was first introduced by LuneburgS in his math
ematical theory of optics and then revived by Guillemin and 
Stemberg6 in their symplectic approach to various physical 
theories. To each optical instrument, in the mentioned phase 
space, there corresponds a Lagrangian subvariety, say A, de
fining all physical properties (from the point of view of the 
geometrical theory of optics7

) of the system. So when A is 
fixed we can obtain all transformed wave fronts by taking the 
symplectic images A (L) of all Lagrangian subvarieties L of 
incident rays (i.e., optical sources). (See, also, Ref. 8.) 

a) On leave of absence from Institute of Mathematics, Technical University 
of Warsaw. PI. Jednosci Robotniczej 1,00-661 Warszawa, Poland. 

b) This paper was partially written while the author was a SERe visitor to 
the Mathematics Institute, University of Warwick. 

The plan of the paper is as follows. In Sec. II we give 
preliminary results about the basic phase spaces and con
struct representative examples in the symplectic approach to 
general optical systems. The geometrical structure of caus
tics by diffraction on apertures, as well as their generic classi
fication in the case of half-line aperture on the plane and 
half-plane aperture in Euclidean three-space, is investigated 
in Sec. III. We compute the normal forms for generating 
families of the generic canonical varieties in the case of dif
fraction on smooth curves in Sec. IV. When considering the 
caustics by diffraction on apertures, the quasicaustic compo
nent becomes important. In Sec. V we generalize the meth
ods for ordinary caustics initiated by Bruce9

•
10 to investigate 

the structure oflogarithmic vector fields on quasicaustics. In 
Sec. VI we derive the generators for the modules of tangent 
vector fields to the quasicaustics corresponding to simple 

FIG. 1. Whitney's cross-cap quasicaustic. 

997 J. Math. Phys. 31 (4). April 1990 0022-2488/90/040997-13$03.00 © 1990 American Institute of Physics 997 



                                                                                                                                    

boundary singularities and prove that they are not free. Fin
ally in Sec. VI we analyze the structure of quasicaustics and 
the reduction of functional moduli in normal forms of La
grangian pairs. 

II. SINGULARITIES IN ACTION OF OPTICAL 

INSTRUMENTS 

Let (M, liJ) be the symplectic manifold of all oriented 
lines in V ~ R3. We look on Vas the configurational space of 
geometrical optics with refraction index n: V ...... R, n=l. 
Here (M, liJ) is given by the standard symplectic reduction 

11"M: H -1(0) ...... M~ T*S2, 

where the hypersurface H -I (0) is defined by the Hamilto
nian 

H: T*V ...... R, H(p,q): = !(IIPI1 2 
- 1), 

and 11" M is the projection along characteristics of the asso
ciated Hamiltonian system. 

Let (p,q) be coordinates on (T * V,liJ v), where liJ v is an 
associated Liouville two-form. By ( U,liJ) we denote the local 
chart on (M,liJ) described as an image 
11"M(H -I (0) n{P1 > O}) with restricted symplectic form liJ. 
The (p,q) form Darboux coordinates on (T * V,liJ v). In cor
responding Darboux coordinates (r,s) on (U,liJ) we can 
write 

(r,s) = 11"M(P2,P3;ql,q2,q3) 

_ (p p . q q1P2 q q1P3) - 2' 3, 2 - , 3 - , 

~1-p~ -p~ ~1-p~ -p~ 
where the unique reduced symplectic structure liJ is given by 
the formula 

2 

liJ V I H - '(0) = Trt-liJ, liJ I u = 2. dr; 1\ ds;. 
;=1 

In the introduced coordinates on M, to each point (r,s) 
e U we can uniquely associate the corresponding ray (in pa
rametric form): 

(ql,q2,q3) 

= (0,SI,s2) + U(I, r 1 
, 

~1-rf-~ 
ueft. 

By the above formula one can translate the concrete optical 
problems into the language of the phase space (M,liJ) and 
vice versa (cf. Refs. 5, 6, and 11). 

Let (U,liJ) and (U,w) be two examples of the symplectic 
space of optical rays or its open subsets. Usually these mani
folds denote the spaces of incident and transformed rays of 
an optical instrument. 

Definition 2.1: The phase space of optical instruments is 
the following product symplectic manifold: 

n = (U X U; 1T'f(J - trTliJ), 

where 11"1.2: U X U ...... U,U are canonical projections (this was 
first introduced by Luneburg5

). 

The process of optical transformation (say, reflection, 
refraction, or diffraction, etc., of the incident rays) is gov
erned by the subvariety of n, which is Lagrangian, i.e., it is 
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stratified onto isotropic submanifolds of II where maximal 
strata are Lagrangian (cf. Refs. 8, 12, and 13). 

Definition 2.2: We define the general optical instrument 
to be a Lagrangian subvariety of H (generalized symplectic 
relation8•

14
). 

Remark 2.3: It is easily seen that reflecting or refracting 
optical instruments (cf. Ref. 15) correspond to graphs of 
symplectomorphisms between (U;liJ) and (U,(J). But, for 
example, the diffraction process is described by a quite gen
eral Lagrangian subvariety of n (cf. Ref. 1 j. In fact, let 
(a,b,x,y,u,v,w) ...... F(a,b,x,y,u,v,w) be the optical distance 
function (cf. Refs. 2 and 16) from the wave front 

{z = tp(x,y) = A, IX
2 + A,2XY + A,3Y2 + 03(X,y)} 

in the presence of the aperture {a;o.O, z = mb - t}, where 
m;o.O. If the incident ray goes from (x,y) = (0,0) to (a,b) 
= (0,0), then the transformed rays from (a,b) = (0,0) to 
(u,v,w) are given by 

aF 
ab (O,u,v,w) = 0, 

F( b,x,y,u,v,w): = F( O,b,x,y,u,v,w) , 

which, for the distance function 

F = [(x - a)2 + (y - b)2 + (tp(x,y) - mb + 1)2J 1/2 

+ «u - a)2 + (v - b)2 + (w - mb + 1 )2)1/2, 

reads 

m2u2 + v2(m2 - 1) - 2mv(1 + w) = 0 

and 

v + m(1 + w)..;;O. 

These conditions define the half-cone of diffracted rays (see 
Refs. 1 and 7). 

Example 2.4: Reflection from the curve: Let the mirror 
be defined by {ql = O}. Let (U,liJ), the space of incident 
rays, be defined as 11"M (H -I (0) n (PI > O}) and the corre
sponding space of reflected rays be defined as U = 11"M 
(H -I (0) n (PI < O}). Then this reflecting optical instrument 
is equivalent to the Lagrangian subvariety of n, 

n:::>{«r,s),(r,s»eU X U; r = r, s = s} = :A, 

and its corresponding generating family (cf. Refs. 17-19) 

G(A"S,s) = A.(s - s), 

where A,eR, is a Morse parameter. 
In our approach the sources of radiation produce rays in 

the space denoted by (U,liJ). Thus we have the following 
definition. 

Definition 2.5: We define the general source of light as a 
Lagrangian subvariety L C ( U,liJ) of the space of incident 
rays. If A C n is an optical instrument, then the trans
formed system of rays [or equivalently the transformed 
wave front (cf. Ref. 18) J is a symplectic image L' of L by 
means of A, i.e., 

L': =A(L): = {fieU; there exists pEL 

such that (p,P)eA}, 

which is usually a Lagrangian subvariety of ( U,w) (cf. Ref. 
8). 

Example 2.6: Reflection ofa parallel beam of rays: The 
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beam of parallel rays is given in (U,m) by L = {r = O} (a 
point source oflight at infinity). By reflection in the mirror, 
x ..... (tp(x),x)ER2,tp(0) = tp '(0) = O,tp "(0) :;60, thecanoni
cal variety A C II (defining the reflection process) brings 
into L some focusing property and produces the well known 
caustic. The reflected beam of rays A (L) has the form 

( 
__ )_( 2tp'(x) tp(X)tp'(X)(1+tp'(X)2)2) 
r,s - ,x - . 

tp'(x)2+1 tp'(x)2-1 

Remark 2.7: Local genericity of the wave front pro
duced by L C ( U,m) is preserved during the process of reflec
tion or refraction (cf. Ref. 15) because the corresponding 
canonical variety is a graph of symplectomorphism. Thus 
the caustics, produced by reflection or refraction, are classi
fied by the simple singularities of type A k , D k , E k •

20 It may 
not be so in a diffraction process, where A C II is no longer 
the graph of symplectomorphism. In this case the differen
tiable structure of L is drastically changed by A and A (L) is 
no longer smooth. Its singular locus brings a completely new 
type of caustic responsible for the structure of shadows and 
half-shadows of an obstacle as well. 

III. CAUSTICS AND QUASICAUSTICS BY DIFFRACTION 

Let L be a source of light or transformed wave front in 
(M,m). Now we recall the geometric construction that al
lows us to define caustic or wave front evolution in V, corre
sponding to L (cf. Refs. 12 and 13). Let E be the product 
symplectic manifold 

E = (M X T* v,n1mv - tr1'm), 
where 1TI 2: M X T* V ..... M, T* V are the canonical projec
tions. On~ can check that K: = graph 1TM CE is a Lagran
gian submanifold of E. Thus there exists its local generating 
Morse family (cf. Ref. 17), say, 

K: Rk xX XV ..... R (p"x,q) ..... K(p"x,q), 

where T * X is an appropriate local cotangent bundle struc
ture (special symplectic structure,12-14 on (M,m). The 
transformed system of rays forms a Lagrangian subvariety of 
( T * V,m v) given as an image 

I= (KoA)(L)C(T*V,mv), 

where Ko ACE is a composition of symplectic relations (cf. 
Refs. 12 and 17). If 

G: RI xX XX ..... R, (v,x,x) ..... G(v,x,x), x,x~Rn, 

is a generating family for ACII and F: Rm XX ..... R, 
(A.,x) ..... F(A.,x) is a generating family for L, then the trans
formed Lagrangian subvariety I C ( T * V,m v) is generated 
by (not necessarily a Morse family) 

F: Rk+ 1+ m + 2nX V -R, 

F(A.,v,p"x,x;q): = G( v,x,x) + K(p"x,q) + F(A.,x) , 

where Rk + 1 + m + 2n is a parameter space. 
In optical arrangements the source of light is usually a 

smooth Lagrangian submanifold of (U,m). Only after the 
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transformation process through an optical instrument does 
it become singular. 

Definition 3. J: Let L C ( U,m) be an initial source var
iety. We define the caustic by an optical instrument A C II, to 
be a hypersurface of V formed by two components: (1) sin
~ar ~alues of 1Tv ll- Sin&t; and (2) 1Tv (Sing I); where 
L = (KoA) (L) and Sing L denotes the singular locus of L. 

Remark 3.2: In reflection or refraction we do not go 
beyond the smooth category of L (at least in this paper) so 
the associate caustics, in transformed wave fronts I, are 
those realizable by smooth generic sources (cf. Refs. 15 and 
21). Thus in what follows we will be interested in caustics 
caused by diffraction, which will enrich substantially the list 
of optical events (cf. Ref. 22) and complete the correspon
dence between singularities of functions and groups genera
ted by reflections. 16.23 

Diffracted rays are produced, for example, when an in
cident ray hits an edge of an impenetrable screen [i.e., an 
edge of a boundary or interface (cf. Ref. 1) ]. In this case the 
incident ray produces infinitely many diffracted rays, which 
have the same angle with the edge as does the incident ray 
(see Remark 2.3.) This is so if both incident and diffracted 
rays lie in the same medium. Otherwise, the angles between 
the two rays and the plane normal to the edge are related by 
Snells law. 7 Furthermore, the diffracted ray lies on the oppo
site side of the normal plane from the incident ray; that is, all 
rules and laws of geometrical optics correspond exactly to 
the Lagrangian properties of the corresponding varieties 
ACII. 

Let / be the diagonal in II. By n we denote the set of 
oriented lines in ( U,m) that do not intersect the screen. Thus 
we have the following proposition. 

Proposition 3.3: In the edge diffraction in an arbitrary 
Euclidean space, the canonical variety A C II has two com
ponents 

where AI = nXnC/ and AD is a pure diffraction of rays 
passing through the edge of an aperture, defined in Remark 
2.3. 

Corollary 3.4: Let L C ( U,m) be an incident system of 
rays. Then the edge diffracted system of rays, 

I = (KoA)(L), 

is a regular intersection (cf. Ref. 24) of two smooth compo
nents: II = (KOA I

) (L) and I2 = (KOA D
) (L), i.e., 

I = LI uI2, dim II nI2 = dim II - 1, 

Tx <IlnI2 ) = Tx I lnTx I 2• 

Thus we see that the caustic caused by the edge diffrac
tion has three components: (1) the caustic of I I' which is a 
part of the caustic in incident wave front L; (2) the caustic, 
purely by diffraction on the edge, i.e., the caustic of I 2; and 
(3) the image 1Tv <II nI2) of the rays passing exactly 
through an edge. 

Definition 3.5: The set 1Tv <II nI2 ) C V is called the 
quasicaustic by diffraction on aperture. The rays belonging 
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to the quasicaustic that are contained in the aperture plane 
we will call the rays at infinity. 

Usually the quasicaustics describe the structure of sha
dows and half-shadows in configurational space V (see Fig. 
1). 

Proposition J.6: (1) Generic caustics by diffraction on 
the half-line aperture on the plane are diffeomorphic to the 
A2, A3, B2 et.C2, B3 boundary caustics. Normal forms for 
their generating families as images A (L) [or pairs (A,L) in 
general position] are the following: 

A2: - jA. 3 + A(q2 - a) - !qlA 2, a> 0, and A: = {ql = 0, q2<0}; 

A3: -!A 4 + A(q2 - a) - ~q1A2' a> 0, and A: = {ql = 0, q2<Oh 

B2: -!A. 2 + q~ - !qlA: 2, {A>O}, and A: = {ql = 0, q2<0}; 

B3: - jA. 3 - !qlA 2 + A(q2 - qla), {A>O}, and A: = {ql = 2a, q2<2a2}, a> 0; 

where A is a Morse parameter and a is the moduli of the 
common position. 

(2) In generic one-parameter families of caustics by dif
fraction on the half-line aperture, which do not pass through 
infinity, the only possible configurations are those described 
in metamorphoses of optical caustics (see Ref. 21, p. 113, 
and Ref. 25) and the additional cases illustrated in Fig. 2. 

Proof It is easily seen that K = graph 1T M C E: is genera
ted locally by 

K(r,ql,q2) = q2r - !qlr. 

The only stable systems of rays K(L) C (T*V,fU v ) are gen
erated in (M,fU) by L: = {(r,s); s = - (aF lar)(r)}, 
where 

(0) 

-
aperture 

(b) 

-
aperlure 

c, m 
71} - I.~,~ 

(l=t) 

[r, 

A. 
aperture 

/ 
I 

D.1·sccl ion 

aperture 

Il, D, + .oi, D3 +A, (d) 7fT 
~,,=" .,.,"" 

Dperturc 

il, + A, il, 

:'pl'rtnrc 

FIG. 2. Transformations of caustics in the presence of aperture. 
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AI: FI(r) = - !r, 

A2 : F2(r) = - !r3, 
A3: F3 (r) = - !r4 (cf. Refs. 18 and 21). 

Let the aperture be defined in its normal form by 
ql = 0, q2<0 (soA C II). Thus we have the boundary singu
larities (cf. Ref. 26) A (L) defined in CM,@) by the following 
generating functions: 

AI: FlU') = -!rz, {r>O}; 

A2: F2 (r) = - !P, i'ER; 

A3: F3(r) = - !r', {r;>O}. 

TakingA; in the general position with respect toA we obtain 
part (I) of Proposition 3.6. Part (2) follows by checking all 
the possible one-parameter evolutions (where the quasicaus
tic is not passing through infinity) of the stable caustic on the 
plane and in the presence of the half-line aperture. Two pos
sible directions of intersection of the A2 caustic by an edge of 
the aperture give us the cases (a) and (b) in Fig. 2. The 
evolution of an edge of the aperture passing through the ray 
tangent to the cusp caustic A3 is illustrated in Fig. 2(c). 
Finally an evolution through the intersection point of the 
A2 + A2 caustic gives us the case of Fig. 2(d). This com
pletes the proof of Proposition 3.6. 0 

Looking at the position of the quasicaustic in the diffrac
tion problem with a half-plane aperture in R3 we can elimi
nate the C4-boundary caustic. Thus we have the following 
proposition. 

Proposition 3. 7: Generic caustics by diffraction on the 
half-plane aperture in R3 are diffeomorphic to theA2' A3, A4 , 

B 2, B 3, B4 , F4 boundary caustics. 
Remark 3.8: (1) For the general linear hyperbolic sys

tem of first order (cf. Ref. 7), 

3 au 
Yu = U t + LA Y-- + Bu = 0, 

Y= 1 ax y 

where u represents, say, in the case of crystal optics, the pair 
of vectors (E,H), and Yu = 0 corresponds to Maxwell's 
equations. In the geometrical optics approximation, we ob
tain another characteristic equation (eikonal equation) 

det(ct>t + ± A v act> ) = 0, 
v= 1 axv 

for the phase function ct>(x,t); u_eiw4>(x,t)ao(x,t). In this 
case the conical refraction in crystal optics is an example of a 
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Lagrangian variety quite generally situated in the associated 
phase space (cf. Refs. 6 and 7). 

(2) In the edge diffraction on system of apertures (men
tioned in Ref. 1) the singularities of the distance function are 
classified by the singularities on the many-dimensional 
comers.27 In very constrained systems of apertures the clas
sification is obtained using the methods of the theory of sin
gularities of functions on singular varieties (cf. Refs. 9 and 
16). 

( 3) The generic quasicaustic in the edge diffraction in 
R3

, corresponding to the F4 singularity of the distance func
tion (cf. Ref. 25), is realized geometrically (see Fig. 1) when 
the curve of rays passing through the edge on the incident 
wave front is tangent to a constant curvature line on the 
wave front. This situation is generic (cf. Ref. 21). 

IV. DIFFRACTION ON SMOOTH OBSTACLES 

Now we can apply an introduced symplectic framework 
to describe the diffraction on smooth closed surfaces in R3. 
The problem is connected to the Riemannian obstacle prob
lem (cf. Ref. 28), i.e., determination of geodesics on a Rie
mannian manifold with smooth boundary. Any geodesic on 
such a manifold is C 1 and consists of generically finitely 
many so-called switchpoints, where the geodesic has an ini
tial or end point according to whether it lies in the interior 
part of the manifold or on the boundary. Cauchy uniqueness 
for manifolds with a boundary states that every boundary 
point (point of an obstacle) has a neighborhood in which, if 
two geodesic segments with the same initial point, initial 
tangent vector, and length do not coincide, then one of them 
has its right end point in the interior part of the manifold and 
is an involute of the other (in the planar case it lies on an 
appropriate involute of the obstacle curve). A geodesic r' 
that has the same initial point, initial tangent vector, and 
length as r is called an involute of a geodesic r. The reformu
lation of the above obstacle problem in terms of geometrical 
optics of diffraction needs a definition of a surface diffracted 
ray. A surface diffracted ray is produced when a ray is inci
dent tangentially on a smooth boundary or interface. It is a 
geodesic on the surface in the metric nds, where n is the 
refractive index of the medium on the side of the surface 
containing the incident ray. At every point it sheds a diffract
ed ray along its tangent (cf. Refs. 1 and 22). A surface dif
fracted ray is also produced on the second side of an interface 
by a ray incident from the first side at the critical angle [arc
sin (n l /n2 )]. In this case at every point it sheds rays back 
toward the first side at the critical angle. However, in what 
follows we will neglect these rays. 

Let us consider an open subset S of an obstacle surface in 
R3. Let II be the initial tangent line to the geodesic segment r 
on S, and let 12 be a tangent line to S. We say that 12 is subordi
nate to II with respect to an obstacle S if 12 [or its piece in 
(R3,S)] belongs to the geodesic segment with the same ini
tial point and the same tangent vector as r has. By simple 
checking we have the following (cf. Ref. 18). 

Proposition 4.1: Let r be a geodesic flow on S. Then the 
set 
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A = {(t,i)en; 1 is subordinate to I 

with respect to S and geodesic flow r} 

is a Lagrangian subvariety of n defining the diffraction pro
cess on an obstacle S. 

Now we look for the generic pairs (A,L). At first we 
consider the planar case. 

Proposition 4.2: For the generic obstacle curve on the 
plane the only possible canonical varieties A en have the 
following normal forms of generating families (or func
tions): 

A2:G(r,1') = -~(r+r), (obstaclecurveq2= -tit), 

H3: G(A I.A2,r,1') = -to (A ~ + A ~ ) - rA ~ - 1'A ~ 

+ !rA I + !rA2, 

( obstacle curve q2 = q~ ), 

A2,2: G(r,1') = !(rlrl + 1'11'1), (double tangent). 

Proof' Let us take the noninflection point of the generic 
curve. Parametrically the curve is given as 
(ql,q2) = (v, - v2), veR, and the corresponding family of 
tangent lines corresponding to the given incident ray has the 
form 

(qt>q2) = (O,v2
) + u( 1, - 2v), ueR. 

By identification 

s = v2
, r = 4v/(l + 4v2

), 

s = iP, l' = 4v/(l + 4v2
), 

where (v,v) eR2 parametrize the variety A, we obtain the 
case A2 that corresponds to the Cartesian product of two 
ordinary folds. Taking the inflection point for an obstacle 
curve, we obtain, in the same way, the following parametri
zation for A C n: 

After straightforward calculations we obtain the generating 
family for it, denoted by H3 • Analogously we obtain the A 2,2 
case. 0 

Corollary 4.3: For (A,L) in the general position we have 
the possible stable images A (L) C (M,w), 

A2 : FI (1-) = - ~r, 

H3: F2 (A,1') = foA. 5 - 1'A 3 + !rA, 

A2,2: F3 (1') = WI1', 

and the generating families for their corresponding configu
rational images, 

K(A2): FI (A,ql,q2) = - M 3 + qzA - !qlA 2, 

K(H3 ): F2(A I,A2,QI,Q2) = M ~ - AzA ~ + yt iAI 

+ QzA2 - !qlll.~, 

K(A2.2 ): F3 (Il.,QI,Q2) = yt Ill. 1+ qzA - !QIA 2 

[see Figs. 3(a)-3(c) and also the figures in Ref. 22]. 
Proof' In the general position of A and L, only one point 
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(s) (b) 

(e) 

FIG. 3. Canonical varieties for the generic obstacle curve on the plane. 

of L is tangent to an obstacle curve in the neighborhood of 
the considered point of this curve. Hence in the calculation 
of (KoA) (L) in all the cases (A2, H3 , and A 2,2) it is neces
sary to put r = const in generating families of Proposition 
~2 0 

Remark 4.4: (A) The first, most important, results in 
obstacle geometry and its correspondence to the structure of 
singular orbits of H3 and H4 group actions were discovered 
by Shcherbak. 16 The aim of the present paper is to show how 
singular wave front evolutions appear in the general setting 
of the mathematical theory of optics (cf. Refs. 5, 6, and 18) 
and to complete the investigations of the caustics and quasi
caustics that appear there. As we see, the planar obstacle 
problem is connected to the studies of tangent developables. 
More degenerated singUlarities there can be described using 
the blowing-up construction (cf. Ref. 29). 

(B) The K (A 2,2 ) singularity appeared as an adjacent to 
the higher singular one (see Fig. 4) in a generic one-param
eter family of obstacles 

i.e., 

q2 = - !qt + !aqi - !a2, aeR+, 

r = - 2avE - 3E.JaV; + (4a3 
- 1 )v; + O(v!), 

s = 2Ea3/2vE + 4av; + 3E.JaV; + aV!, 

E = ± 1, v+>O, v_<O. 

( C) We can see that by choosing the special symplectic 

FIG. 4. The higher-order singUlarity of a canonical variety. 
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structure fibered over (PI.h) in the H3 case, we can investi
gate only a cuspidal edge of A (L). In fact, with its generating 
family 

Fi (A,p"p) = F2(A,p.) - PIP) - p,p2' 

after reduction of the 1'), 1'2' and A2 parameters, we obtain 
the generating family for the H2 singularity, 

Fi (A,p) = M 5 - pzl 3 + Y'iA, 
and its level sets (wave fronts) as in Table 2 of Ref. 16. This 
observation is connected with the much more general feature 
of obstacle singular wave front evolutions; namely, all singu
larities in obstacle geometry as indicated in Table 2 of Ref. 16 
are generated by the generalized open swallowtails [in 
(M,w) space] with generating family (see Ref. 8, p. 106) 

14 ( k+ I )2 A2(k+ I): Xk+ 1+ .I Si_IXk_i+ I dx. 
o 1=2 

The.3, (/> 1), fl., (/>2) (cf. Ref. 16) singular wave front 
evolutions are reconstructed from A2(k + I) singularities by 
specifying appropriate common generic positions of A C n 
andA2 (k+ 1) C (M,w). 

V. VECTOR FIELDS ON CAUSTICS AND 
QUASICAUSTICS 

As we can see from the preceding sections, caustics in 
the wave front evolution, or in a diffracted wave front on the 
aperture, are defined as bifurcation sets for the correspond
ing generating family (Morse family2.17) off unctions or the 
family of functions on the manifold with boundary, respec
tively (cf. Refs. 20 and 26). To investigate the structure of 
these sets and modules of tangent vector fields on them, in 
what follows we shall consider the real analytic or holomor
phic functions (germs). For the ordinary caustics, defined 
as the critical values of the Lagrange projections (cf. Ref. 
20) from the Lagrangian submanifolds, which are not neces
sarily fibered by optical rays, the procedure is the follow
ing.3•4 

Let f (Cn ,0) .... (C,O) be a holomorphic function of fi
nite codimension, i.e., the dimension of the quotient 
& (x) I J(j) as a complex vector space is finite, where & (x) 

denotes the ring of hoi om orphic functions h: (Cn ,0) .... ( C,O) 
and J(j) is the ideal in & (x) generated by the partial deriva
tives 8f 18xl ,· .. ,8f 18xn • Let vii (x) denote the maximal ideal 
in & (x)' Ifgw .. ,gp is a basis for vii (xJJ(j) , then 

F: (CnxO,O) --+ (C,O), 
p 

F(x,a) =f(x) + Iaigi(X) 
;=1 

is a miniversal unfolding off (cf. Ref. 30). 
The caustic of F [or bifurcation set of F (see Refs. 4 and 

9)] is the following set (germ): 

B(F) = {aeCP; Fa has a degenerate critical point}. 

The set of critical values of 1T: (:IF,O) .... (0,0) (1T is a ca
nonical projection on the second factor), where 

I.F= {(x,a)ecnxo; 8F = '" = aF = oJ, 
aXI 8xn 

is the caustic. It appears to be important to know the mod-
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ules of tangent vector fields to caustics (as well as to wave 
fronts,9,20,31 which is easier). They are useful in the reduc
tion offunctional moduli in the classification of generic sym
metric and nonsymmetric Lagrangian submanifolds (cf. 
Ref. 20, p. 344, and Ref. 32). We recall some necessary defi
nitions from Refs. 3 and 33. The set of germs of hoi om orphic 
vector fields on CP, at 0, tangent to the nonsingular part of 
B(F), is called the set oflogarithmic vector fields of B(F) at 
O. It is denoted also by Derlog B(F). In Refs. 4, 9, and 10 
(see, also, Refs. 31 and 33) a general method for computing 
these vector fields was given. It was shown that A k singulari
ties are the only ones whose module of tangent vector fields 
toB(F) is free (i.e., caustic is a freedivisor33 ). Applying the 
method used in these papers we investigate the modules of 
vector fields tangent to the quasicaustics in diffraction on 
apertures (this is a first step in the investigation of the struc
ture of caustics by diffraction) . 

Let tJ (y,xl denote the ring of holomorphic functions h: 
(Cxcn,O) ..... (C,O). The hypersurface S={y=O} corre
sponds to the boundary of an aperture. Following the gen
eral scheme used in Ref, 20 for boundary singularities, we 
shall consider holomorphic functions! (CXCn,O) ..... (C,O) 
of finite codimension, i.e., 

dime tJ (y,x) / /l. (j) < 00, 

where 

/l.(j) = Iy af, W, ... , aj ) 
\ ay aX I aXn 

denotes the ideal in tJ y,x generated by the partial derivatives 
aj/axl, ... ,aj/axn and yaj/ay (cf. Refs. 20 and 34). Let 
go, ... ,gl' _ 1 form a basis for tJ (y,xJ /l. (j) with go = 1 and 
g;E..ff (y,x) • Then the miniversal deformation, in the category 
of deformations of functions on the manifold with a bound
ary, as a Morse family for the corresponding diffracted La
grangian variety (cf. Refs. l3 and 24) is defined as follows: 

1'-1 

F(y,x,a) =j(y,x) + L a;g;(y,x). 
i=l 

Proposition 5,1: The caustic (or bifurcation set) from 
diffraction on the aperture, having the generating family 
F: (C X cn X C P,O) ..... (C,O) (p is not necessarily minimal) of 
functions on the manifold with boundary (extended edge) 
has three components 

(1) B 1 (F) = {aEC P; F('" ,a) has a degenerate 

critical point}, 

(2) B2 (F) = {aEC P; F( 0, ,a) has a degenerate 

critical point}, 

(3) Q(F) = (aECP; F('"a) has a critical 

point onS= {y = O}}. 

Proof: By Corollary 3.4, we have the three isotropic sub
manifolds defining the system of diffracted rays II' I 2, and 
II nI2. It is easily seen that in terms. of the generating fam-
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iIy/distance function F, the corresponding caustics can be 
written in forms (1 )-(3) of Proposition 5.1. 0 

The set (germ) 

(l:, F,O) = ({ (x,a)ECnxC p
; 

- -- - ... _- -0 0 aF I aF I aF I } ) 
iJy .xC' - aXI .xC' - - aXn .xcP - , 

is called the restricted critical set. 
Using the Splitting Lemma30 and the versality property 

of F, we have the following proposition. 
Proposition 5.2: (A) The restricted critical set (l:, F,O) 

is the germ of a smooth manifold of dimension p - 1. 
(B) The quasicaustic of F, (Q(F) ,0), is an image of 

(l:, F,O) by the natural projection 1T: l:, F,O ..... C P,O to the 
second factor, 

The set of logarithmic vector fields of Q(F) at 0 is de
fined (cf. Refs. 3 and 33) to be the set of germs of hoI om or
phic vector fields on C Pat 0, tangent to the nonsingular part 
of Q(F); it is an tJ (a) module. 

Proposition 5.3: Let SEDerlog Q(F), then it is 1T liftable, 
i.e., for some germ of a vector field 't, on Cn X C P, tangent to 
l:, Fat 0, we have 

S01T = d1TO't. 
Proof: S lifts uniquely by 1T at every point aEC P 

- r( 1T1l:,F)' Hence S lifts to a holomorphic vector field 'tl 
on cn X C P, tangent to l:, F and defined off a set of codimen
sion 2 in Cn X C p. By Hartog's theorem, 't 1 extends to a holo
morphic vector field 't tangent to l:, F. 

Now using the 1T-Iowerable vector fields 't tangent to 
l:, F we will construct the module Derlog Q(F). Let Fbe as 
above. We define the ideal 

( 
JF aF) l(F) = tP(x,a), - (x,a), ... , -- (x,a) tJ (x,a) , 

aXI aXn 

where tP and F are given by decomposition: 

Let 

F(y,x,a) = F(O,x,a) + ytP(x,a) + rg(y,x,a) , 

F(x,a): = F(O,x,a). 

- nap a s = L 13; - + L Y; -, 13i'Y;EtJ (x,a) , 
;=1 ax; ;=1 aa; 

be the germ of a vector field at OEcn X C P, tangent to l: ,F. 
Then we have 

and 

- (aF ) s ay (O,x,a) El(F) 

't (aF (o,x,a»)El(F), 
ax; 

For our 
1'-1 

i= 1, ... ,n. 

F(y,x,a) =j(y,x) + L a;g;(y,x), 
i=l 

we have 
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aj p-I ago 
"'Cx,a) =- CO,x) + I ai -' CO,x). 

ay i=1 ay 

So we need 

n a·l • p-I ao I L Pi -'" + L Yi _Oi El(F) 
i= 1 aXi i= 1 ay oxen 

and 

n atp 1<-1 ago 
L Pi--+ I Yi~(F), 1 <j<,n, 
i= 1 aXi aXj ;= 1 aXj 

where ;g(x): = g( O,x). Thus we obtain the following lemma. 
Lemma 5.4: 't is a lifting of 5'EDerlog QCF), 

p a 
5'= I ai(a)-, 

i=1 aa i 

if and only if, for somePiE& (x.a) (i = 1, ... ,n), we have 

C 5.1) 

We have chosen the normal form for F in such a way 
that the variables al<, ... ,ap (P>fl - 1) do not appear in F. 
Now, following the general scheme used in Refs. 3 and 10 for 
ordinary bifurcation sets, we can propose a procedure for 
constructing the tangent vector fields to quasicaustics. 

By the Preparation Theorem,20,30 the module 

& (y,x,a) /6. (F), 

where 

A(F) = y-,-, ... ,-- & (y.x,a) , - (aF aF aF) 
ay aXI aXn 

is a free & (a) module20 generated by 1,gl, ... ,gl<_I' So, for 
any hE& (y.x,a) , we can write 

aF 
h(y,x,a) = PCy,x,a)y - Cy,x,a) 

ay 

n aF + I Pi (y,x,a) - (y,x,a) 
;=1 ax; 

p-I 

+ I aj(a)gj(y,x) + aCa), (5.2) 
j=1 

for some P iE& (y,x.a) , ajE& (a) , aE& (a) . 
By straightforward checking we obtain the following 

proposition, 
Proposition 5.5: Let hE& (y,x,a) satisfy 

!!!...I El(F),!!!...1 El(F) , i= 1,.,.,n. 
ay oxe"xe P aXi oxe"xeP 

Then the vector field 

p a 
5'=Iai -, 

;=1 aa i 

where ai' i = 1, ... , fl - 1, are defined in (5.2) and ai' 
i = fl, ... ,P, are arbitrary holomorphic functions from & (a) , is 
tangent to the quasicaustic QCF) = 1T(~rF). Conversely, 
suppose 
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p a 
5= I ai -

i=1 aa i 

is tangent to Q(F). Then there is some hE& (y,x,a) as above 
with 

and 

!!!...I ElCF),!!!...1 El(F). 0 
aXi oxe"xcp ay oxe"xe P 

We see that the set of all such h with (ah lay) IsEl(F) , 
(ah laxi ) IsEl(F) , 1 <,i<,n, forman tJ (a) module: in fact, it is 
the kernel ofthe tJ (a) module homomorphism, 

<1>: & (y,x,a) 3 h -+ ( ah , !!!..., ... , ~) 
ay aXl aXn 

E (y,x.a) 
( 

tJ )n+1 
1(F) + (y)vR(y,x,a) . 

Here, KCF) CI(F) + (y)vR (y,x,a) and clearly the set of tan
gent vector fields to QCF) is a finitely generated tJ (a) mod
ule. We denote s = & X Cn X Cp 

• 

VI. QUASICAUSTICS OF SIMPLE AND UNIMODAL 
BOUNDARY SINGULARITIES 

The simple singularities of functions on the boundary 
{y = O} of a manifold with a boundary were classified in Ref. 
20, p. 281. Their miniversal unfoldings are 

p-I A> ±y ± x 1<+ 1 + I aixi, fl>l; 
;=1 

1<-1 

BI<: ±yl< ± X2 + L ai yl<-i, fl>2; 
i=\ 

p-\ 

CI<: yx±x P + L aix P
-

i, fl>2; 
i=\ 

p-2 

Dp: ±y + XiX2 ± x ~-I + I aiX~ + al<_lx\, fl>4; 
i=1 

E6: ±y + xt ± xi + a1x\ + a2x 2 + a3x~ 
+ a4x\x2 + a5xlx~; 

E7: ± y + xt + XIX~ + a1x1 + azX2 + a3x~ + a4x 1x 2 

+a5x~ + a~i; 
Es: ±y + x~ + X~ + a\x\ + azX2 + a3x~ + a4x\x2 + a5X~ 

+ a~lx~ + a7x 1xL 

F4 : ±y2 + X3 + a2y + a3x + a\xy. 

Thus we have, after direct checking, the following proposi
tion. 

Proposition 6.1: The quasicaustics for simple boundary 
singularities are 

AJl' Dp , Ek : QCF) = 0, 

Bp: Q(F) = {aEC I< - I; a,.. _ \ = O}, 

C,..: Q(F) = {aEC 1<-\; a,.._\ = O}, 

F4 : Q(F) = {aEC3; a~ + ~aia3 = O} 

(i.e., Whitney's cross-cap, see Fig. 1). 
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Thus we need to calculate only the module of vector 
fields tangent to Q( F4 ). Let us define the germ, at zero, of the 
variety X: = Q(F4 ) U{a l = a}. We see that the vector fields 
tangent to (X,O) lie in Derlog Q(F4 ). 

Proposition 6.2: The vector fields 

VI = -l..at ~+a2~' 
6 aa2 aa3 
a a 

V2=al -+a2-, 
aal aa2 
1 a 2 a 

V3= --al -+a3--
3 aa l 3 aa3 

form a free basis for the & (a) module Derlog X. 
Before we prove this theorem we need the following 

proposition. 
Proposition 6.3: For corank-2 boundary singularities F: 

(CX Cx CP,O) --+ (C,O), the space offunctions hE& (y.x.a) re
constructin.g the & (a) module of vector fields tangent to the 
quasicaustic Q(F) has the form 

lX(aF 
h(y,x,a) = - (O,s,a) "'I (s,a) 

o ay 

+ - (0,s,a),p2(s,a) ds + rs(y,x,a) , aF ) 
ax 

where ,piEd (x,a) (i = 1,2), sEd (y,x,a)' 
Proof Every function hE& (y.x,a) can be written in the 

form 

h(y,x,a) = 7J2(x,a) + Y7JI(x,a) + r7J(y,x,a), 

and thus 

ah ah a7J2 
- (O,x,a) = 7JI(x,a), -. (O,x,a) =- (x,a). 
ay ax ax 

By Proposition 5.5, we can take 

7J. (x,a)El(F) and 7J2(x,a) = J: g(s,a)ds, gEl(F), 

obtaining all functions 

7J2(x,a) + Y7JI (x,a) + r7J(v,x,a)(mod A(F»), 

defining the & (a) module of vector fields tangent to Q(F). 
Now we see that 

7J2(x,a) + Y7J. (x,a) + r7J(y,x,a) 

= 7J2(x,a) + y2s (y,x,a) ( mod(Y ~; ,y ~~)& (Y,x,a) ) , 

where SE& (y,x,a) ' Adding an element of (y)I(F) [I(F) is an 
ideal of tJ (y,x,a) generated by aF lay, aF laxl, ... ,aF laxn] 
does preserve the space of functions and does not affect the 
resulting vector field. 

Proof 0/ Proposition 6.2: 1(F4 ) = (a.x + a2,3x2 

+ a3 ) tJ (x,a)' By Proposition 6.3, taking "'.,"'2,5= 1, we 
have 

h.(x,a) =~alx2+a2x 

2 -= - ~a.y + a2x - ~ala3(mod a(F4 », 
h2(x,a) = y2 = - alxy - a2y(mod A(F4 », 

3 -h3(x,a) = x + xa3 = - ~alxy + ~a3x(mod a(F4 »). 
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Then the corresponding Vi belongs to Derlog Q(F4 ) 

(i = 1,2,3). By simple computation we obtain 

VI(a l ) = 0, V2(ad = - ai' V3(a.) = - ~al; 

Thus ViEDerlog X as well. We also have that 

det(VI (a), V2(a), V3(a») = - !a l (a~ + ja3at) 

is a reduced equation for (X,O); thus, by the results ofSait033 

(see, also, Ref. 3), we find that (X,O) is a free divisor. 0 
We define the following ideals of tJ (Y,x) and tJ (y,x,a) ' 

respectively: 

0(/) = (y)J(/) + (a/, ... , aj )2 tJ (y,X) 

ax. aXn 

and' 

0(F) = (y)J(F) + -, ... ,- tJ (y,x,a)' - - (aF aF)2 
ax. aXn 

For determining all fields tangent to the quasicaustic we 
need the following lemma. 

Lemma 6.4: The space &(y,xJ0(/) is finite dimen
sional. Its C basis also generates the quotient space 
& (y,x,a) le(F) as an & (a) module. 

Proof 0 ( /) ::J a ( /) and / is finitely determined as a 
boundary singularity. Thus & (y,xJ0(/) is C-finite dimen
sional with the basis {g1, ... ,gN}' Let us define the mapping 

'11: (CXCnXC P,O) --+ (CXcnXcn(n + 1)/2 X C P,O), 

\}I(y,x,a) = y- (y,x,a),y- (y,x,a), ... ,y-- (y,x,a), ( 
aF aF aF 

ay aX I aXn 

- (y,x,a) - (y,x,a),a , aF aF ) 
aXi aXj 

with l<i,j<n, i<j, and ordered set of pairs (i,j). Thus we 
have 

tJ (y,x,a) 1'11* (1 (y,x,a) ) tJ (y,x,a) 2!; tJ (y,x) 10( /) tJ (y,x) . 

By the Preparation Theorem,30 every element h of tJ (y,x,a) 
has the form 

N (aF aF 
h(y,x,a) = L t/Ji Y-:i:'" (y,x,a),y-a (y,x,a), ... , 

1= I v)' :Xl 

aF aF aF ) 
y-a (y,x,a)'-a. (y,x,a) -a . (y,x,a),a 

:Xn :X, :Xl 

Xgl (y,x) , 

Thus 

tJ (y,x,a) le(F) 2!; ttl ,pi (a)gi (y,X)}, "'iEtJ (a» 

which completes the proof of Lemma 6.4. 
Let {g., ... ,gN} be a Cbasis for tJ (y,xJ0(/). In general 

we have the following proposition. 
Proposition 6.5: Functions hEtJ (y,x,a)' which reconstruct 

the & (a) module of vector fields tangent to Q(F), can be 
written as 

N 

h(y,x,a) = L aj(a)gj(y,x), 
;=1 

where 
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Nag. L aj(a) -' (O,x)el(F), 
j=1 ay 
Nag. L aj(a) -' (O,x)eI(F), 

j=1 aXj 

1 <j<.n. 
Proof By Lemma 6.4, any he& (y,x,a) can be written as 

N aF 
h(y,x,a) = i~) aj(a)gj(y,x) + p(y,x,a)y ay (y,x,a) 

n aF + L Pj(y,x,a)y- (y,x,a) 
j=) aXj 

n aF aF + L Pk,/(y,x,a) -- (y,x,a) - (y,x,a), 
k,l= I aXk aXI 

where aje& (a)' P,/3j,/3k/e& (y,x,a)' By simply checking the 
assumption of Proposition 5.5, we see that the three last 
terms in the above formula do not affect on the resulting 
vector field belonging to Derlog Q(F). This proves Proposi
tion 6.5. 0 

Proposition 6.6: The &(0) module Derlog Q(F4 ), i.e., 
the module of holomorphic vector fields tangent to Whit
nery's cross-cap, is generated by the vector fields 

1 2 a a 
VI = --al -+a2-' 

6 aa2 aa3 
a a 

V2 =al -+a2 -, 
aal aa2 

1 a 2 a 
V3= --al-+-a3-, 

3 aal 3 aa3 

(6.1 ) 

a a 
V4 =a2---ala3-, 

aa l 3 aa2 

which satisfy the relation 

and 

alV4 - 2a3V) + 3a2V3 = O. 

Proof We have 

0( /) = (y2,x2y,X4
) & (y,x) 

& (y,x) 10(/) ~ [l,x, y,x2,x3,xy]c· 

By Proposition 6.5 all functions he& (y,x,a) leading to the 
construction of Derlog Q(F4 ) can be written in the form 

h(y,x,a) = a l (a) + a2(a)x + a 3(a)x2 + a4(a)x3 

+ as(a)y + a 6(a)xy, 

where aje& (a), i = 1, ... ,6, are such that 

as(a) + a6(a)xeI(F4), 

a 2(a) + 2a3(a)x + 3a4(a)x2eI(F4) (see Sec. V). 
(6.2) 

By simple calculations we check that Vi' i = 1, ... ,4, are tan
gent to Whitney's cross-cap. Calculations using power series 
or a homogeneous filtration show that these are the only 
vector fields generating Derlog Q(F4 ). In fact, 

1006 

h = a l - !a3a3 + (a2 - ja4a3)x + (as - !a3al )y 

+ (a6 - ja4a l )xy(mod a(F4 »· 
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Hence all vector fields belonging to Derlog Q(F4) can be 
written in the form 

V
a a ,a 1,a v 

=a6-+ aS-+ a s ---a1a6 -+a4 3' 
aa1 aa2 aa3 6 aa2 

where a 4 , as, a6' a;, a~ e& (a) satisfy 

as + a~eI(F4)' a; + a~eI(F4)' 

(6.3) 

(6.4) 

which are a simple rewritten version of (6.2). Here we use 
the formula x 2 = - ~ a3(mod [(F4 ». Solving (6.4) using a 
power series, we obtain an expression for (6,3) that involves 
only Vo i = 1,2,3,4. 0 

Proposition 6.5 gives an algorithm for calculating all 
vector fields tangent to quasicaustics corresponding to 
boundary singularities. Now we restrict our attention to 
quasicaustics corresponding to the unimodal boundary sin
gularities. 

Let us consider the miniversal deformations for para
bolic boundary singularities20

: 

F),o: y3 + x3 + al yx + a2xy + a3y + a4y + asx, 

K4,2: yZ + X4 + alyxZ + azxy + a3x
z + a4x + asy, 

D4,I ( = L6): -!Xi Xz + jx~ + yXI + a1 YXz 

+ !azX~ + a3 Y + a4x) + asxz, 

where a) is a modulus parameter. The Milnor number of 
these deformations is 6 and the boundary is {y = O}. We 
treat these three cases separately, starting with FI,o' 

Proposition 6.7: The module Derlog Q(FI,o) is not free 
and is generated by the following vector fields: 

1 2a a 
V) = --a2 -+a4-, 

6 aa4 aas 
a a 

Vz =aZ -+a4 -, 
aa2 aa4 

a a 
V3= -az -+2as-, 

aa2 aas 
a 1 a 

V4=a4---
3 

a2a5 -, 
aaz aa4 

a a 
Vs=-, V6 =-

aa) aa3 
Proof We have 

[(F) = (azx + a4,3xz + as) & (x,a) 

and 

& (y,x)/0(/) = [1,x,y,xz,x3,xy,Y,xy2]c· 

Thus 

h = a) + a2x + a3xz + a4x3 + as Y 

+ a~y + a 7 yZ + agxY. 

The equations 

!!:...I = a 5 + a~eI(F), 
ay y=o 

!!:...I = a z + 2a3x + 3a4x
2eI(F) 

ax y=o 

(6.5) 

reduce the calculations to those in the proof of Proposition 
~~ 0 
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In remaining cases we only need to calculate the one-jets 
of vector fields generating the module. We now treat the case 

K 4•2 • 

Proposition 6.8: All vector fields belonging to 
Derlog Q(K4,2) have the following form: 

where 

as,a6e& (a), 

U = - f6ar az( (8 + ar ) I ( 4 - ar » - f6ar az - !az, 

V = - !ai«as + Aa,a~ - !a,a3 )/(4 - ar» 

- f6a,a~ + !a,a3, 

W= - f6a~«azas - 2a4)/(4 - ar)} - f6a,azas 

+ ~a,a4 + Aa3aZ' 

a7 + agx + a.ycz = A (x,a)(a,xz + azx + a5) 

Xmod( (4x3 + 2a3x + a4)& (x.a»' 

a~ + aix + a~xz = B(x,a) (a,xz + a2x + a5) 

Xmod( (4x3 + 2a3x + a4)& (x.a», 

A,Be& (x,a) • 

Proof: We easily calculate 

I(F) = (a,xZ + azx + as, 4x3 + 2a3x + a4) & (x.a) , 

0(/) = (yZ,yx3,X6
)&(y,xl' 

so we can write 

h = a, + azx + a3x
z + a4x3 + a sx4 

+ a~s + a7 Y + asxy + a.ycZy, 

ah I = a7 + asx + a.yczEl(F), 
ay y=O 

~ I = a z + 2a3x + 3a4xz + 4a5X
3 + 5a~4El(F). 

ax y=O 

Introducing the functions 

a~ = a z - a5a4, 

ai = 2a3 - 2aSa3 - ia6a4' 

a~ = 3a4 -la3a6, 

and using the Malgrange preparation theorem 

& (x,a) I (4x3 + 2a3x + a4) tJ (x,a) ~ [ 1 ,x,XZ] t'l (aj , 

we obtain the respective equations for a7, as, a9 and 
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o 

Now, taking (6.5) into account, we can calculate the one
jets of the corresponding module generators: 

'IV a a a 
J ,=a,-+a2-+ aS-' 

aa, aaz aas 
"T/ a a 

] "2=aZ-+as-, 
aa, aaz 

"T? a 
] "3=aS -' 

aa, 
., T/ 1 a a 

] "4=-a2 -+aS -' 
2 aa3 aa4 

(6.7) 

., T/ 1 a 
] "5=-aS -' 

2 aa3 

a a a a 
j'V6 = - 2a ,- - az - + 2a3 - + 3a4 -, 

aa, aaz aa3 aa4 
1 a 3 a 

j'V7= --a2-+-a4-· 
4 aa, 8 aa3 

We now treat the last case D 4,' • 

Proposition 6.9: The module of the logarithmic vector 
fields Derlog Q(D4,,) has seven generators. Their one-jets 
are 

~V a a a a ] ,=-+a2--aS -+a4-, 
aa t aa3 aa4 aas 

j'V2 =j'V" 

a a a a 
j'V3= -2--2a,-+a3--a2-, 

aa2 aa3 aa4 aas 
a a a a a 

j'V4 = - 3a, - + 2az - - a3 - + a4 - + 40s -, 
aa, aaz aa3 aa4 aas 

1 a a 1 a 
j'V5= --a3-+2as---a4-' 

2 aa, aa2 2 aa3 

"v. a a ] 6=a2-+a4-' 
aa, aa2 

j'V7 = a2 ~ + a3 ~ + 2a4 ~ + 2as ~ . 
aa2 aa3 aa4 aas 

Proof: As in the preceding cases we follow the standard 
procedure: 

I(F) = (x, + a,xz + a3,x,x2 + a4,!xr + x~ 

+ azX2 + a5) & (x,a) , 

& (y.x) 10 ( /) ~ [ 1 ,x, 'X2' y,xr ,x ,X2'X~ ,xz y,x~ , 

Thus by Proposition 6.5 we have 

h = ao + a,x, + a2x2 + a3y + a4xr + aSx,x2 + a~~ 

+ a7xzy + a8x~ + a.j"(O,x,a) + a,oX,x~ 

and 
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::1 L=o 
= a 1 - 2a4a3 + 3(a1a4 + a~ )ag - aJO(aS + !a la4 

+ !a;) + a 13v + X 2( - 2a1a 4 + 3ala 3a g + as 

- a JO (a2 + !a1a3 ) + a 13Jl)El(F), 

::Jy=O 
= a 2 - a Sa3 - 2a4alO - 3all (as + !ala4 + ~a~) 
+ 4a 12v + x 2(2a6 - alaS + 4Jla12 

- 3a ll (a2 + !a1a3) - 3a 13a4)El(F). 

Because 1, X2 form a free basis for tJ (x,a) /1(F), we immedi
ately obtain 

a 3 =0, a7 =0, 

a l = 2a4a3 - 3(a la4 + a~ )ag 

+ alO(aS + !a la4 + !~) - a13v, 

as = 2ala4 - 3a1a3a g + a JO(a2 + !a1a3) - a13Jl, 

a 2 = a3(2a 1a 4 - 3a la3a g + a lO(a2 + !a1u3) - aJ3Jl) 

+ 2a4a lO + 3a ll (as + !a la4 + !a~) - 4a12v, 

a6 = !at(2a ta 4 - 3ata3a g + a lO (a2 + !ata3) - a t:#) 

- 2Jla t2 - ~al1(a2 + !a1a3) + ~a13a4' 
where 

Jl = (a2 + !a la3 )2 - as - !a la4 - !aL 

v = (a2 + !a la3)(aS + !a la4 + !a~). 
Inserting these into h we obtain the formula for 

h(mod K(F» - h(mod K(F))!x=o,y=o. 

From this formula we can read off not only the one-jets but 
also all the generators of the module. 0 

Letp: Cp--+Ck be a projection on CkCC p. We say that 
Q(F) L c P is locally equisingular along Ck near poeCk if, for 
all peCk near Po, the pairs (0-1 (p ),0) and (0-1 (p) nQ(F),O) 
are all diffeomorphic. Checking the vector fields listed in 
Propositions 6.7 and 6.9, we have the following corollary. 

Corollary 6.10: (1) The quasicaustic Q(FI •o ) is equisin
gular along the two-dimensional singular locus, parame
trized by {a l ,a3}. 

(2) The quasicaustic Q(D4•1 ) is equisingular along the 
two-dimensional singular locus, parametrized by {a l ,a2 }. 

In both cases the fiber (P-I(p) nQ(F),O) is diffeomor
phic to Whitney's cross-cap. 

The logarithmic vector fields can also be used for the 
classification of the generic Lagrangian pairs (L I ,L2 ) up to 
quasicaustic equivalence (cf. Refs. 24 and 32). The singular 
Lagrangian variety L 1 U L2 is provided by generic families of 
functions on the manifold with boundary. In this sense, to 
determine the germ of the Lagrangian pair means to define 
the generating family of functions on a manifold with a 
boundary (cf. Sec. III). 

Let! (Cxcn,O) -+ (C,O) be a finitely determined 
boundary singularity. Let F: (C X Cn X C IL - 1,0) --+ (C,O) be 
its miniversal unfolding. If G: (C X Cn X C P,Q) - (C,O) is a 
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generating family for a Lagrangian pair, then generically Gis 
a pullback from the miniversal unfolding F of the finitely 
determined germ!(y,x) = G(y,x,O), i.e., 

G(y,x,a) = f{<I>(y,x,a),<p(a» + heal, 

where <1>: (Cxcnxc P,O) - (CXC",O) is a family ofbiholo
morphisms, germs preserving the hypersurface {y = O}. 
Thepullback<p: (CP,O) --+ (C IL-

I ,O), <pE& ~a) I and hEtJ(a)' 
Thus analogously to the classification of generic Lagrangian 
submanifolds (see Ref. 20, p. 337), the classification of gen
eric Lagrangian pairs is done by specifying the miniversal 
unfoldings of finitely determined boundary singularities and 
their generic pullbacks <pEtJ ~a) I. 

Let us assume that Lagrangian pairs are modeled on 
unimodal singularities! (CX Cn,O) - (C,o), i.e., the generic 
generating family with such/ has the following prenormal 
form: 

G: (CXC"XCP,O)--+(C,O), p;;'Jl-2, 

1L- 2 

G(y,x,a) =/(y,x) + L gj(y,x)a j +glL- I (y,x)A(a), 
j=1 

where gIL _ I (y,x) defines the modulus direction. 
Generically, the pullback <p is transversal to this direc

tion, so 
- 2 
A:=A/{a,= ... =a .. _>=o}: (CP-IL+ ,O)-(C,O) 

is a Morse function. Thus there are possible two generic nor
mal forms for the generating families of Lagrangian pairs of 
unimodal type: 

(1) A(a) =alL -" when p>Jl-2 and D.l(O) #0; 

(2) A(a) =1J(a l , ... ,alL - 2 ) ±a!_1 ± ... ±a;, 

when Dl(O) = 0; 

where 1JEtJ (a) [a = (a1 ... ,alL _ 2 )] is a functional modulus. 
To obtain more information about classifying quasi

caustics, we need to introduce a weaker equivalence relation 
in Lagrangian pairs (cf. Refs. 20 and 32 in the case of func
tional moduli in the standard classification of Lagrangian 
submanifolds). Let 

GI(y,x,a) = fly,x,<P1(a» + f1(a), 

G2(y,x,a) = fly,x,<P2(a» + heal 

be two generating families for the corresponding Lagrangian 
pairs .!£ I and .!£ 2' respectively. We say that .!£ I' .!£ 2 are 
quasicaustic equivalent if <PI' <P2 are right-left equivalent, i.e., 

<P1 (a) = (t{;°<P2oS) (a), 

for some biholomorphismS: (C P,O) - (C P,O), and some hi
holomorphism t/J: (C IL-I,O) -+ (C IL-

I ,O) preserving the 
quasicaustic (Q(F),O). 

Proposition 6.11: For unimodal boundary singularities 
FI,o' D 4,1' by quasicaustic equivalence, the functional modu
lus A can be reduced to zero. 

Proof On the basis of Ref. 20, p. 343, we need to check 
only that 

vii (a) ~ (A \ (a), ... ,A ~ (a) > tJ (ap (.) 

which implies that 

vII(a)~(t/J)~<p·~(Jl-l) + Tt/J(~(p)), 
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for ¢>: (C P,O) -+ (C p - 1,0) being in the general position to 
the modulus direction. Here by ?f (¢» we denote the vector 
fields along ¢> (cf. Ref. 30). Let ?f (It - 1) and ?f (p) be the 
spaces of vector fields on (C p - 1,0) and (C P,O), respective
ly. This enables us to apply the ordinary homotopic method 
to eliminate the functional modulus A. Taking into account 
the vector fields listed in the Propositions 6.7 and 6.9, 

5 [a 
V[= IA i -, 

i=1 aai 

we immediately have fulfilled (*) for the parabolic singular
itiesF1•o andD4•1 • 0 
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After a review of appropriate concepts in local surface geometry, a formally exact solution of 
the radiative transfer equation is constructed, for transfer from one surface of arbitrary shape 
to another. The solution is obtained from repeated application of the linear interaction 
principle to form a path integral over paths that cross many intermediate surfaces. Invariant 
imbedding in general geometries is presented and found to be manifest in the path integral 
solution as an invariance under local coordinate transformations of the intermediate surfaces. 
Aspects of possible numerical implementations of this geometrical approach are discussed. 

I. INTRODUCTION 

There are a number of problems of current interest in 
atmospheric remote sensing and ocean optics that have the 
common need for knowledge of the distribution of radiation 
propagated through a medium with curved or irregular 
boundaries. One such problem is the conversion of measured 
brightness temperatures of clouds into an estimate of the 
local rain rate, 1.2 in which the microwave emission by rain
fall suffers absorption and multiple scattering in the volume 
of rain, ice particles, and cloud liquid water content. Plane
parallel models of rain fields with finite horizontal extent, for 
example, show that the brightness temperature-rain rate 
connection is significantly affected by the spatial extent of 
the rain field. 3 

There is a very active effort to calculate the radiance 
distribution emitted and reflected by clouds in the visible 
and IR regimes. Some Monte Carlo calculations have been 
used to study the effects of cloud geometry,4 and a multi
mode technique exists for geometries that can be represented 
by a collection of cuboids. 5 The cloud geometry is more im
portant in these regimes than in the microwave emission 
problem, because the cloud body itself is more attenuating in 
the visible and IR than at microwave wavelengths. 

The resolution of underwater imaging systems is limited 
by blurring and contrast reduction, induced by scattering 
and absorption in the water. These effects can be suppressed 
somewhat by removal of the corresponding Mutual Transfer 
Function (MTF) from the image, or by range-gating the 
transceiver system.6-8 Typically the formulation of the un
derwater imaging problem treats the imaged object as lying 
in a plane parallel to the camera plane. When the object has 
an extended structure within the field of view, however, it 
may be necessary to accommodate the range of scattering 
and absorption within the image by accounting for the ob
ject's three-dimensional shape. 

These three examples illustrate radiative transfer prob
lems with complicated spatial boundaries. In the first two 
examples the medium itself is bounded by irregular surfaces 
(the source of radiant power also has irregular bounds), 
while in the third the reflecting surface has some three-di
mensional shape and the medium is effectively unbounded 
(ignoring for the moment any effects ofthe ocean surface in 

altering the light field). The geometric aspects of these ex
amples are as important as the scattering and absorbing 
properties of the media. In general, any radiative transfer 
problem that involves an inhomogeneous medium and/or 
boundaries exhibits sensitivity to the geometry. 

It seems worthwhile, therefore, to frame the solution of 
the radiative transfer equation in terms of the appropriate 
geometrical setting. This has been carried out in great detail 
and rigor for the special case of a medium composed of paral
lel planes, under the elegant formalism of reflection and 
transmission operators9.10 in the context of the invariant im
bedding relations. Preisendorfer also developed the full in
variant imbedding relations for arbitrarily shaped media, II 
but, in that case, the emphasis was on developing relations 
with structure analogous to the flat surface case, and the 
geometric aspects were left implicit. 

The purpose of this paper is to clarify the role of surface 
geometry in the solution of the radiative transfer equation 
and in the invariant imbedding relations. The approach tak
en is to construct an evolution operator for the general solu
tion of the radiative transfer equation. In this way problems 
with constrained boundary conditions are restated as evolu
tion problems with constrained initial conditions, and it is 
this latter form of the solution that yields most directly the 
invariant imbedding relations. A brief review is provided in 
Sec. III of invariant imbedding on flat surfaces, along with a 
generalization to curved surfaces. 

The evolution operator approach has been used a num
ber of times,9,12,13 each distinguished by its own particular 
variations. In their basic form all of the variations assume 
the distribution is known on an initial plane, or assume com
plementary partial information on several planes, and use 
the evolution operator or transmission and reflection opera
tors to obtain the distribution on the final plane(s) of inter
est. The more recent references construct the evolution oper
ator in terms of a path integral12 or a discretized matrix 
operator. 13 The two are related in the sense that the path 
integral solution is obtained in the limit of a very fine discre
tization for the matrix quantities. 

However, as mentioned above, it is desirable to genera
lize the bounding planes to curved surfaces with potentially 
very complicated structure. The parametrization of the me-
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dium in terms of curved surfaces is accomplished in Sec. II. 
The linear interaction principle is used to begin the construc
tion of the evolution operator in Sec. III. The result is the 
evolution operator for the transfer of radiance from the ini
tial surface to the final surface, obtained from a sequence of 
transfers across many intermediate surfaces. When a large 
number ofintermediate surfaces is used, the evolution opera
tor for each transfer becomes an infinitesimal operator. The 
infinitesimal evolution operator is constructed in Sec. IV us
ing the radiative transfer equation, and the full expression 
for the evolution operator in terms of a path integral is ob
tained. The path integral method for constructing the evolu
tion operator has been used in the context of ocean op
tics,12.14,15 and much of the notation and techniques used 
below can be found there. 

One interesting consequence of incorporating surface 
geometry into the path integral formalism is that the princi
ple of invariant imbedding is the natural consequence of the 
fact that the formal expression for the evolution operator is 
invariant under arbitrary local coordinate transformations 
of the intermediate surfaces. This invariance is demonstrat
ed in Sec. V. 

In Sec. VI, the explicit inclusion of the surface geometry 
is discussed as a possible method of improving the efficiency 
of numerical algorithms (such as finite-difference) that em
ploy a spatial grid mesh. 

The notation used below for the radiative transfer equa
tion is 

{noV + c}L(x,n) = J dO' {3(n°n')L(x,n'), 

where L is the radiance, x is the position in the volume, n is 
the direction of propagation, c is the total extinction coeffi
cient, and {3 is the volume scattering function. The depend
ence of the optical properties c and {3 on position in the vol
ume is ignored, although all of the results can be extended to 
include a nonhomogeneous medium. For convenience, the 
volume scattering function is written as 

{3(non') = b penon'), 

where b is the scattering coefficient, 

b = f dO {3(non'), 

and the phase function P has unit normalization 

f dO P(n oi1') = 1. 

II. PARAMETRIZATION OF THE CURVED GEOMETRY 

Suppose the volume of the medium is bounded by the 
two surfacess; and Sf' as in Fig. 1. Let u:= (ua ):= (ut,u2

) be 
coordinates of a two-dimensional plane. A point x ( u) on a 
surface is a mapping of a point u of the 2-D plane to the 
surface in the 3-D volume, indicated in Fig. 1 by the shape of 
the (U

I
,U

2
) mesh on the surface. All points in the volume of 

the medium can be parametrized by introducing the label s 
for each surface. The surface s = S; is the surface on which 
the distribution is known, and s = Sf is the surface on which 
the distributiQn is to be obtained. The volume between these 
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FIG. 1. Surface geometry showing ( u I ,u2
) coordinates, surface normal, and 

layer of initial and final surfaces S,' Sf' 

surfaces is the layered set of surfaces S; <,s<,sf' Each point in 
the volume is uniquely labeled by a triplet (u,s) withs label
ing the particular surface, and u labeling the position on the 
surface. Points in the volume can be denoted x(u,s). 

Several concepts and quantities from differential geom
etry come into the formal calculations below (Ref. 16 is a 
good source). The primary quantity is the metric g. For a 
fixed surface s, the metric with components gab is defined as 

gab (U,S) = Xa (U,S)oXb (u,s), 

where Xa is 

a 
Xa =-X. 

aua 

The metric considered as a matrix has an inverse whose com
ponents are denoted ~b , and which satisfies (implied sum
mation over repeated indices is used throughout) 

gabghc = ~bgba = D~, 

where D~ is the Kronecker delta function. 
The two vectors Xa (u,s) define the local tangent plane 

to the surface, and are orthogonal to the surface normal (al
though they are not necessarily orthogonal to each other). 
The surface normal can be constructed from the cross prod
uct of the tangent vectors: 

A ( ) _ x l (U,S)Xx2(u,s) ns u,s - . 
IXI (u,s) Xx2 (u,s) I 

A third vector defined at each point is x(u,s), where, for 
convenience, derivatives with respect to s are denoted by 

. a 
x:=-x. as 

Although this vector at each point on the surface is not nec
essarily orthogonal to either XI or X2, it does not lie in the 
'tangent plane, since it describes the layering of surfaces in 
the volume. Therefore the set of three vectors {XI' X2, x} 
could be used to construct a local basis of the three-dimen
sional space. However, as will be clear below, it is more con
venient to use a basis in which x is replaced by its component 
Xl orthogonal to the tangent plane, given by 
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Ca) Cb) 

Cc) Cd) 

FIG. 2. Example volumes parametrized as layers of surfaces. (a) Layered 
flat planes; (b) imbedded concentric spheres; (c) imbedded concentric cyl
inders; (d) translated Monge patches. 

where 

r =g"b(Xb'X). 

It can be verified directly from this definition that Xb 'xl = 0, 
and so Xl is parallel to the surface normal, and we may write 

fls (u,s) = Xl (u,s)/lxl (u,s) I· 
The local three-dimensional basis used below is the set of 
vectors {XI'XZ'Xl }, 

As examples of this description of local geometry, we 
consider four examples illustrated in Fig. 2: layered flat 
planes, imbedded concentric spheres, imbedded concentric 
cylinders, and translated Monge patches. Each example is 
discussed below, and summarized in Table I. 

Layered flat planes: Using the Cartesian coordinates 
(x,y,z), we take u = (x,y) and s = z. Points x on each plane 

TABLE I. Summary of the example geometry coordinate systems. 

u' u2 
S x X 

Plane x y z (x,y,z) (0,0,1) 

are given by x = (x,y,z), so that the basis {xl'XZ'Xl } is just 
the orthonormal set {(l,0,0), (0,1,0), (0,0,1)}. 

Imbedded concentric spheres: Using the spherical co
ordinates (r,(),,p), we assign s = r, and u = «(),,p). Positions 
on the surface of constant radius rare 

x = (r sin () cos ,p,r sin () sin ,p,r cos (). 

The derivative vectors are 

X = (sin () cos ,p,sin () sin ,p,cos (), 

XI = (r cos () cos ,p,r cos () sin,p, - r sin (), 

X z = ( - r sin () sin ,p,r sin () cos ,p,0). 

The metric is 

[gab] = ,z[~ sin~ () ]. 

The perpendicular component of X is 

Xl = (sin () cos ,p,sin () sin ,p,cos (), 

and this is also the surface normal fl s • 

Imbedded concentric cylinders: The cylindrical coordi
nates (p,tp,z) are assigned as s = p, u = (tp,z). Positions on 
the surface of constant radius pare 

x = (p cos tp,p sin tp,z). 

The derivative vectors are 

X = (cos tp,sin tp,O), 

XI = ( - p sin tp,p cos tp,O), 

X z = (0,0,1). 

The metric is 

~], 
and the perpendicular component of X is 

Xl = (cos tp,sin tp,O) = fl s • 

Translated Monge patches: A Monge patch is a surface 
of the form 

x = (x,y,h(x,y», 

where h is some well-behaved function and (x,y) are Carte
sian coordinates. We can construct a volume by translating 
the Monge patch in the vertical direction, so that each 
Monte patch is given by s = const, and 

x(x,y,s) = (x,y,h(x,y) + s). 

X, X2 Xj 

( I,O,D) (0,1,0) (0,0,l) 

(rsin Ooos t/>, (sin o cos t/>, (r cos 0 cos t/>, ( - r sin 0 sin t/>, (sin 0 cos t/>, 
Sphere 0 t/> r rsin o sin t/>, sin o sin t/>, rcos o sin t/>, r sin 0 cos t/>,O) sin o sin t/>, 

rcos 0) cos 0) - rsin 0) cos 0) 

Cylinder tp z p (p cos tp, (cos tp, ( - p sin tp, (0,0,l) (cos tp, 
p sin tp,z) sin tp,O) p cos tp,O) sin tp,O) 

Monge patch z y s (x,y,h(x,y) + s) (0,0,l) (l,O,hx ) (O,I,hy) ( - hx' - hy,l) 
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We take u = (x,y), and the derivative vectors are 

x=(O,O,l), x l =(1,O,hx )' x 2 =(O,I,hy )' 

The metric is 

and the perpendicular component of x is 
Xl = ( - hx' - hy,l). 

The surface normal is 

ns = ( - hx' - hy, 1)/(1 + h ~ + h;) 112. 

These examples are used in the sections below to illus
trate the geometric structure of the evolution operator. 

III. THE EVOLUTION OPERATOR AND INVARIANT 
IMBEDDING 

A functional definition for the evolution operator G can 
now be made. It is convenient to write G in the form G( u,sf' 
n; u',sj,n'), and it is implicitly a function of the points on 
each of the two surfaces, and the intervening points. In this 
form the solution of the radiative transfer equation at points 
on the surface Sf is 

L(x(u,sf),n) = f dV dO' G(u,spn; u',sj,') 

XL(x(u',Sj ),n'). (1) 

For this solution the evolution operator must satisfy the ra
diative transfer equation with the initial condition 

G(u,sf,n; u',sjOn') Ij-f = c5(u - u')c5(n - n'). 

The operator G is an evolution operator because, ac
cording to the linear interaction principle, it can be con
structed from intermediate solutions. Suppose a particular 
intermediate surface SI between Sj and Sf is chosen. Using G, 
the radiance distribution at this intermediate surface is 

L(x(u,sl),n) = f d 2u' dO' G(u,sl,n; u',sjOn') 

XL(x(u',Sj ),n'). 

Using the distribution at this intermediate surface, the distri
bution at the final surface Sf is 

L(x(u,sf),n) = f dV dO' G(u,sf,n;u',sl,n') 

XL(x( U',SI ),n'). 

Combining these two results with the expression in Eq. (I), 
the operator G satisfies the convolution relationship 

G( u,sf,n;uj,sjOn') 

= fd2u" dO" 

XG(u,sf,n; u",sl,n") G(u",sl,n"; u',sjOn'). (2) 

An alternate method of constructing a solution to the 
radiative transfer equation employs information about the 
radiance distribution on two parallel planes to obtain the 
distribution between them, using transmission and reflec
tion operators. This method leads to the invariant imbedding 
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principle, and is the source of the adding-doubling algo
rithm in some numerical methods of solution.s We review 
briefly this form of the invariant imbedding principle, and 
discuss how it is modified in a more general geometric set
ting. 

Suppose surfaces SI and S2 are flat parallel planes (see 
Fig. 3), with the normal of S I pointing ("upward") toward 
S2' The portion of the radiance distribution on SI with com
ponents parallel to the normal (i.e., "upward") is denoted 
L u (s I)' and the portion of the distribution on S2 with com
ponents antiparallel to the normal (i.e., "downward") is 
L D (S2)' The radiance distribution between S 1 and S2 is given 
by 

L(s) = Fu(s,sl)Lu(sl) + FD(s,S2)LD (S2), (3) 

where (F u,F D) are the transmission and reflection opera
tors, and we have suppressed the surface and angular convo
lutions. Explicitly, 

F U,D (s,Sj )L U,D (Sj ) 

=fdV f dO' 
JU,D 

xF U.D (u,s,n;u',sj,n')L U.D (u',sjOn'), 

and the angular integrations are restricted to just the upward 
or downward direction, as appropriate. Equation (3) is the 
invariant imbedding equation. Its fundamental importance 
is that the radiance distribution on any plane S is determined 
by the distribution on the initial planes SI and S2' but not by 
how the region between SI and S2 is represented. 

This solution can be iterated by choosing two planes S3 

and S4' such as those shown in Fig. 3. From Eq. (3), 

L(S3) = F U(S3,SI )Lu(sl) + FD (S3,S2)LD (S2)' 

L(S4) = F U(S4,SI)L u (sl) + FD(S4,S2)LD(S2)' 

We can also write the invariant imbedding equation just in 
terms of the S3 and S4 surfaces: 

L(s) = F U(S,S3)L u (S3) + FD (s,s4)LD (S4)' 

Denoting the upward component of Fu by F uu , the down
ward component by F UD' etc., we obtain 

S 
2 

S 
4 

S 
3 

FIG. 3. Planar geometry used to describe the invariant imbedding principle. 
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Fu(s,sl) = Fu (s,s3)Fuu (S3,SI ) + FD (s,s4)F UD (S4,SI)' 
(4) 

FD (s,sz) = Fu (s,s3)FDU (S3,S2) + FD (s,s4)FDD (S4,sz)· 

Although this is an expression for Fu (S,SI) and FD (S,S2) in 
terms of transmission and reflection operators at the inter
mediate planes S3 and S4' recall that S3 and S4 were introduced 
as convenient surfaces on which to iterate the invariant im
bedding equation. The original solution is independent of 
any particular intermediate planes. Thus the invariant im
bedding equation allows us to introduce additional conve
niently located planes imbedded between S 1 and S2' but guar
antees that the solution obtained from such a decomposition 
is independent of the chosen imbedding. In Sec. Y, this result 
is generalized to allow the imbedded surfaces to have arbi
trary shape as well. 

Despite the manipulations used above, the invariant im
bedding principle can be stated in a simple, physically intu
itive way: given a medium partitioned into regions, the oper
ators in the full volume can be built up from the operators in 
the individual regions, and the result is independent of the 
choice of partition of the medium. 

Preisendorfer considered the invariant imbedding prob
lem in more general geometries. The basic change in the 
formalism arises from the fact that there is no longer a 
unique up and down orientation as in the planar geometry. 
Instead, up and down are defined locally according to the 
direction of the surface normal at each point. However, it 
should be possible to construct the invariant imbedding 
equation without choosing particular orientations. The ne
cessity of the up and down directionality arises from the 
choice of the initial condition problem: the known distribu
tions are Lu (SI) and L1) (S2)' and so the problem is phrased 
in terms of these up and down directions. 

We can, however, phrase a new problem: Suppose 
{SI, ... ,SN} is a set of surfaces on which the radiance distribu
tion L(sj) is known. We wish to find a solution L(s) in the 
rest of the medium. From the linear interaction principle or 
the general form of the invariant imbedding equation, we 
might expect to write the solution as 

N 

L(s) = L F(s,sj )L(sj)' 
j~ I 

with 

F(Sk,Sj) =8jk , 

but we do not know yet what the F's are. Note that each of 

L j (s) = G(s,Sj )L(sj)' 

are solutions of the radiative transfer equation, with 
L j (Sj) = L(sj)' but that the sum of these does not satisfy the 
conditions on each of the surfaces. However, a general solu
tion using the evolution operator can be written 

L(s) = f ds' G(s,s')H(s'). 

The task is to find a function H that satisfies the initial condi
tion on each surface. An ansatz for the solution is 

N 

H(s') = L 8(s' - Sj )AjL(sj)' 
j~1 

where the Aj are operators: 
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H(u,s,n) = j~1 8(s-Sj) fd
2

U' dO' 

XAj (u,n;u' ,Pz')L(u',sj,n'). 

The solution is found if the operators Aj satisfy the equation 

L (G(Sk,Sj )Aj - 8k)L(sj) = o. 
j 

This is just the requirement that the functional determinant 
vanish: 

Det(G(sk,sj)Aj - 8k) = o. 
Thus the Aj are related to the eigenvalues of G(Sk,sj). It is 
unclear under what conditions the Aj fail to exist. Presum
ably some choices of distributions and surfaces are incom
patible, and a solution cannot exist. On the other extreme, 
we can reduce the geometry to the flat plane case discussed 
above, and only specify the appropriate up and down compo
nents, for which the solution is known to exist. The transi
tion between these extremes is not understood, however. 

Assuming for the moment the Aj exist, the solution is 

L(s) = L G(s,s)AjL(sj), 
j 

which is the invariant imbedding equation with 
F(s,sj) = G(s,Sj )Aj" 

IV. CONSTRUCTION OF THE PATH INTEGRAL 
REPRESENTATION 

The path integral representation constructed below fol
lows from the linear interaction principle by iterating Eq. 
(2) over many intermediate surfaces. Suppose there are 
N + 1 surfaces Sj,j = O, ... ,N, with So = Sj and SN = Sf; then 
successive iterations ofEq. (2) produce the result 

G(uf,sf,nf; uj>sj,n j ) 

= f )Xd
2

Uj dOj 

N 

X II G(uj,sj,nj ; uj _ 1 ,Sj_ I ,nj _ I ). 
j~ I 

(5) 

In the limit N -+ 00, this expression becomes the path integral 
representation. 

To aid in understanding the path integral representa
tion, we can think of G in terms of an effective attenuation 
coefficient 1"eff for an arbitrary path that starts at Sj and ends 
at Sf' summed over all such paths1z: 

G(Sf,Sj) - L exp{ - 1"eff (path)}. 
path 

Loosely speaking, when the number of intermediate surfaces 
Nis large, 

G(Sj,Sj_ I) -exp{ - 1"eff (Sj,Sj_ I)}' 

so that 

1"eff (path) - L1"eff (Sj,Sj _ I ). 
j 

This statement is not rigorous, although it can be a useful 
way of picturing the physical content ofthe path integral. It 
is rigorous, however, to write 
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G(Sj,Sj _ I ) = exp{ - 'Tc (Sj,Sj _ I ) }Gscatt (Sj,Sj _ I ) 

in the limit N --+ 00, in which 'Tc accounts for total extinction, 
and Gscatt accounts for the distribution of scattering. Analo
gous to the construction of the evolution operator in quan
tum mechanics, a phase space is introduced below combin
ing the set of all paths with the set of all directional modes of 
scattering at each point on a path, to yield a rigorous con
struction 

G(S/,S;) = L exp{ - 'Teff (configuration)}, 
configurations 

where ~configurations means the sum over all phase space con
figurations of paths. 

The first step in the construction is to parametrize an 
arbitrary path in the medium. This amounts to tracing a ray 
from the initial surface to the final surface, with its position 
on surface S denoted I (s). The local tangent of the path is a 
unit vector P pointing in the direction of propagation along 
the path, and is defined as 16 

pes) = dl(s)/ds. 
Idl(s)/dsl 

Alternatively, we can write this relationship in the differen
tial form 

dl(s) = dl(s)P(s). 

The path I and its differential elements d I have been 
parametrized just in terms of the surface label s, without the 
use of the surface coordinates u. However, for the purpose of 
construction of the path integral representation, it is conven
ient to describe the path in terms of the local tangent vector 
pes), and the points I(si,) and l(sf) on the initial and final 
surfaces. Thus we treat {3(s) as the prescribed quantity of a 
path, and find an expression for the position along the path 
in terms of the surface coordinates u. Recalling that the trip
let {XI' X2' Xl} forms a local basis, the differential d I can be 
decomposed as (see Figs. 4 and 5) 

dl = diP 

= xds+xa dua 

=xl ds+f~a ds+xa dua. 

5. +2d5 
1 

5 +d5 
i 

5. 
1 

FIG. 4. Three-dimensional geometry showing the relationship between Fis 
anddl. 
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Because Xl is normal to the local tangent plane, the distance 
traveled between S and S + ds is 

(6) 

This expression is obtained by taking the inner product of d I 
with Xl. 

Taking the inner product with Xa and using the result 
for dl, dua satisfies the constraint 

dua = {(xa·P) [Ixll/(p'ns )] - r} ds, (7) 

where xQ is related to Xa by 

xa = g"bXb , 

and summation over the repeated index is implied. This con
straint equation for dua can be converted to the nonlinear 
differential equation 

dua(s) = (xa(u,s)'P(s» x IXl (u,s) I _ r(u,s) (8) 
ds {3(s)'n s (u,s) 

describing the path in terms of the surface coordinates of a 
ray having the direction of propagation P(s) at each surface 
s. Table II is a list of the path equations for the example 
geometries. 

The effective attenuation factor 'Teff has a contribution 
due to the total extinction coefficient c, and one due to the 
distribution of scattering described by the phase function. 
For a ray from surface s to s + ds, the total extinction is 

'Tc (s + ds,s) = c dl. 

This expression is the straightforward consequence of the 
exponential character of total extinction. 

The redistribution due to scattering is more difficult to 
obtain. However, the procedure used by Tessendorfl2

•
14 is 

the same as is needed here. Simply stating the result, 

Gscatt (s + ds,s) 

S: 00 d 3p exp{i ds P'P(s) + b dl ll(p)}, (9) 

where II is the "pseudo-Fourier transform" of the phase 
function P: 

P(n·n') = J d 3

p 3 ll(p)exp{ip'(n - n')}. 
(217') 

a .... 
du 

.... 
ds x 

FIG. 5. The decomposition of dl in the {X
"

X2'Xl } basis. 
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TABLE II. Path equations for the example geometries. 
P(s) = (cos E(s)sin l(s),sin E(s)sin l(s),cos l(s». 

Layered fiat planes 

dx = cos Etan 1 
dz 

dy = sin Etanl 
dz 

Imbedded concentric spheres 

d8 (1) tanlcos(E-c;6)-tan8 
Tr= -;: l+tanltan8cos(E-c;6) 

dc;6 (1) tanlsin(E-c;6) 
Tr= -;: cos8+tanlsin8cos(E-c;6) 

Imbedded concentric cylinders 

drp = ~ tan(E _ rp) 
dp P 

dz 
- = cot 1 sec(E - rp) 
dp 

Translated Monge patches 

dx (I +h;)COSEtanl - hxhy sin Etanl + hx 

• 1-~~ftanl-~~Etanl 

dy= -hxhycoSEtanl +(1+h;)sinftanl +hy 

ds I-hxcosEtanl-hysinEtanl 

hx 

The term "pseudo" refers to the fact that the representation 
of P in terms of Fourier amplitudes II cannot be inverted in 
the usual sense of Fourier transforms to provide a unique 
expression for II. We can, however, define II as the inverse 
Fourier transform of a function P: 

ll(p) = J d 3u P(a)exp{ - ipoa}, 

where, for u..;2, 

pea) = P (1 - ~/2), 

( 10) 

and, for u> 2, Pconverges to zero sufficiently fast to ensure 
the existence ofEq. (10). For example, if we choose P= 0 
for u> 2, then 

II(p) = ; fu du sin (pu)P ( 1 - ~). 

A similar approach for handling the phase function is used in 
the small-angle approximation of the radiative transfer 
equation. 17 This "pseudo-Fourier" representation is not re
stricted to small-angle problems, however, and is sufficiently 
general to include backscatter. 

Note that the scattering contribution Gscatt has the form 
of an integral over the "scattering modes" p. This brings 
about the introduction of the phase space, consisting of 
points (P,p). The configurations described earlier are com
binations of paths pes) and scattering modes pes) at each 
surface. 
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In addition to the attenuation factors from extinction 
and scattering, there must be in G an additional factor to 
enforce the ray-path constraint in Eq. (8). This can be in
cluded by setting 

G(s + ds,s) 

= 8(ua(s) - (xa(u,s)'P(s» 

X [Iil (u,s) I/P(s)'ns (u,s)] + r(u,s» 

X (l/dS)2 exp{ - rc (s + ds,s) } Gscatt (s + ds,s). 
(11) 

The full expression for G now follows from this expression 
placed in Eq. (5), in the limits N- 00 and ds-O such that 
N ds = Sf - S;. The notation for this solution is 

G(uf,sf,nf;u;.s;,rl; ) 

= J(DP)(DU)(DP)tS({J(s;) -n;)8({J(Sf) -nf) 

x8(u(s;) - u;)tS(u(sf ) - uf) 

XII 8(ua - (xa·P) li~ I + r) 
S p'ns 

X Det(!Y exp{ - relf(p,p)}. 

The integration measures (Df3), (Du), and (Dp) are 

(Dp) = II dOes), 
S 

(Du) = II d 2u(s), 
S 

(Dp) = II d 3p(s), 
S 

and the effective attenuation is 

A lSI clill lSI ! r elf (p,p) = ds A A - i ds pes) ·p(s) 
Si p(s)· ns Si 

- rIds bII(p(s» A lillA . 
JSi pes) 'ns 

(12) 

The constraint delta function introduced in Eq. (11 ) is a 
convenient method of obtaining the radiance distribution on 
each surface by following each path. The procedure for con
straining integration variables in path integrals was intro
duced by Faddeev and Popov, 18 and it requires the inclusion 
of the factor 

Det(!") - 2 Det{tSab !.. _ ~[(xa.p) Ali~ I - r]}. as as tSub p'ns 
Because the argument involves the first derivative in s, this 
term is equal to 1, and so is omitted. This was shown by Fried 
and Tessendorf in evaluation of a similar determinant in a 
fluid dynamics context. 19 

V. LOCAL COORDINATE TRANSFORMATIONS AND 
INVARIANT IMBEDDING 

According to the invariant imbedding principle, the 
path integral expression for G should be independent of how 
the intermediate surfaces are parametrized. However, the 
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expression in Eq. (12) for G clearly uses an explicit parame
trization of the intermediate surfaces. In fact, the path inte
gral representation is independent of the parametrization, in 
the sense that local coordinate transformations can be per
formed on the surfaces, and the expression for G is left invar
iant. This invariance is demonstrated below. 

Alocal coordinate transformation u -+ U (u) on a surface 
is characterized by a transformation matrix A with compo
nents 

A a _ aua 

b - aub ' 

A physical position x on a surface is not altered by a coordi
nate transforation, although the local tangent plane is now 
characterized by the transformed vectors 

xa = A~Xb' 
This transformation follows from the chain rule for a change 
of variables. Transformation of the tangent plane vectors 
also transforms the metric: 

gab = A~gcdA~. 
It also follows that 

xa = (A -1):Xb. 

The second type of local coordinate transformation is a 
rescaling transformation of the surface labeling: s-+s(s). 
Note that this transformation preserves the order of the sur
face, since s = const implies s = const also, but this transfor
mation allows the density of the surfaces to be changed. We 
assume, however, that s is a monotonic function of s, so that 
the order of the surfaces is preserved. 

We wish to examine the behavior ofEq. (12) under the 
most general transformation (u,s) -+(u(u,s),s(s»), but leav
ing Sj and sf fixed. This imposes the conditions 

u(u,Sj) = Uo u(u,sf) = uf ' 

s(Sj) = So s(sf) = sf' 

All of the terms in the exponential are invariant under the 
transformation. For example, the term 

{IdS p(s). apes) 
s, as 

becomes 

l
SI ds ap as lSI ~ as - p-- - = ds P'P, 

s, as as ds s, 

and so is invariant. Similarly, the remaining two terms are 
invariant if 

IXll as IXll 
p.fi; = ds P:;;;' 

To show that this is the case, note that we can write 

. _ as[~ +Ka- ] x--x X a , ds 
where 

Ka= ds aua
. 

as as 
Using xa and x, fa can be written 
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r=: A:()b+K b
), 

with 

ja = gab (X'Xb ). 

Combining these expressions to construct Xl' the depen
dence on K a cancels, and we have 

. as ... 
Xl =-Xl · ds 

Since Xl is parallel to the surface normal in both coordinate 
systems, the normal is invariant, and we have the result that 
Telf is invariant under local coordinate transformations. 

From the expression for the measure, (Du) transforms 
as 

(Du) -+ (DiI) II det(A), 

while the determinant becomes 

Det(!Y -+ II 1 :1- 2 

Det(~r 
The delta function argument transforms as [using the fact 
that Xl = (ds/as)xl ] 

ua _ (xa.P) !x~ I + r = as A~ {ila _ (xa.P) lx~1 + ja}, 
~ns ~ p'ns 

so that the delta function constraint becomes 

II det(A -I) II 1 ds 12II O(ila - (xa·P) lx~1 + fa). 
as p'ns 

The det(A) and nlds/asl factors in the delta function, de
terminant, and measure transformations cancel each other, 
leaving Eq. (12) invariant under transformations ofthe im
bedded surface parametrization. 

Invariance under local coordinate transformations is a 
generalization of the invariant imbedding principle, in that 
the imbedded surfaces can be arbitrary shape without alter
ing the evolution operator. 

VI. NUMERICAL CONSIDERATIONS 

The geometrical formalism and invariant imbedding re
sults described above potentially can influence the design of 
numerical algorithms and codes for integrating the radiative 
transfer equation. The purpose of this section is to speculate 
on avenues of exploiting these geometrical results in numeri
cal schemes. We exclude from the discussion algorithms that 
explicitly trace ray paths through the entire medium, such as 
Monte Carlo algorithms, because it is not necessary to in
clude geometry in them as we have done here. 

An important class of numerical schemes are finite-dif
ference methods such as those presented in Refs. 20 and 21. 
Such methods in fully three-dimensional problems are gen
erally best suited for rectilinear geometries because the finite 
differences are along Cartesian coordinate axes. More com
plicated boundaries are handled by using a rectilinear grid of 
spatial points with sufficient resolution to include the de
sired features. However, if these schemes could be written in 
terms of finite differences in the (u,s) variables, i.e., by the 
replacement 
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ns a (a fa ns ) a v .... ---+ x - -- --, 
Ixll as IXll aua 

two possible advantages may be realized. The first is that the 
boundary conditions are easier to specify on the spatial grid, 
since the boundaries correspond to s = const. The second 
could occur when the number of spatial points in a calcula
tion exceeds the capacity of the computer core memory. In 
this situation a large fraction of the total execution time can 
be spent swapping portions of the spatial grid in and out of 
the core (the I/O operation is the slowest operation in many 
computers). However, in a geometrical formulation, the 
spatial grid could be replaced by a single set of points {u;} on 
the u plane, and points in space generated by a mapping 
formula for each surface. The time spent in I/O operations 
would be replaced by time for calculation of the geometric 
quantities, such as the metric, on the surfaces. The second 
potential advantage should be realizable when the total com
putational time for repeatedly executing a mapping formula 
is less than the total I/O transfer time for swapping grid 
points in and out of the core. The balance between these two 
approaches would depend on the machine, as well as on the 
particular geometry under consideration. This time-savings 
argument may be valid for other numerical schemes, also. 

One possible numerical algorithm which is different 
from the typical finite-difference algorithms, yet has a simi
lar structure, is based on the interaction principle in Eq. (2). 

Changing notation somewhat, Eq. (1) can be written 

L(u,s,n) = J d 2u' dO' G(u,s,n;u',s;.n') 

XL(u',s;,n'). 

Using the interaction principle in its iterated form, we obtain 
the finite-difference equation for the distribution at Sj in 
terms of the distribution at Sj _ 1 : 

L(u,s},n) = J d 2u' dO' G(u,sj,n;u',sj_1 ,n') 

XL(u',sj_pn'). (13) 

This solution has the form of a finite difference. A numerical 
algorithm would follow if a suitable discretization scheme 
can be found. In fact, Eq. (13) is analogous to the starting 
point of a finite-difference algorithm constructed for time
dependent radiative transfer,14 and the discretization steps 
used in that case can be applied to this problem as well. 
Those steps, as applied to this current problem, are summar
ized below. 

The first step is to discretize the angular degrees of free
dom by introducing a set of directions {nk}' k = 1, ... ,N, 
which point in the directions of the centroids of a set of solid 
angles {aOk }. Defining the averaged radiance 

Lk (u,s) = r dO L(u,s,n)aOk, J40. 
the angularly discretized finite difference equation is 

Ldu,sj) = .f. J d 2u' Gkk , (u,Sj;U',Sj_I) 

XL k, (u',Sj_I)' 
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where 

Gkk,(U,S;u',s') =-I-idOi dO' 
aOk k k' 

x G(u,s;n;u',s',n') 

is the discretized version of the evolution operator. 
The next step is to construct G kk' in terms of the discre

tized phase function. This will require the interpretation of 
the difference Sj - Sj _ 1 = ds as a small quantity. The pre
cise criterion for smallness follows from examining the mag
nitude of the higher-order terms excluded in the approxima
tion. In analogy with the time-dependent case, the criterion 
is essentially b dslxll < 1, i.e., that the propagation distance 
between adjacent surfaces is less than a single scattering 
length. Assuming ds is small, we can use Eqs. (9) and (11) 
to write an approximate discretization (see Ref. 12 for the 
full derivation) 

Gkk , (u,s + ds;u',s) 

= 15(ua - u,a - du'/., (s,u»exp{ - e dl(u,s,nk')} 

X (exp{b Ixll(u,s)ldsQ})kk" 

where 

Q is the matrix with elements 

Qkk' = pkk./nk' 'ns(u,s), 
and Pis 

Pkk ' =-l-idOi dO' p(n·n'). 
aOk k k' 

This method of discretizing the phase function has been used 
in both time-independenfo,22 and time-dependent l4 radia
tive transfer. 

Assembling these steps, the numerical algorithm is the 
explicit finite-difference formulation 

Lk (u,s + ds) = L exp{ - elxll A dS
A 

} 

k' nk , 'ns 

Xexp{b IXllds Qhk,Lk, (u - dUk"S). 

In this form the computationally intensive elements of the 
algorithm are the exponentiation of the matrix and the spa
tial interpolations needed to estimate the distribution at the 
points u - dUk' 

An alternative discretization is to expand in spherical 
harmonics, so that the elements of the matrix Q are obtained 
from the spherical harmonics expansion for P and n. The 
numerical algorithm would follow by truncating the expan
sion to some finite number of harmonics, and exponentiating 
Q as before. The utility of each of these two methods of 
discretization should depend on the structure of the phase 
function and on the angular resolution necessary for a specif
ic calculation, although this issue has not been examined in 
detail. 

The primary test of the utility of any algorithm based on 
geometric methods, however, will be the actual construction 
and execution of a code to determine directly its computa
tional resource usage. 
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VII. CONCLUSIONS 

The path integral solution of the radiative transfer equa
tion has been constructed for problems involving curved or 
irregular boundaries in a medium. Several concepts and 
quantities from differential geometry have been used to 
make the solution compact. The path integration is over 
paths through the surfaces intermediate (imbedded) be
tween the initial and final surfaces. The principle of invariant 
imbedding is satisfied by this solution, in the form of explicit 
invariance of the path integral to local coordinate transfor
mations of the imbedded surfaces. It is hoped that this form 
of invariant imbedding can be exploited efficiently in a nu
merical algorithm and code. Existing and new numerical 
algorithms could incorporate this geometrical formulation 
to exploit its convenient parametrization of boundaries, and 
possibly to save execution time in calculations involving 
large numbers of spatial points. 
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The conditions for a unit vector field to be the velocity of a relativistic barotropic perfect fluid 
are given. These conditions induce an eightfold classification of such fluids; for every class, the 
admissible barotropic variables are found. Some special cases, in particular polytropic fluids, 
are analyzed separately. 

I. INTRODUCTION 

In relativity, a perfect fluid is characterized by an energy 
tensor T of the form T = ( p + p) u ® u - pg, where p is the 
total energy density, p is the pressure, and u is the (unit) 
velocity of the fluid, and g is the space-time metric. The con
servation of T leads to a system of equations in (u,p,p), open 
from the evolutive point of view, which is usually closed by 
the adjunction of a barotropic relation p = p(p). So com
pleted, this system is called thefundamental system ofbaro
tropic hydrodynamics. 

Thus in a given domain of the space-time, a barotropic 
perfect fluid is a solution s=(u,p(p),p) to the fundamental 
system. Let us denote by V the set of unit vector fields u, by R 
the set off unctions of a single variable p = p (p), and by F the 
set offunctions p over the given domain of the space-time. In 
the total space VXRXF, the space of solutions {s} to the 
fundamental system defines, by circumscription, a parallel
epiped VbXRbXFb' 

The Cauchy problem for the fundamental system shows 
that Rb = R or, in other words, that locally, any function of 
a single variablep(p) is an element ofa solution (u,p(p),p) to 
the fundamental system. 1 Nevertheless, it canbe shown that 
Vb is a proper subset of V, Vb =1= V, that is, there does not 
exist, in general, a barotropic perfect fluid having as the ve
locity field an arbitrary unit vector field of V. Thus it is 
natural to ask the following question: Is it possible to intrin
sically define Vb or, more precisely, is it possible to express, 
solely in terms of u and its derivatives, the necessary and 
sufficient conditions for u to be the velocity field of a barotro
pic perfect fluid? 

The answer, as we shall show, is affirmative. The search 
for the conditions on u leads to a classification of the unit 
vector fields in eight classes. For each class, we obtain the 
necessary and sufficient conditions on u and its differential 
concomitants for insuring that u is the velocity field of some 
barotropic perfect fluid. Furthermore, we give the holonomy 
potentials that allow us to determine the corresponding bar
otropic relations. 

Similar problems to that of the intrinsic characteriza
tion of Vb' but restricted to particular forms of the barotro
pic relation or to particular evolution laws, may be also con
sidered. As an illustration, here we obtain the intrinsic 
characterization of the unit vector fields u that are the veloc
ity fields of (i) perfect fluids with constant pressure, (ii) 

perfect fluids with constant total energy density, (iii) baro
tropic perfect fluids with u-invariant (Le., constant along the 
streamlines) pressure, and (iv) polytropic fluids. For these 
cases, the conditions on u are simpler than those correspond
ing to the generic barotropic case. 

From a formal point of view, the differential system in u 
defining the set Vb is nothing but the conditional system in 
the variable u associated to the fundamental system ofbaro
tropic hydrodynamics. In other very different contexts, such 
as thermodynamic perfect fluids, 2 electromagnetic fields,3 

and almost-product structures or Killing tensors,4 we have 
already shown the conceptual interest of conditional sys
tems. 

Now, what is the interest of an intrinsic characterization 
of the barotropic velocities in hydrodynamics? We think that 
such a characterization may be of interest in many domains, 
as, for example, in the following. 

(i) Our conditional systems allow one to divide the task 
of integration of the fundamental (test) system into two 
clearly defined steps: a first step in which, after selecting the 
desired class of velocities from our eightfold classification of 
the unit vector fields, one looks for a solution u to the corre
sponding conditional system and, once it is obtained, a sec
ond step in which, with the aid of our results on the holon
omy potentials, one constructs the barotropic relations 
p = p(p) associated to this u. 

(ii) In the usual approach to the integration of the Ein
stein equations for barotropic perfect fluid space-times, one 
considers directly the Einstein system and its first integrabi
lity conditions; the problems of compatibility that appear 
because of the relation p (p) are well known. Our characteri
zation of Vb guarantees the existence of such a relation and 
allows one to relegate to a last, third step its computation: In 
a first step, taking local charts adapted to u, one translates 
the chosen conditional system in u into a system in the com
ponents of the space-time metric g; in a second step, for the 
corresonding constrained form of g, one evaluates its Ricci 
tensor and imposes that u be an eigenvector; and finally, in a 
third step, one considers the remaining Einstein equations 
with respect to the barotropic relation(s) computed from 
the g obtained in the first step. 

(iii) One of the few known results on the restrictions 
that the Einstein equations impose to the space of solutions 
of the fundamental (test) system is the Treciokas-Ellis5 con
jecture, recently reconsidered by Collins.6 The conjecture 
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states that a distortion-free barotropic perfect fluid space
time is either vorticity-free or expansion-free.7 Because of its 
purely kinematical character, our associated conditional 
systems in u are well adapted to the study of this conjecture. 

(iv) In given (vacuum, Robertson-Walker, etc.) space
times, it is sometimes interesting to know if some particular 
congruences may be interpreted as the streamlines of baro
tropic test perfect fluids (e.g., weak accretion in the neigh
bors of a star). The answer to this follows directly from our 
results by a simple, direct computation. 

(v) Whateverits barotropic equationp = pep), a (test) 
barotropic perfect fluid may always evolve following any 
(static or stationary) Killing direction of any space-time. 
Nevertheless, the analog statement for conformally Killing 
directions is false: In fact, the only barotropic perfect fluid 
that may evolve following any conformally Killing direction 
of any space-time is that of isotropic radiation p = 3p in 
equilibrium with dust of constant energy density. Properties 
such as these may be easily obtained from our characteriza
tion of the barotropic velocities. 

(vi) Every barotropic velocity may be endowed with a 
barotropic relation p (p) and, of course, also with other more 
general thermodynamic relations. We think that in the study 
of non barotropic perfect fluids or nonperfect fluids (anisot
ropy, viscosity, heat conduction), the hypothesis that their 
velocities are barotropic may be useful in the study of the 
behavior of such fluids. Either this hypothesis is incompati
ble (the actual motion of the fluid cannot be reproduced by 
any barotropic test fluid) or it is acceptable (one can com
pare the ideal barotropic variables to the actual thermody
namic ones). Both results constitute an interesting comple
ment of information; in particular, the latter result may help 
us to better understand the limitations involved in the Eckart 
and Landau thermodynamic schemes. 

(vii) For the taxonomy of the solutions of the funda
mental (test) system and the Einstein equations, the eight 
classes of velocity vector fields not only allow one to label the 
known solutions, but also to play an heuristic role in the 
search of new solutions. 

The paper is organized as follows. In order to make the 
proofs of the main result easier, in Sec. II the case p = const 
is separate from the generic one, for which the data are re
duced to a unit vector field and a holonomy potential. Sec
tion III contains the main results of this paper: the eightfold 
classification of the unit vector fields (Definition 1), the 
characterization of the barotropic velocities corresponding 
to each of these classes (Theorem 1), and the associated 
equations for the holonomy potentials (Theorem 2). Final
ly, in Sec. IV we characterize the velocities corresponding to 
some particular cases often found in the literature: constant 
pressure or density, u-invariant pressure, and polytropic 
fluids. 

A portion of the present results (those leading to 
Theorem 1) with a sketch of the proof has been published 
elsewhere. 8 

II. THE BAROTROPIC PERFECT FLUID 

Let (V4 ,g) be the space-time sig(g) = - 2. Vector and 
tensor fields and the expressions that relate them, unless oth-
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erwise stated, are given in their covariant form. The symbols 
i( u), ., d, V, and 8 denote, respectively, the interior product, 
Hodge dual, exterior derivative, covariant derivative, and 
divergence operators. 

In a domain of (V4 ,g), the conservation 8T= 0 of the 
energy tensor T of a perfect fluid amounts to the system 

dp=(p+p)a+pou, O+po/(p+p) =0, (1) 

where a = i( u) Vu is the acceleration vector, 0= - 8u is the 
expansion, and/o= £(u)1 for any function! 

A barotropic relation is a functional relation between p 
and p of the form 

dp 1\ dp = O. (2) 

When such a relation takes place ( 1) is called the/undamen
tal system of barotropic hydrodynamics. 

In the particular case of constant pressure 
p = p = const, system (1) becomes 

a=O, O+po/(p+p) =0. (3) 

Given u (and consequently, 0), the second of Eqs. (3) asso
ciates one solutionp to every p and to every u-invariant func
tion 1(1° = 0). Although simple, we explicitly state this 
result for completeness in the following proposition. 

Proposition 1: Perfect fluids with constant pressure have 
geodesic velocities. Conversely, to every geodesic (unit) vec
tor field u one can associate a family of perfect fluids with 
arbitrary constant pressure p and energy density 
p = /Po + (1- 1 )p, where Po is a given solution to 
o + pOI ( p + p) = 0 and lis any u-invariant function. 

From here on, unless otherwise stated, we have consider 
dp=j:.O. Perfect fluids with a barotropic relation such that 
dp=j:.O with be called barotropicjluids. Because of (2), there 
exists a (local) function 11' verifying 

dp = (p + p)d11'. (4) 

This function is called the holonomy potential. 9 For a non
constant p one has 

p = p( 11'), p' (11') = P + p=j:.O, (5) 

where p' = dpl d11'. From (4) and (5), the first of Eqs. (1) 
may be written as 

d11' = a + ~u=j:.O, (6) 

the scalar pOI ( p + p) adopts the form 

pO/( p + p) = [p'(11')/( p + p)]~ 
= [P" (11') - p' (11') lip' (11'), 

and the second of Eqs. (1) becomes 

o =g(11')~, 
where 

g( 11') = 1 - (In p' (11'»'. 

(7) 

(8) 

Conversely, let 11' be a function verifying (6), let p ( 11') be 
an arbitrary function of 11', and define p ( 11') by 

p(11') = p'(11') - p(11'). 

We have dp = p'(11')d11' = (p + p)d11',po = (p + p)~ and 
the first ofEqs. (1) follows. Ifin addition,p( 11') is a solution 
to (8), where g( 11') is determined by (7), the second of Eqs. 
( 1) also follows. Thus we have shown the following proposi
tion. 
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Proposition 2: The fundamental system for the barotro
pic perfect fluid is strictly equivalent to the system 

d1T=a+"flu=f.O, (J=g(1T)1To (9) 

in the pair (U,1T). Given such a pair, for every solutionp( 1T) 
to g( 1T) = 1 - (In p' ( 1T»' the triple (u,p,p) with 
P = p'(1T) - p is a barotropic fluid. 

Let us note that if p and Po are two solutions to Eq. (8), 
one has (In p( 1T)')' = (In Po'( 1T) )', sothatpo = kJP + k2 with 
k1>0 and Po = kIP - k2. Thus if (u,p,p) is a barotropic fluid 
associated to the solution (u, 1T) to (9), all the other barotro
pic fluids associated to the same solution (U,1T) are given by 
the biparametric family 

(u, k1·p - k2' k1'p + k2), (10) 

where kl and k2 are constants and k1>0. 
If ( u, 1T) is such that "fl = 0 one has, from (9), da = 0, 

(J = O. Thus for the solutions (U,1T) to (9) that verify either 
da=f.O or (J =f.0, one has {3=1T°=f.0. The first of Eqs. (9) is 
(locally) equivalent to the equation expressing the closed 
character ofthe one-form b = a + {3u and the second equa
tion implies that (J /{3 is a function of 1T, so that we have the 
following proposition. 

Proposition 3: A unit vector field u such that (J·da=f.O is 
the velocity of a barotropic fluid if and only if there exists a 
function {3 =f. 0 such that 

db=O, d«(J/{3) I\b=O, (11) 

where b = a + {3u. For every such {3, the holonomy poten
tial1T is determined, up to a constant, by d1T = b. 

III. CLASSIFICATION AND CHARACTERIZATION OF 
THE BAROTROPIC VELOCITIES 

A vorticity-free unit vector field u is equivalently de
fined by w=*(u I\du) = 0 ordu = u I\a. If 7 and qare two 
integrating factors for u corresponding, respectively, to the 
potentials t and s, 

u = 7dt= qds, (12) 

then the quotient 7/ q is a function of t; conversely, if 7 is an 
integrating factor and 7/q is a function of t, then q is an 
integrating factor as well. Now, by differentiation and the 
interior product by u of the first equality in ( 12) , one obtains 

( 13) 

so that if 1T verifies the first of Eqs. (9), one has 
d(1T-1')=(1To-To)U or, equivalently, d(1T-T)l\dt 
= 0, that is, 1T = l' + H(t): The function exp( - 1T) is an 

integrating factor. Thus we have obtained the following 
proposition. 

Proposition 4: Let u be a vorticity-free unit vector field. 
The necessary and sufficient condition for 1T to verify 
d1T = a + "flu is that exp{ - 1T} be an integrating factor for 
u. 

Now, if u = q ds with da = 0, taking into account 
Proposition 3, one has 0 = d[ (In q)ou] = d[ (In q); 'ds] 
-+ (In q); = H(s) -+q = h(S)7, where 7 is such that II = 0: 
We have the following lemma characterization for the vector 
field u having a u-invariant integrating factor. 
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Lemma 1: A vorticity-free unit vector field admits a u
invariant integrating factor if and only if da = 0. 

Let u be such that w = 0 and (J = O. Then according to 
Proposition 4, the holonomy potentials 1T that are solutions 
to d1T = a + "flu are determined by the integrating factors of 
u. Since (J = 0, the second of Eqs. (9) is verified by taking 
g ( 1T) = 0 (or "fl = 0). Thus we have the following proposi
tion. 

Proposition 5: A unit vector fiend u verifying w = 0 and 
(J = 0 is the velocity vector of the barotropic fluids having 
the holonomy potential1T of the form 1T = - In 7, where 7 is 
an arbitrary integrating factor. 

When w = 0 and (J '# 0, the hypothesis of Proposition 3 
is verified. In the geodesic case ° = 0, the integrating factors 
are constant, u = dt, and consequently, the first ofEqs. (11) 
reduces to d{31\ u = 0 and, from it, the second equation be
comes equivalent to d(J 1\ u = 0: {3 and (J are of the form 
{3 = {3(t), (J = (J(t). Then d1T = b = {3 dt: The holonomy 
potential is a function of t as well. We have the following 
proposition. 

Proposition 6: A unit vector field u verifying w = 0, 
a = 0, and (J =f.0 is the velocity of a barotropic fluid if and 
only if d(J 1\ u = o. The holonomy potentials 1T are the arbi
trary functions 1T( t) of the potential t of u, u = dt. 

Let us now consider u verifying w = 0, (J·a=f.O, and 
re = a 1\ da = 0; then one has 

da=aul\o, (14) 

where a is the scalar a=i(o*)i(u)da and 0* is the vector 
field a* = (1/a2 )a. With the hypothesis of Proposition 3 be
ing verified by the interior and exterior products by u (resp., 
a*) ofthe first (resp., second) of Eqs. (11), we obtain, for 
this u, 

«(J /{3)0( a + {3u) - {3d( (J /{3) = 0, 

d«(J/{3) l\ul\a=O, 

i(o*)da + {3 * u + {3i(o*)du = 0, 

d{3 1\ u 1\ a = 0, 

(15) 

(16) 

(17) 

(18) 

where for any functionf,f* = £(a*)/ On account of (18), 
( 16) becomes 

d(J1\ u I\a = 0 (19) 

and under our hypothesis, (17) is equivalent to 

{3* ={3 + a. (20) 

By (19), (15) maybe written as «(J /{3)0 = {3«(J /{3)*, which 
in tum becomes {30 = {32( 1 - (J */(J) + {3(a + (J0/(J) via 
(20). Thus we have the following proposition. 

Proposition 7: A unit veator field u such that w = 0, 
(J·a=f.O, and ° 1\ do = 0 is the velocity ofa barotropic fluid if 
and only if there exists a function {3 such that 

d(J 1\ u 1\ a = 0, d{3 1\ u 1\ a = 0, (21) 

{3 * = {3 + a, {30 = {32(1 - e*) + {3(a + eo), 
(22) 

where 

a= (l/a2)i(a)i(u)da, e=ln (J. 

For a function f verifying df 1\ u 1\ a = 0, one has 
df = fOu + f*a and thus 
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/oul\a=d/I\a, /*ul\a= -d/I\u, 

d/o 1\ u 1\ a = 0, d/* 1\ u 1\ a = 0, 

so that if du = u 1\ a and da = au 1\ a, one has 

/0* _ /*0 =/0 + a/*. 

(23) 

(24) 

Moreover, because of (21) and (23), the result is that all the 
scalars in (22) verify relation (24). From relation (24) it 
follows that a necessary integrability condition for Eqs. (22) 
is 

{30* - {3 *0 - {3 ° - a{3 * = 0, 

which, according to (22), gives 

IlP 2 + xP + r = 0, 

where 

(25) 

(26) 

Il= - 8**, X=e*o + a* - ae*, r=a8° - aO. 

Let u be such that it verifies the hypothesis of Proposi
tion 7 withll2 + X2 = O. Equation (26) then says that rvan
ishes also and (25) becomes an identity. In this case, there 
always exists at least one solution to Eqs. (22); a simple way 
to see the solution is to consider an evolution problem with 
the constraint equation L =P * - P - a = O. Taking into 
account the second ofEqs. (22) and (25), one finds 

LO= [2{3Cl-8*) +8°]L +1l{32+ X{3 +r, 

so that since Il = X = r = 0, L ° vanishes with L. Conse
quently, Eqs. (22) are in involution: If Pis a solution of the 
second ofEqs. (22) in a neighborhood of a given instant and 
verifies the first ofEqs. (22) at that instant, then it is a solu
tion to Eq. (22) in the neighborhood. Since the correspond
ing initial constraint admits a one-parametric family of solu
tions, we may state the following result. 

Proposition 8: A unit vector field u such that 
- w2 + re2 + 112 + X2 = 0 and (J'a¥=O is the velocity of a 

barotropic fluid if and only if it verifies d(J 1\ u 1\ a = 0 and 
r = O. Equations (22) admit a one-parametric family of so
lutions P;.. =P;.. [u]: For each of them, the one-form 
b;.. = a + {3;.. is closed and the holonomy potential1T;.. is de
termined, up to a constant, by d1T;.. = b;... 

Suppose now that u verifies the hypothesis of Proposi
tion 7withll2 + X2¥=0. Ifll¥=O the result is that from (26) a 
necessary condition for (22) to admit a solution is 

6o=X2 - 4J-lr>O. (27) 

One then has {3 = {3s, where 

{35 = (l/21l)( - X ± 60 112
). (28) 

On the other hand, if Il = 0 (and, therefore, X ¥= 0, ), the re
sult is that {3 = {34' where 

P4 = - rh. (29) 

Consequently, we have the following proposition. 
Proposition 9: A unit vector field u such that 

- w2 + re2 = 0, (J'a¥=O, and 112 + X2¥=0 is the velocity of 
the barotropic fluid if and only if it verifies either 1l¥=0, 
x>4Ilr, (18), and (22) for P=P5 as given by (28) or 
Il = 0, (18), and (22) for P = P4 as given by (29). In each 
case, the corresponding one-form b; =a + {3; u, (i = 4,5) is 
closed and the holonomy potential1T; is determined, up to a 
constant, by d1T; = b;. 
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Let u be such that w = 0 and (J. re#O. In this case, taking 
into account that du = u 1\ a, the exterior product of Eqs. 
( 11 ) by a implies that a 1\ da + dP /\ u /\ a = 0, 
d«(J /{3) /\ u /\ a = 0 and since (J.p ¥=O, it follows that 

P d(J/\u/\a = - (Ja/\da. 

The one-form z = - * (d(J /\ u /\ a) does not vanish and is 
orthogonal to u. Consequently, r¥=O andp = P6' where 

P6 = «(J/r)i(z)*(a/\da). (30) 

Therefore, we may state the following proposition. 
Proposition 10: A unit vector field u such that w = 0 and 

(J're¥=O is the velocity of a barotropic fluid if and only if it 
verifies Eqs. ( 11 ) for P = P6 as given by (30). Then the one
form b6 = a + P6U is closed and the holonomy potential1T 6 is 
determined, up to a constant, by d1T 6 = b6. 

Consider now unit vector fields with w ¥= 0 and da = o. 
By differentiation and the exterior product by u of 
d1T = a + 1I1u, one obtains u /\ da + 1I1u /\ du = 0, that is, 
111 = 0; thus on account of (7), (J = o. Conversely, since 
da = 0, let 1T be such that d1T = a; then if (J = 0, 1T is a solu
tion to (9). Therefore, we have the following proposition. 

Proposition 11: A unit vector field u such that w¥=O and 
da = 0 is the velocity of a barotropic fluid if and only if it 
verifies (J = O. Then the holonomy potential1T is determined, 
up to a constant, by d1T = a. 

Finally, let us consider u such that w¥=O and da¥=O. 
Since the hypothesis of Proposition 3 is verified, the result is 
that u /\ da + pu /\ du = 0 and since w is a non vanishing 
spacelike vector field, one has w2 ¥=O; consequently, P = Pg, 
where 

(31) 

Thus we have the following result. 
Proposition 12: A unit vector field u such that w ® da¥=O 

is the velocity of a barotropic fluid if and only if it verifies 
Eqs. (11) for P = pg as given by (31). Then the one-form 
bg = a + pgu is closed and the holonomy potential1Tg is de
termined, up to a constant, by d1Tg = bg. 

In the above we have obtained conditional systems in u 
for the barotropic fluids. These systems depend on the non
vanishing of some differential quantities associated to u and 
do not admit a unique simple form valid for any unit field. 
On account of the above results, we are lead to introduce the 
following classification of unit vector fields. 

Definition: A unit vector field u is said to be of class C; 
(i = 1, ... ,8) ifit verifies the relations given in Table I, where 
we have written 

w = *(u /\du), a = i(u)Vu, (J = - {ju, 

e = In (J, a = (l/a2)i(a)i(u)da, 

Il= - e**, X=8*0 + a* - ae*, 

and/o= £(u)!./* = (lIa2)£(a)/foranyscalarj. 
The results of this section may then be summarized in 

the following two theorems. 
Theorem 1 (of characterization of barotropic veloc

ities): A unit vector field u of class C; (i = 1, ... ,8) is the 
velocity of a barotropic perfect fluid if and only ifit verifies 
the differential system B; given in Table II, where the scalar 
{3j (j = 4,5,6,8) is defined by 
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TABLE I. The eight classes of unit vector fields. 

Class Definition relations 

w=o,fJ=o 
w = 0, fJ #0, a = ° 
w= 0, fJ #0, a#O, aAda = 0,1l2 + X2 = ° 
W = 0, fJ #0, a#O, aAda = 0,1l2 + X2#0'1l = ° 
w = 0, fJ #0, a#O, aAda = 0, 112 + X2#0, 1l#0 
w= 0, fJ #0, a#O, aAda#O 
w#O,da=O 
w#O,da#O 

/34= (ao - a8°)lx, /35= (1/2f.t)( - X ± al/2), 
/36= ({JI:r)i(z)*(a/\da), /38 = - (1lw2 )i(w)*(u/\da) 

and we have written 

a=X2 + 4f.t(ao - a8°), z = - *(d(J /\ u /\a). 

Theorem 2: The holonomy potentialrr associated to a 
barotropic velocity of class Ci (i = 1,00.,8) is determined by 
the relations Pi given in Table III. Let g( rr) be the function 
such that (J = g( rr)rro and take 

p(rr) = I exp {I [1- g(rr)]drr}drr, p(rr) =p'(rr) -p; 

the triple (u,p,p) is then a barotropic perfect fluid. 

IV. SOME SPECIAL BAROTROPIC MOTIONS: THE 
POLYTROPIC CASE 

In many cases one may be interested in disclosing a more 
restricted character than that ofbarotropy. In this section, 
W~ study the following types of particular barotropic perfect 
fluids: (i) constant pressure dp = 0; (ii) constant total ener
gy density dp = 0; (iii) u-invariant pressure (and density) 
pO = pO = 0; and (iv) polytropic fluid,p = (A - l)p, A # 1. 

We shall see that the characterization of these cases is 
easier than the general barotropic case. 

Proposition 1 already characterized fluids of type (i); 
such fluids also belong to one of the types (ii)-(iv) if and 
only if (J = 0, so that (i) may be stated in form of the follow
ing proposition. 

Proposition 13: The necessary and sufficient condition 

TABLE II. Differential systems characterizing the barotropic velocities of 
class C,. 

Symbol 

1024 

Necessary and sufficient conditions 

t/J 
dfJAu =0 
dfJ A u A a = 0, aeo - aO = ° 
dfJ A u A a = ° 
P: =P. + a, P~ =P~(l- e*) +p.(a + eO) 

dfJA u Aa = 0, ~>O 
P ~ = Ps + a, P ~ = P ~ (I - e*) + ps(a + eo) 

d(a+P6 u) =0,d(fJ/P6)A(a+P6u) =0 
fJ=O 
d(a+p.u) =O,d(fJ/p.)A(a+p.u) =0 
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TABLE III. Characterization of the holonomy potentials for a barotropic 
velocity. 

Symbol Characterization of 1T 

1T= -In r+ h(t), (u = rdt) 
1T=1T(t), (u=rdt) 
d1T A = a + PA u, where PAis the one-parametric 
family of solutions to the system 
P* =P + a,pO=p 2(l- e*) +p(a+ eO) 

d1T. = a +P.u 
d1Ts = a + Psu 
d1T6 = a +P6U 
d1T=a 
d1T. = a +P.u 

for a unit vector u to be the velocity of a perfect fluid with 
constant pressure and verifying one of the conditions (ii)
(iv) is that u be geodesic and expansion-free. 

Now, let dp#O. From Proposition 2, the barotropic re
lation p = p (p) depends on the function g( rr) given by (7); 
indeed, 

p'(p) =p'(rr)lp'(rr) = -g{rr(p)}. 

Thus one has g( rr) = const if and only if p is a linear function 
in p. It is then easy to see that cases (ii) and (iv) are charac
terized as in the following proposition. 

Proposition 14: The necessary and sufficient condition 
for u to be the velocity of a barotropic fluid with dp = 0 and 
dp#O is (J = 0 and drr = a + fflu for some function rr. 

Proposition 15.' The necessary and sufficient condition 
for u to be the velocity of a polytropic fluid with index A is the 
existence of a function rr such that {u,rr} is a solution to (9) 
withg(rr) = (1_..1)-1. 

In case (iii), because of pO = pO = 0, one has ffl = 0, 
which by (9) leads to (J = 0 and da = O. Since the converse is 
also verified, o()ne has the following proposition. 

Proposition 16.' The necessary and sufficient condition 
for u to be the velocity of a barotropic fluid with pO = pO = 0 
is (J = 0 and da = O. Then the holonomy index is deter
mined, up to a constant, by drr = a. 

When the conditions (J = 0, da = 0 are verified for every 
functionp( rr), the triple (u,p,p) withp = p'( rr) - pisa bar
otropic fluid verifying pO = pO = O. Consequently, every 
function p = p (p) is admissible as a barotropic relation. 

By additing suitable conditions to the systems Bi ofTa
ble II, one may associate barotropic relations of types (ii)
(iv) to unit vector fields of class Ci • 

According to Proposition 16, the velocities of the classes 
C1 and C7 are of type (iii) if they verify da = O. Consequent
ly, these velocities admit any function p (p) as a barotropic 
relation and the velocities of class C1 (with da#O) and class 
C7 (with (J = 0) are of constant energy density. 

The velocities of classes C8 (resp., C6 ) with the 
additional conditions (J #0 and (J 1/38 = const (resp., 
(J 1/36 = const) admit polytropic barotropic relations. 

The velocities of classes C3 , C4 , and C5 admit a polytro
pic barotropic relation if /3 = k· (J is a solution to the 
system (22), where k is a constant. One then has 
a/«(J - (J0) = const. 
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Finally, the velocities of class C2 admit any polytropic 
index because the holonomy potential is an arbitrary func
tion of the potential t for u and one can always take it to be 
proportional, with an arbitrary constant, to a primitive of a 
given ()(t). 

Propositions 1 and 16 characterize types (i) and (iii) in 
terms of u alone; meanwhile, Propositions 14 and 15 charac
terize types (ii) and (iv) in terms of u and 1T'. Here we shall 
obtain the conditions in u ensuring the existence of 1T'. 

In case (ii) one has () = O. When w = 0, Proposition 4 
implies, for every integrant factor, the existence of a function 
1T' verifying d1T' = a + ."au. When w#O and da = 0, the po
tential1T'is such that d1T' = a and ifw#O and da#O, accord
ing to the analysis given in Sec. III, u is a solution to 
d(a + fJsu) = 0, where fJs is given by (31). We thus have 
the following theorem. 

Theorem 3: The necessary and sufficient conditions for 
u to be the velocity of a barotropic fluid with dp#O and 
dp = 0 are () = 0 and either w = 0 or w#O and 
d(a + fJsu) = 0, where fJs is given by fJs== - (l/w2

) 

X i ( w) • (u /\ da). In the first case, to every integrating factor 
T corresponds a holonomy potential1T' = - In r, in the sec
ond case, the holonomy potential is determined, up to an 
additive constant, by d1T' = a + fJsu. In both cases the triple 
(u,Po,p) is a perfect fluid, where p is given by 
p = ko 'exp( 1T') - Po and ko and Po are constants. 

In case (iv), we know from Proposition 15 that u is the 
velocity of a polytropic fluid with index A. if and only if there 
exists a function 1T'such that d1T' = a + k()u, k = 1 - A.; how
ever, this is (locally) equivalent to 

da + kd«()u) = 0, (32) 

so that da = 0 if and only if d«()u) = 0, where (32) then 
takes place for any constant k. If da#O, for every two-form 
X such that (X,da) #0, we have 

k = - (X,da)/(X,d«()u» (33) 

and by differentation 
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i(X)t(X){d«()u) ® 'V da - da ® 'Vd«()u)} 

+ {i(d«()u»i'(da) - i(da)i'(d«()u»}X® 'VX = O. 

Since this equation is verified for every X, the two expres
sions inside the curly braces vanish and conversely, if they 
vanish, there exists a constant k such that (32) is verified. 
We have thus shown the following therorem. 

Theorem 4: A unit vector fluid u is the velocity of a 
polytropic fluid if and only if it verifies either 
da = d «()u) = 0 or da ® d «()u) = d «()u) ® da # 0 and 
da ® V d «()u) = d «()u) ® V da. In the first case, any polytro
pic index A. # 1 is admitted; in the second case, the polytropic 
index A. = 1 - k is uniquely determined by (33), where X is 
any two-form nonorthogonal to da. In both cases, the one
form b == a + k()u is closed and the holonomy potential asso
ciated to every k is determined, up to an additive constant, by 
d1T' = b. The triple (u,p,p) is a polytropic fluid of index 
A. = 1 - k, wherep( 1T') = ko exp{1T" A. I(A. - 1) }ifk # 1 and 
p( 1T') = k21T' if k = 1. 
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ERRATUM 

Erratum: Gauge transformations for the quadratic bundle [J. Math. Phys. 
30,1744 (1989)] 

Y. Vaklev 
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Boul. Lenin 72, 
Sofia 1784, Bulgaria 

(Received 30 October 1989; accepted for publication 8 November 1989) 

Formulas (2.2) for C / should read til instead of a/. 
Formulas (2.6) for Ap should read 

~ [(~J ~APq] 
instead of 

[~ (~) ~1 APql 
Formulas (2.8) and (2.11) should read: 

1T(A): = - 1. In (l + p+p-), X(A,t): =1. In b + Ib-, 
1T 2 

(2.8) 

1T/: = ± 2i1t /' xl: = ± In b / ' 
!l(m)= ... 

. N 

+...:.. L (AJ)m(c511jI\c5xJ) = .... (2.11) 
2 j=1 

E= ± 

Formulas (2.14) for e- should read 

(~) instead of (~). 
Page 1747, the 22nd row on the left should read 

lim S = (T3' 
lox 1-00 

Formulas (3.16) for !l~m) and the seventh line on the 
rightfor !l~~) should read l:]insteadof[ , l Formula (4.7) 
should read Y(A; ) insteadofF(A;). Formulas (4.12) for 
if should read iwS instead of iws. The left side of both formu
las (4.16) and both sides of formulas (B3) should read 
.. , 1\" instead of" : ". The fifth row of formulas (4.17) for 
A in should read (Sy,S ... ) instead of (Sy,s ... ). 

Page 1750, 10th and 11 th lines from the bottom left be
low should read 

instead of 

H(2n) 
.7 , 

Formulas on p. 1750, eighth line from the bottom should 
read !l' (2n + I) instead of !l (2n + I) and the sixth line from the 
bottom should read [: ] instead of [, ). 

Formulas on p. 1752 the 11th and 12th lines from the 
bottom left for !lDLL should read ( : ) instead of ( , ). 

Formulas (B2) for (A,)2n + IX should read (Ao - iwS) 
instead of«Ao) - iwS). 

The equation number for formula (B4) is missing. 
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